

Java EE 8 and Angular

A practical guide to building modern single-page applications
with Angular and Java EE

Prashant Padmanabhan

BIRMINGHAM - MUMBAI

Java EE 8 and Angular
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Merint Mathew
Acquisition Editor: Chaitanya Nair
Content Development Editor: Zeeyan Pinheiro
Technical Editor: Ruvika Rao
Copy Editor: Safis Editing
Project Coordinator: Vaidehi Sawant
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Graphics: Jason Monteiro
Production Coordinator: Nilesh Mohite

First published: January 2018

Production reference: 1100118

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78829-120-0

www.packtpub.com

http://www.packtpub.com

To my father, Padmanabhan S, whose guidance had helped me navigate the course of this book.
To my wife, Pallavi, for being crazy enough to love me and to my daughters, Tanisha and

Samayra, who are my world of happiness.

– Prashant Padmanabhan

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Prashant Padmanabhan is a professional Java developer and solutions architect. He has
been developing software since 2002 and is still loving it. Professionally, he has over a
decade of experience and considers himself a coding architect, building enterprise-scale
software using Java, JEE, and open source technologies put together.

Writing a book is a big commitment and I would like to share my heartfelt thanks to my
family, who allowed me to be immersed in my thoughts without getting distracted. I
couldn't have written this book without my wife Pallavi’s unconditional support and my
father’s guidance.

I’m grateful to editors, Zeeyan Pinheiro, Ruvika Rao, and the team at Packt.

About the reviewer
Sukma Wardana comes from a small city in East Java, Indonesia, and his curiosity for
computers took him to Brawijaya University, where he got his computer science degree. His
love for programming and problem solving helped him become a software developer,
mostly works with legacy enterprise applications built on top of Java Enterprise
Edition/Spring technology.

Sukma still spends his time working with those old legacy enterprise applications with the
hope to delete more unnecessary code, and he relentlessly helps people who want to update
their legacy applications or start new green field projects for their startup ideas, with Java
EE. He is familiar with Java EE and the backend, but he would love to talk more about the
world of frontend, which consists mainly of JavaScript frameworks.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: What's in Java EE 8? 7

Improvements in EE 8 8
Overview of Java SE 8 9

Lambdas, streams, and default methods 9
CDI 2.0 12
JSON Processing 1.1 14

Working with JSON documents 15
JSON Processing API 16

JSON Binding 1.0 18
JAXRS 2.1 20
Servlet 4.0 23

Server Push 24
JSF 2.3 26
Bean Validation 2.0 29
Java EE Security API 1.0 33
Summary 34

Chapter 2: The CDI Advantage Combined with JPA 35

Introduction to context and dependency injection 36
CDI programming model 39

CDI for Java SE 8 40
RequestContext Activation 43
Enhancing events 44

Asynchronous events 45
Ordered events 46

Annotation literals 48
Java Persistence API (JPA) 50

Entities 52
Performing CRUD operations with entities 56
Entity listeners 59
Validations the entity 60

Summary 62

Chapter 3: Understanding Microservices 64

Table of Contents

[ii]

Traditional monoliths 65
Need for delivering new features quicker 67
Team size and dependency 70

Multiple small units of work 72
Smaller code base 72
Coding practices 73

Follow domain-driven design 73
Document it 74
Build for failure 75
Infrastructure tooling as part of code 75

Single responsibility 76
The need for REST 78
Scale only what needs to scale 81
The bad parts, yes, there are a few 82
Summary 84

Chapter 4: Building and Deploying Microservices 85

Fat JAR 86
Fat JAR approach 87

Skinny WAR 88
Examples using Payara Micro 88

Building our services 89
Running our services 94

MicroProfile 95
Java EE already has support 96
WildFly Swarm 96
Spring Cloud 100

Docker containers 103
Working with distributed teams 107
Building custom images 108
Running multiple containers 109
Fat JAR or Skinny WAR with Docker 109

The choice 111
Summary 112

Chapter 5: Java EE Becomes JSON Friendly 113

REST prefers JSON 114
JSON, a first-class citizen 116

JSON in databases 117
No more third-party libraries 118
JSON processing 119

Table of Contents

[iii]

JSON-P 1.1 120
JSON Pointer and JSON Patch 122
JSON merge patch 125
JSON Collectors 126

JSON binding 128
Similar to JAXB with default mappings 129
Standardizes current solutions (Jackson, Gson, and so on) 130
Mapping between classes and JSON 130
Customisation APIs 131

Few tips in practice 132
Summary 133

Chapter 6: Power Your APIs with JAXRS and CDI 134

Resources 135
URI templates 138
Matching requests to resource methods 139

Providers 140
Entity providers 140
Exception mapping 141

Client API 142
Targets 142
Reactive clients 143

Filters and interceptors 144
Validation 146
Asynchronous processing 147
Server-Sent Events 148
WebSockets 150
Context 152
Swagger 152

API 153
Maven plugin 154

Summary 155

Chapter 7: Putting It All Together with Payara 156

Building an Issue Management System (IMS) backend 157
Using Java EE 8 technologies 158

Defining the data model 158
Building microservices using REST 160
Swagger documentation 165
Using JPA for persistence 167

Table of Contents

[iv]

Deploying on Payara 170
Uber JAR and Skinny WARs 170

Running multiple microservices in Docker 171
Learning to use the new features of Payara Micro 172
Extras 173

CDI event bus 174
Tips and tricks 175

Summary 176

Chapter 8: Basic TypeScript 177

Getting started with TypeScript 178
Why use it? 179
Features 179
Visual Studio Code 181

IntelliSense 182
Debugging 182
SCM support 183
Terminal 183

Hello World example 183
Using variables, types, and functions 184

Type inference 185
Using const 185
Using let 186
Using functions 187
Arrow functions 189

Working with classes and interfaces 189
Interface 189
Classes 190
Inheritance 191

Working with arrays 192
Summary 193

Chapter 9: Angular in a Nutshell 194

Understanding Angular 195
Anatomy of a component 197

Components live and die 198
Component in code 199

Pipes 200
Modules 201
Bootstrapping process 202

Angular 2 and beyond 203

Table of Contents

[v]

Angular CLI 203
Project structure 205
Rapid development 206

Managing packages 206
Dependencies 207

Bootstrap dependency 208
A better Hello World 209

Modules 211
Components 212
Handling events 213

Data binding 213
One way 214
Two way 215

Services 215
Routes 216

routerLinkActive 218
Building a project 218

Setup and run sample 219
Introduction to PrimeNG 219

Summary 220

Chapter 10: Angular Forms 222

Two approaches to forms 223
Template-driven forms 224
Reactive forms 225

Understanding forms with an example 226
Building custom forms with validations 229
Checking the state of a form 230
Forms with NgModel 231
Reactive forms 231

Setting up forms with FormBuilder 232
Adding validations 232
Creating a custom validator 233
Grouping controls 235
Setting and patching values 235

Handling forms in Angular 236
Gaining more control with reactive forms 237
Summary 237

Chapter 11: Building a Real-World Application 238

Table of Contents

[vi]

Building an Issue Management System frontend 239
Setup 240

Structuring the project 241
Working independently of the backend 244
Data models 246

Securing the application 247
Issue lists and details 248

Rendering data with templates 249
Injectable service 250

Issue creation and updates 251
Reactive forms 252
Validation 255

Issue comments 256
Chatting on an issue 257
Production-ready build 259
Summary 261

Chapter 12: Connecting Angular to Java EE Microservices 262

Integration with microservices 263
Docker – focusing made easy 264
Verifying the running services 265

Cross Origin Resource Sharing (CORS) 266
JSON communication 268
Observables in Angular 271

Dynamic updates using Observables 273
Going to production 275

Deploying on the cloud using AWS 275
Launching the Amazon EC2 instance 276
Installing Docker on Amazon EC2 277

Docker release 278
Summary 280

Chapter 13: Testing Java EE Services 281

Testing strategies for microservices 282
Understanding the testing pyramid 282

Unit testing 283
Integration testing 283
End-End testing 284

Microservice testing challenges 285
Contract testing 285
Balancing act of tests 286

Table of Contents

[vii]

Testing in practice 286
Integration testing with Arquillian 289
Acceptance testing with Cucumber 292

Feature file 294
Step definitions 294

Summary 298

Chapter 14: Securing the Application 299

Securing the application 300
JSON Web Tokens 300

Token structure 301
Generating the token 302

IMS Security 303
Verifying the token 305
Consuming token in Angular 308

Route Guards 310
Exchanging tokens 312

Injecting an authorization header 312
Neither in Java EE nor MicroProfile 313
General tips 314
Summary 315

Other Books You May Enjoy 317

Index 320

Preface
The demand for modern and high performing web enterprise applications is growing
rapidly. No more is a basic HTML frontend enough to meet customer demands. This book
will be your one-stop guide to build outstanding enterprise web applications with Java EE
and Angular. It will teach you how to harness the power of Java EE to build sturdy
backends while applying Angular on the frontend. Your journey to building modern web
enterprise applications starts here!

The book starts with a brief introduction to the fundamentals of Java EE and all the new
APIs offered in the latest release. Armed with the knowledge of Java EE 8, you will go over
what it's like to build an end-to-end application, configure database connection for JPA, and
build scalable microservices using RESTful APIs running in Docker containers. Taking
advantage of the Payara Micro capabilities, you will build an Issue Management System,
which will have various features exposed as services using the Java EE backend. With a
detailed coverage of Angular fundamentals, the book will expand the Issue Management
System by building a modern single page application frontend. Moving forward, you will
learn to fit both the pieces together, that is, the frontend Angular application with the
backend Java EE microservices. As each unit in a microservice promotes high cohesion, you
will learn different ways in which independent units can be tested efficiently.

Finishing off with concepts on securing your enterprise applications, this book is a hands-
on guide for building modern web applications.

Who this book is for
If you are a Java developer wanting to update your knowledge on the latest Java EE trends
and explore Angular, then you are at the right place. The book takes a pragmatic approach
toward these concepts, while helping you explore the examples on your own.

By the end of this book, you’ll be armed with knowledge to write high performance, secure
Angular and Java EE applications.

Preface

[2]

What this book covers
Chapter 1, What's in Java EE 8?, walks us through the enhancements that make the Java
Enterprise Edition (EE) 8 release an important one.

Chapter 2, The CDI Advantage Combined with JPA, covers the usage of JPA for modeling our
domain objects and structuring our code with CDI’s powerful set of services. This chapter
will get us through the basics of JPA and CDI, which are fundamental to writing Java EE
applications.

Chapter 3, Understanding Microservices, lets you step back and understand the broader
picture of a solution before using it as a silver bullet for every problem. We explore some of
the key fundamentals when implementing a microservice architecture while comparing it
with its peers.

Chapter 4, Building and Deploying Microservices, helps us get our hands on to build our own
services. Along the way, we look at the current solutions available, such as containers and
frameworks, that help write scalable applications.

Chapter 5, Java EE Becomes JSON Friendly, JSON has made inroads into the Java EE world,
finally making it a first-class citizen. Here, we cover the enhancements to JSON-P and look
at the new standard JSON-B, both of which play an influential role for RESTful API
development.

Chapter 6, Power Your API with JAXRS and CDI, covers these standards that are the most
widely used ones for writing RESTful APIs. You will understand, how HTTP-centric
mapping between URI and corresponding API classes, marked with annotations are used to
work with this style.

Chapter 7, Putting It All Together with Payara, makes use of our knowledge of various Java
EE capabilities. We build an end-to-end application based on a Microservice architecture.
We not only write code but also document, run, and deploy it in Docker containers.

Chapter 8, Basic TypeScript, talks about how JavaScript rules the world of Web but does
have its own challenges when writing complex client-side code. This chapter explores
writing TypeScript code and its relation with JavaScript.

Chapter 9, Angular in a Nutshell, shows you how to leverage TypeScript and write single
page applications in Angular. You will learn how to use Angular CLI and build
components that make up an Angular application.

Preface

[3]

Chapter 10, Angular Forms, teaches the angular way of dealing with data submission,
validation, capturing submitted value, and some rich features of Angular forms over the
course of this chapter.

Chapter 11, Building a Real-World Application, helps us start building a frontend business
application using our Angular skills. We explore the various facets of Angular templates
and components that will be used to build an Issue Management System as a sample.

Chapter 12, Connecting Angular to Java EE Microservices, combines both worlds of Angular
and Java EE as we put together the Issue Management System frontend and backend. We
will look at how the HttpModule of Angular can be used for connecting to RESTful APIs.

Chapter 13, Testing Java EE Services, explores the fundamentals of testing and its relevance
in an microservice architecture.

Chapter 14, Securing the Application, leverages token authentication for securing our
frontend and backend application. This chapter goes over JSON Web Token and its usage in
Angular and Java EE.

To get the most out of this book
The following is a descriptive list of the requirements to test all the codes in the book:

Hardware: 64-bit machine with minimum 2 GB of RAM (4 GB preferred) and at
least 5 GB of free disk space
Software: JDK 8, Git, Maven, Payara Micro Server, Docker, Node, npm, Angular
CLI
Oracle JDK 8: All the codes are tested on Oracle JDK 8, but OpenJDK should
work fine as well
Docker: Docker CE and Docker Compose
More details: Latest version of Git and Maven (Apache Maven 3.5 or
above), Payara Micro 5 (https:/ ​/​www. ​payara. ​fish/ ​downloads)

The book is being written considering Java EE 8 and Payara. But a
compatible/stable version of Payara for the latest EE 8, hasn't been
released yet. So the code has been verified against Payara Micro 5 Alpha
releases (https:/ ​/​www. ​payara. ​fish/ ​upstream_ ​builds)

https://www.payara.fish/downloads
https://www.payara.fish/downloads
https://www.payara.fish/downloads
https://www.payara.fish/downloads
https://www.payara.fish/downloads
https://www.payara.fish/downloads
https://www.payara.fish/downloads
https://www.payara.fish/downloads
https://www.payara.fish/downloads
https://www.payara.fish/downloads
https://www.payara.fish/downloads
https://www.payara.fish/upstream_builds
https://www.payara.fish/upstream_builds
https://www.payara.fish/upstream_builds
https://www.payara.fish/upstream_builds
https://www.payara.fish/upstream_builds
https://www.payara.fish/upstream_builds
https://www.payara.fish/upstream_builds
https://www.payara.fish/upstream_builds
https://www.payara.fish/upstream_builds
https://www.payara.fish/upstream_builds
https://www.payara.fish/upstream_builds
https://www.payara.fish/upstream_builds
https://www.payara.fish/upstream_builds

Preface

[4]

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Java- ​EE- ​8- ​and- ​Angular. We also have other code bundles from our rich
catalog of books and videos available at https:/ ​/​github. ​com/ ​PacktPublishing/ ​. Check
them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​www. ​packtpub. ​com/ ​sites/ ​default/ ​files/
downloads/​JavaEE8andAngular_ ​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "AppModule is a root module with the @NgModule decorator that's used for
defining a module."

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Java-EE-8-and-Angular
https://github.com/PacktPublishing/Java-EE-8-and-Angular
https://github.com/PacktPublishing/Java-EE-8-and-Angular
https://github.com/PacktPublishing/Java-EE-8-and-Angular
https://github.com/PacktPublishing/Java-EE-8-and-Angular
https://github.com/PacktPublishing/Java-EE-8-and-Angular
https://github.com/PacktPublishing/Java-EE-8-and-Angular
https://github.com/PacktPublishing/Java-EE-8-and-Angular
https://github.com/PacktPublishing/Java-EE-8-and-Angular
https://github.com/PacktPublishing/Java-EE-8-and-Angular
https://github.com/PacktPublishing/Java-EE-8-and-Angular
https://github.com/PacktPublishing/Java-EE-8-and-Angular
https://github.com/PacktPublishing/Java-EE-8-and-Angular
https://github.com/PacktPublishing/Java-EE-8-and-Angular
https://github.com/PacktPublishing/Java-EE-8-and-Angular
https://github.com/PacktPublishing/Java-EE-8-and-Angular
https://github.com/PacktPublishing/Java-EE-8-and-Angular
https://github.com/PacktPublishing/Java-EE-8-and-Angular
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/JavaEE8andAngular_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8andAngular_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8andAngular_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8andAngular_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8andAngular_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8andAngular_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8andAngular_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8andAngular_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8andAngular_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8andAngular_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8andAngular_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8andAngular_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8andAngular_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8andAngular_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8andAngular_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8andAngular_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8andAngular_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8andAngular_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8andAngular_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8andAngular_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8andAngular_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8andAngular_ColorImages.pdf

Preface

[5]

A block of code is set as follows:

@NgModule({
 declarations: [AppComponent, PositivePipe],
 exports: [AppComponent],
 imports: [BrowserModule, AppRoutingModule],
 providers: [DashboardService],
 bootstrap: [AppComponent]
})
export class AppModule { }

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

this.stats = {
 bookings: 100,
 cancellations: 11,
 sales: 5000
 }

Any command-line input or output is written as follows:

ng new hello-ng-dashboard --routing
cd hello-ng-dashboard

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"The page presents a form where you can specify the maven projects Group ID, Artifact ID,
and Dependencies."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[6]

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
What's in Java EE 8?

Java in general has enjoyed a successful run in the enterprise space for nearly two decades,
but we all understand that being successful today doesn't guarantee success tomorrow.
Businesses have become more demanding compared to how things used to be 10 years ago.
The need for flexible, robust, and scalable solutions delivered over the internet using the
web and mobiles is only growing. While Java addresses most of these needs, change is
inevitable for it to adapt to newer challenges. Fortunately for Java, with a large community
of developers around it, there are a plethora of tools, libraries, and architectural patterns
being established to deliver solutions for these business complexities. Java EE standardizes
these solutions and allows the Java developer to leverage his existing skills in building
enterprise applications.

Just like a hammer can't be the solution for every problem, using the same technology stack
can't be the solution to every business challenge. With the web becoming faster, there's been
a rise in client-side frameworks that are very responsive. These web client frameworks rely
on enterprise services to utilize the underlying business capabilities of an enterprise. Java
EE enables teams to deliver cloud-ready solutions using architectural patterns such as
microservices.

Java EE, which stands for Enterprise Edition, can be considered an umbrella specification
for defining the entire Java EE platform. EE 8 is the latest specification, which itself relies
upon several other specs and groups them together into a unified offering. These changes
are meant to simplify, standardize, and modernize the technical stack used by developers to
make them more productive in building next-generation applications.

The enterprise space for business applications has never been more vibrant than now. Java
EE 8 brings with it newer APIs and improvements to existing ones. This chapter will try to
provide you with a clear understanding of what this release train of Java comprises. There's
a fair bit to cover, so brace yourself as we dive into the world of Java EE.

What's in Java EE 8? Chapter 1

[8]

We will cover the following topics in this chapter:

Improvements in EE 8
Overview of Java SE 8
CDI 2.0
JSON Processing 1.1
JSON Binding 1.0
JAXRS 2.1
Servlet 4.0
JSF 2.3
Bean Validation 2.0
Java EE Security API 1.0

Improvements in EE 8
Java EE has always tried to move common infrastructure tasks to container-based models.
In recent times, these have been further simplified, allowing for developers to focus on the
business logic rather than worry about the ceremonious code necessities. Java EE 7 focused
on WebSockets and JSON, which helped build HTML 5 support. Java EE 8 continues to
build upon EE 7, with a focus on building modern cloud-ready web applications with ease
of development in mind.

Here's a quick summary of changes for the impatient. But don't get overwhelmed, as we
will be going over these in more detail in the follow-up sections. So, what has changed, you
may ask? Well, let's begin with JSON. Just like you can process XML documents and map
XML to objects or objects to XML, now you can do the same with JSON too by using JSON-
P and JSON-B. Java EE 8 now supports HTTP/2 with the Servlet 4.0 update and brings with
it some exciting options to use. REST APIs are only growing stronger; now we have the
support for server-sent events and we can use concurrency utilities available with SE 8
along with a reactive client API. Authentication and authorization support gained a
standard way of doing things with the introduction of the new Java EE Security API. Bean
validation now leverages SE 8 features to extend its range of options. CDI is no longer
confined to the boundaries of EE, as it's now going to be made available for SE as well,
along with new capabilities such as Async events, observer ordering, and more.

In the next few sections to follow, we will go over these changes in more detail, and what
they mean when building an application.

What's in Java EE 8? Chapter 1

[9]

Overview of Java SE 8
One of the goals of Java EE 8 was better alignment with Java SE 8. SE 8 was a major update;
it was released in March 2014 and brought with it some major changes to the language and
APIs. Lambdas, streams, default methods, and functional-style programming were
introduced and were the highlights of the release. With these capabilities, the method of
writing code was no longer going to be the same. A few other noteworthy additions in this
release were optionals, repeating annotations, the date/time APIs, type annotations, and
CompletableFutures.

If you would like to dig deeper into this release, then considering reading a book specific to
Java 8. Here, we will cover just enough for getting to grips with some of the language
features.

Lambdas, streams, and default methods
Lambdas have been the biggest change in the language since generics were introduced in
Java 5. This was a fundamental change that impacted many of the APIs to follow.
Anonymous classes are very useful to pass code around, but they come at the cost of
readability as they lead to some boilerplate code (think Runnable or ActionListener).
Those wanting to write clean code that is readable and void of any boilerplate would
appreciate what lambda expressions have to offer.

In general, lambda expressions can only be used where they will be assigned to a variable
whose type is a functional interface. The arrow token (->) is called the lambda operator. A
functional interface is simply an interface having exactly one abstract method:

Runnable run = new Runnable() {
 @Override
 public void run() {
 System.out.println("anonymous inner class method");
 }
};

With lambdas similar to those in the preceding code, the code can be rewritten as follows,
where the empty parenthesis is used for the no args method:

Runnable runWithLambda = () -> System.out.println("hello lambda");

What's in Java EE 8? Chapter 1

[10]

To understand some of the enhancements, let us look at an example. Consider the Hero
class, which is a plain Java object with two properties, telling us the name of the Hero and
whether the hero can fly or not. Well, yes there are a few who can't fly, so let's keep the flag
around:

 class Hero {
 String name;
 boolean canFly;
 Hero(String name, boolean canFly) {
 this.name = name;
 this.canFly = canFly;
 }
 // Getters & Setters omitted for brevity
 }

Now, it's typical to see code that iterates over a collection and does some processing with
each element in the collection. Most of the methods would typically repeat the code for
iterating over a list, but what varies is usually the condition and the processing logic.
Imagine if you had to find all heroes who could fly and find all heroes whose name ends
with man. You would probably end up with two methods—one for finding flying heroes
and another for the name-based filter. Both these methods would have the looping code
repeated in them, which would not be that bad, but we could do better. A solution is to use
anonymous inner class blocks to solve this, but then it becomes too verbose and obscures
the code readability. Since we are talking about lambdas, then you must have guessed by
now what solution we can use. The following sample iterates over our Hero list, filtering
the elements by some criteria and then processing the matching ones:

List<String> getNamesMeetingCondition(List<Hero> heroList,
Predicate<Hero> condition) {
 List<String> foundNames = new ArrayList<>();
 for (Hero hero : heroList) {
 if (condition.test(hero)) {
 foundNames.add(hero.name);
 }
 }
 return foundNames;
}

Here, Predicate<T> is a functional interface new to Java 8; it has one abstract method
called test, which returns a Boolean. So, you can assign a lambda expression to the
Predicate type. We just made the condition a behavior that can be passed dynamically.

What's in Java EE 8? Chapter 1

[11]

Given a list of heroes, our code can now take advantage of lambdas without having to
write the verbose, anonymous inner classes:

List<Hero> heroes = Arrays.asList(
 new Hero("Hulk", false),
 new Hero("Superman", true),
 new Hero("Batman", false));

List<String> result = getNamesMeetingCondition(heroes, h -> h.canFly);
result = getNamesMeetingCondition(heroes, h -> h.name.contains("man"));

And finally, we could print the hero names using the new forEach method available for all
collection types:

result.forEach(s -> System.out.println(s));

Moving onto streams, these are a new addition along with core collection library changes.
The Stream interface comes with many methods that are helpful in dealing with stream
processing. You should try to familiarize yourself with a few of these. To establish the value
of streams, let's solve the earlier flow using streams. Taking our earlier example of the hero
list, let's say we wanted to filter the heroes by the ability to fly and output the filtered hero
names. Here's how its done in the stream world of Java:

heroes.stream().filter(h -> h.canFly)
 .map(h -> h.name)
 .forEach(s -> System.out.println(s));

The preceding code is using the filter method, which takes a Predicate and then maps
each element in the collection to another type. Both filter and map return a stream, and
you can use them multiple times to operate on that stream. In our case, we map the filtered
Hero objects to the String type, and then finally we use the forEach method to output the
names. Note that forEach doesn't return a stream and thus is also considered a terminal
method.

If you hadn't noticed earlier, then look again at the previous examples in which we already
made use of default methods. Yes, we have been using the forEach method on a collection
which accepts a lambda expression. But how did they add this method without breaking
existing implementations? Well, it's now possible to add new methods to existing interfaces
by means of providing a default method with its own body. For collection types, this
method has been defined in the Iterable interface.

What's in Java EE 8? Chapter 1

[12]

These capabilities of Java 8 are now powering many of the EE 8 APIs. For example, the Bean
Validation 2.0 release is now more aligned to language constructs such as repeatable
annotations, date and time APIs, and optionals. This allows for using annotations to
validate both the input and output of various APIs. We will learn more about this as we
explore the APIs throughout the book.

CDI 2.0
What would the world be like if there was only a single object with no dependencies? Well,
it certainly wouldn't be called object-oriented, to begin with. In programming, you normally
have your objects depend on other objects. The responsibility of obtaining these other
dependencies is owned by the owing object itself. In Inversion of Control (IoC), the
container is responsible for handing these dependencies to the object during its creation.
Context and Dependency Injection (CDI) allows us to set the dependencies on an object
without having to manually instantiate them; a term often used to describe this is called
injection. It does this with the added advantage of type-safe injection, so there’s no string
matching done to get the dependency, but instead its done based on the existing Java object
model. Most of the CDI features have been driven by the community and input from expert
group members. Many of the features in CDI have been influenced by a number of existing
Java frameworks such as Seam, Guice, and Spring.

While Java EE developers have enjoyed this flexible yet powerful API, SE developers were
deprived of it, as CDI was part of Java EE alone. That's changed since this version, as this
powerful programming model is now going to be available for Java SE as well. As of the 2.0
release, CDI can be used in both Java SE and Java EE. To make use of CDI in SE, you can
pick a reference implementation such as Weld to get started. CDI can be broken down into
three parts:

Core CDI
CDI for Java SE
CDI for Java EE

What's in Java EE 8? Chapter 1

[13]

Given how important CDI has become to the Java EE platform, it's a key programming
model to familiarize oneself with. It can be considered the glue between the other
specifications and is heavily used in JAXRS and Bean Validation specs. It's important to
note that CDI is not just a framework but a rich programming model with a focus on loose
coupling and type safety. A reference implementation for CDI is Weld, which is an open
source project developed by JBoss/Red Hat. The primary theme for this release was to add
support for Java SE, as earlier versions were targeted specifically at Java EE alone. CDI
provides contexts, dependency injection, events, interceptors, decorators, and extensions.
CDI services provide for an improved life cycle for stateful objects, bound to well-defined
contexts. Messaging between objects can be facilitated by using event notifications. If all this
sounds a little overwhelming then don't worry, as we will be covering all of it and much
more in the next chapter.

If there's any feature that might draw developers towards CDI, then that in all probability
must be the event notification model of CDI. CDI events are pretty much what you would
refer to as an implementation of the observer pattern. This feature largely influences the
decoupling of code to allow for greater flexibility in object communication. When we talk
about events in CDI, this mainly involves two functions; one is to raise an event and the
other would be to catch an event. Now isn't that simple? Events can be synchronous or
asynchronous in nature. Event firing is supported by the Event interface; the earlier version
was only supported by firing synchronous events, but with the 2.0 release you can now fire
async events as well. Now, in case you are wondering what this event is and why we would
use it, an event is just a Java object that can be passed around. Consider a plain old Java
object called LoginFailed. Based on a certain scenario or method invocation, we want to
notify an observer of this event, what just happened. So, here's how you can put this
together in code:

public class LoginFailed {}

public class LoginController {
 @Inject Event<LoginFailed> loginFailedEvent;

 public void loginAttempt() {
 loginFailedEvent.fire(new LoginFailed());
 }

}

What's in Java EE 8? Chapter 1

[14]

We will discuss the specifics of events and more in the next chapter, which is dedicated to
CDI and JPA. For now, we have just scratched the surface of what CDI has to offer, but
nevertheless this should serve as a good starting point for our journey into the exciting
world of CDI-based projects.

JSON Processing 1.1
Most languages provide support for reading and writing text files. But when it comes to
special types of documents such as XML, CSV, or JSON, processing requires handling them
differently to traditional text files. Java has historically had support for XML-based,
documents but the support for JSON was provided via third-party libraries. JSON itself is a
lightweight data-interchange format which is a well documented standard and has become
extremely successful; it has become the default format for many systems. Java had the
support for processing XML documents using Java API for XML Processing (JAXP) and
JSON-P, which was introduced in Java EE 7. You can now process JSON documents as well.
So, JSON-P does for JSON what JAXP does for XML. The 1.1 version was an update to the
earlier JSON-P specification called JSON-P 1.0. This was to keep it updated with the JSON
IETF standards. While this might sound like the other JSONP (notice the lack of hyphen),
which stands for JSON with Padding, this is not that. JSONP is a format used to deal with
cross origin AJAX calls using GET, while JSON-P is the specification defined within Java
EE, used for JSON Processing and written as JSON-P.

When dealing with any Java EE API, you would have a public API and a corresponding
reference implementation. For JSON-P, here are some useful references:

JSON-P official web site https:/ ​/​javaee. ​github. ​io/ ​jsonp

JSR-374 page on the JCP site https:/ ​/​jcp. ​org/ ​en/ ​jsr/​detail? ​id=​374

API and reference implementation https:/ ​/​github. ​com/ ​javaee/ ​jsonp

The API includes support for parsing, generating, and querying JavaScript Object Notation
data. This is made possible using the object model or the streaming model provided by the
JSON-P API. You can consider this a low-level API, which is different to the higher level
declarative JSON binding API which is also part of Java EE 8. The streaming model can be
considered similar to StAX for XML for creating and reading JSON in a streaming manner,
while the object model can be used to work with JSON, similar to DOM for XML.

https://javaee.github.io/jsonp
https://javaee.github.io/jsonp
https://javaee.github.io/jsonp
https://javaee.github.io/jsonp
https://javaee.github.io/jsonp
https://javaee.github.io/jsonp
https://javaee.github.io/jsonp
https://javaee.github.io/jsonp
https://javaee.github.io/jsonp
https://javaee.github.io/jsonp
https://javaee.github.io/jsonp
https://jcp.org/en/jsr/detail?id=374
https://jcp.org/en/jsr/detail?id=374
https://jcp.org/en/jsr/detail?id=374
https://jcp.org/en/jsr/detail?id=374
https://jcp.org/en/jsr/detail?id=374
https://jcp.org/en/jsr/detail?id=374
https://jcp.org/en/jsr/detail?id=374
https://jcp.org/en/jsr/detail?id=374
https://jcp.org/en/jsr/detail?id=374
https://jcp.org/en/jsr/detail?id=374
https://jcp.org/en/jsr/detail?id=374
https://jcp.org/en/jsr/detail?id=374
https://jcp.org/en/jsr/detail?id=374
https://jcp.org/en/jsr/detail?id=374
https://jcp.org/en/jsr/detail?id=374
https://jcp.org/en/jsr/detail?id=374
https://jcp.org/en/jsr/detail?id=374
https://github.com/javaee/jsonp
https://github.com/javaee/jsonp
https://github.com/javaee/jsonp
https://github.com/javaee/jsonp
https://github.com/javaee/jsonp
https://github.com/javaee/jsonp
https://github.com/javaee/jsonp
https://github.com/javaee/jsonp
https://github.com/javaee/jsonp
https://github.com/javaee/jsonp
https://github.com/javaee/jsonp

What's in Java EE 8? Chapter 1

[15]

Working with JSON documents
To get an understanding of how this works, consider the following JSON document saved
in a file called demo.json (it can be any file), which contains an array of JSON objects with
the name and priority key-value pairs:

[
 {
 "name": "Feature: Add support for X",
 "priority": 1
 },
 {
 "name": "Bug: Fix search performance",
 "priority": 2
 },
 {
 "name": "Feature: Create mobile page",
 "priority": 3
 }
]

Now, before looking at the API, it is important to understand how we need to perceive this
JSON document. JSON defines only two data structures, one being an array that contains a
list of values and the other an object that is just a name key-value pair. There are six value
types in JSON, namely:

String
Number
Object
Array
Boolean
Null

In the previous document, the square brackets around the content denote an array that has
multiple objects as its values. Let's take a look at the first JSON object, as follows:

{
 "name": "Feature: Add support for X",
 "priority": 1
}

What's in Java EE 8? Chapter 1

[16]

The curly braces, {}, denote a JSON object that contains a key-value pair. The key must be a
string in quotes followed by the value, which must be a valid JSON data type. In the
previous case, we have the string in quotes, "Feature: Add support for X", and this
maps to a String data type. The value of the "priority" key is a number data type, given
as 1. Since the value can be any JSON data type, you could also have nested objects and
arrays as values of the JSON object. Here's an example of that, showing the "ticket" key
having an array as its value, which contains objects:

{
 "name": "Feature: Add support for X",
 "priority": 1,
 "ticket": [
 {
 "name": "Feature: add new ticket",
 "priority": 2
 },
 {
 "name": "Feature: update a ticket",
 "priority": 2
 }
]
}

Having built an understanding of this document structure, let's look at the API.

JSON Processing API
JSON-P can be considered as having two core APIs:

javax.json
JSON Object Model API for a simpler way of working with JSON
documents in memory.

javax.json.stream
JSON Streaming API, which parses a document and emits events
without loading the entire document in memory.

Let's look at what the parsing API looks like when trying to parse the previous sample
document. First we need to obtain a parser using the Json class. This class is a factory class
for creating JSON processing objects:

JsonParser parser =
Json.createParser(Main.class.getResourceAsStream("/sample.json"));

What's in Java EE 8? Chapter 1

[17]

Next, we use the returned JsonParser object to loop over all the entries using the
hasNext() method, similar to an iterator, and in turn invoke the next() method, which
emits a JsonParser.Event instance. This instance will hold the current JSON entry which
can be a key or value:

while (parser.hasNext()) {
 JsonParser.Event e = parser.next();
 System.out.print(e.name());
 switch (e) {
 case KEY_NAME:
 System.out.print(" - " + parser.getString());
 break;
 case VALUE_STRING:
 System.out.print(" - " + parser.getString());
 break;
 case VALUE_NUMBER:
 System.out.print(" - " + parser.getString());
 }
 System.out.println();
}

Using the preceding loop, we will be able to parse and examine each entry as we go
through the entire document.

Apart from creating parsers using the Json class, we can also obtain a
JsonObjectBuilder instance which is used to create JSON object models from scratch. A
one line demo is shown as follows, and creates a JsonObject:

JsonObject json = Json.createObjectBuilder().add("name", "Feature
ABC").build();

More advanced usage is possible by nesting calls to the add(...) method, which we will
look at later on. There have been many noteworthy enhancements with JSON-P 1.1, such as:

JSON Pointer: Allows for finding specific values in a JSON document
JSON Patch: Allows for modifying operations on a JSON document
JSON Merge Patch: Allows for using patch operations with merge
Addition of JSON Collectors: Allows for accumulating JSON values from
streams

What's in Java EE 8? Chapter 1

[18]

Additionally, JsonReader has a new method called readValue() which returns a JSON
value from the underlying input source. Similarly, JsonWriter was updated with another
new method called write(JsonValue value), which allows for writing the JSON value
to an output source. These additions were possible without breaking the earlier APIs
because default methods were introduced in Java 8. We will go through more details about
parsing and various other APIs in another chapter, but for now this should give you a
starting point to begin exploring the APIs further.

JSON Binding 1.0
As the version number 1.0 suggests, this is one of the new additions to the Java EE
specification group. It's also probably the most welcomed addition, as it brings with it the
much awaited ability to bind any Java object to a JSON string in a standard way. As the
predominant way of exchanging information is JSON, most developers would look for
solutions to convert their APIs' input and output values to and from JSON. JSON-B does for
JSON what JAXB did for XML—it acts as a binding layer for converting objects to JSON and
JSON string to objects. While the default mapping mechanism should serve us well, we all
know that there's always a need for customization. Thus, there are customization options
available when the defaults aren't good enough for a use case. This can be done using
annotations on your Java classes.

The Yasson project is the reference implementation for JSON-B. For JSON-B, here are some
useful references:

JSON-B official web site https:/ ​/​javaee. ​github. ​io/ ​jsonp

JSR-367 page on the JCP site https:/ ​/​jcp.​org/ ​en/ ​jsr/ ​detail? ​id= ​367

API and spec project https:/ ​/​github. ​com/ ​javaee/ ​jsonb- ​spec

Yasson RI project https:/ ​/​github. ​com/ ​eclipse/ ​yasson

https://javaee.github.io/jsonp
https://javaee.github.io/jsonp
https://javaee.github.io/jsonp
https://javaee.github.io/jsonp
https://javaee.github.io/jsonp
https://javaee.github.io/jsonp
https://javaee.github.io/jsonp
https://javaee.github.io/jsonp
https://javaee.github.io/jsonp
https://javaee.github.io/jsonp
https://javaee.github.io/jsonp
https://jcp.org/en/jsr/detail?id=367
https://jcp.org/en/jsr/detail?id=367
https://jcp.org/en/jsr/detail?id=367
https://jcp.org/en/jsr/detail?id=367
https://jcp.org/en/jsr/detail?id=367
https://jcp.org/en/jsr/detail?id=367
https://jcp.org/en/jsr/detail?id=367
https://jcp.org/en/jsr/detail?id=367
https://jcp.org/en/jsr/detail?id=367
https://jcp.org/en/jsr/detail?id=367
https://jcp.org/en/jsr/detail?id=367
https://jcp.org/en/jsr/detail?id=367
https://jcp.org/en/jsr/detail?id=367
https://jcp.org/en/jsr/detail?id=367
https://jcp.org/en/jsr/detail?id=367
https://jcp.org/en/jsr/detail?id=367
https://jcp.org/en/jsr/detail?id=367
https://github.com/javaee/jsonb-spec
https://github.com/javaee/jsonb-spec
https://github.com/javaee/jsonb-spec
https://github.com/javaee/jsonb-spec
https://github.com/javaee/jsonb-spec
https://github.com/javaee/jsonb-spec
https://github.com/javaee/jsonb-spec
https://github.com/javaee/jsonb-spec
https://github.com/javaee/jsonb-spec
https://github.com/javaee/jsonb-spec
https://github.com/javaee/jsonb-spec
https://github.com/javaee/jsonb-spec
https://github.com/javaee/jsonb-spec
https://github.com/eclipse/yasson
https://github.com/eclipse/yasson
https://github.com/eclipse/yasson
https://github.com/eclipse/yasson
https://github.com/eclipse/yasson
https://github.com/eclipse/yasson
https://github.com/eclipse/yasson
https://github.com/eclipse/yasson
https://github.com/eclipse/yasson
https://github.com/eclipse/yasson
https://github.com/eclipse/yasson

What's in Java EE 8? Chapter 1

[19]

One of the reasons why JAXB, and now JSON-B, are so popular is because they almost hide
the complexity of working with the document. As a developer, you get to focus on the
business objects or entities while letting these binding layers take care of the complexities of
mapping an object to/from their document representation. The API provides a class called
Jsonb, which is a high-level abstraction over the JSON Binding framework operations.
There are mainly two operations that you would perform using this class; one is to read
JSON input and deserialize to a Java object and the other is to write a JSON output by
serializing an object. To get an instance of the Jsonb class, you need to obtain it from a
JsonbBuilder. An example of its usage follows:

Jsonb jsonb = JsonbBuilder.create();

The builder also allows for passing in custom configurations that can change the processing
behavior. Once you have obtained the Jsonb instance, you can use any of the toJson or
fromJson overloaded methods for performing any operation. This instance is thread-safe
and can be cached for reuse. Consider this sample to see the API in action:

class Ticket {
 public String name;
 public Integer priority;
}

Here are the lines of code required for converting Java objects to/from JSON:

Ticket t = new Ticket();
t.name = "Feature ABC";
t.priority = 2;

/* Create instance of Jsonb using builder */
Jsonb jsonb = JsonbBuilder.create();

/* Ticket to this {"name":"Feature ABC","priority":2} */
String jsonString = jsonb.toJson(t);

/* {"name":"Feature ABC","priority":2} to a Ticket */
Ticket fromJson = jsonb.fromJson(jsonString, Ticket.class);

What's in Java EE 8? Chapter 1

[20]

As you can see, this is very different to working with the JSON-P APIs, which are low-level.
The JSON-B API allows for working with JSON with a much simpler API. There are times
when you can even combine the two APIs (JSON-P and JSON-B) to perform certain
operations. Imagine you are given a large JSON file from which you need to selectively
extract a nested object to use that object in your code. You could use the JSON-P API and
use the JSON Pointer to extract the needed object, and then later use JSON-B API to
deserialize it to a Java object. When working with JSON, single object types aren't
enough—you often run into a collection of objects that you need to work with. In our
sample, think instead of one ticket. You may be reading and writing a collection of tickets.
As you might expect, JSON-B has built-in support for collections too. As a matter of fact, it
also supports generic collections for working with JSON. Generics, as you may recall, is for
compile time type checking, but is implemented by the compiler using a technique called
type erasure. Thus, the type information is not present at runtime. Hence, to correctly
perform deserialization, the runtime type of the object needs to be passed to JSON-B.

JSON-B also offers some options in the form of compile time customization using
annotations and runtime customization using the JsonbConfig class. The annotations can
be placed on classes that you need to do the custom changes, and that's it. The
customization options don't end there, though, as there might be times when you may not
have access to the source code for some reason. In such cases, you can make use of an
adapter, which allows for writing your custom code to perform the mapping; this allows
more fine-grained control over data processing. These options are very handy for a
developer to have at their disposal in today's age where JSON is prevalent.

JAXRS 2.1
Java EE has always been good at supporting various over the network communication
options, right from binary RPC, XML-based RPC or now XML and JSON-based
communication via JAXRS over HTTP/1 and HTTP/2 protocols. In recent times, REST-based
web services have become the de facto choice for developing web APIs. There are broadly
two standards that can be followed when developing web services, one being SOAP and the
other REST. Initially, the SOAP-style APIs dominated the enterprise space and it seemed
there was no room for any other, but the REST style had its own appeal. As mobile
applications grew, so did the demand for server-side APIs. Clients required more flexibility
and weren't exactly a fan of the verbosity of SOAP XMLs.

What's in Java EE 8? Chapter 1

[21]

REST APIs are less strict and thus more flexible and simpler to use, which added to their
appeal. While a SOAP document primarily focused on XML and had to conform to SOAP
standards, REST APIs enjoyed the freedom of choice in terms of data format. The dominant
choice of data format in REST for communication is JSON documents, but it can be XML
too, or any other. The published APIs in REST are known as resources. There are suggested
design guidelines when building a REST API, and while these aren't going to prevent you
from doing it your way, its best to stick to the guidelines for the most part. Think of them as
a design pattern, which you may follow. REST in itself is an architectural pattern and
widely adopted in the industry.

JAXRS 2.0 was imagined as a single client request and a single server response. But with 2.1
and the underlying HTTP/2 updates, you can now think of single requests as having
multiple responses. The new API update allows for non-blocking interceptors and filters as
well.

A JAXRS project would typically have one or more resources along with some providers.
Building a REST endpoint or resource, as they are called, is as simple as creating a class
with a few annotations and writing a resource method. There will be one class to bootstrap
the REST resources, and then you will define the actual resource and providers that are
needed by your application. Bootstrapping is done by creating a subclass of the
Application class, which serves to configure your REST resources. This is similar to the
following snippet:

/**
 * To bootstrap the REST APIs
 */
@ApplicationPath("/resources")
public class JaxrsActivator extends Application { }

@Path("heroes")
public class HeroResource {
 @GET
 @Path("{id}")
 public Hero getSingleHero(@PathParam("id") String id) {
 return new Hero(id);
 }
}

What's in Java EE 8? Chapter 1

[22]

With those annotations added to the class, the HeroResource class has just been
transformed into a REST resource. The class will be deployed within a web application
(WAR file) and can be run locally on any JEE compliant server. As REST resources are
accessed via http(s), this resource will now be available at a URL, given its called
heroapp. Notice that /resources is actually defined by the subclass of the
javax.ws.rs.core.Application class. So, you define the prefix for all the REST
endpoints using the @ApplicationPath annotation. Typically, naming conventions
include /api, /resources, or /rest:

http://localhost:8080/heroapp/resources/heroes/1

The matching of request to resource methods is done internally by the container using an
algorithm which is implementation specific, but the output is defined by the specification.
What this means to a developer is that they can rely on the standards and not worry about
different implementations.

In the 2.1 release, which was updated from the earlier JAXRS 2.0 version, came a Reactive
Client API. The reactive style of programming is for the client side, which allows for a more
reactive way of handling a request/response. This is not done by replacing the existing
Client API, but instead by extending it to support this new style of programming. A
noticeable change includes the rx() method on the Client Fluent API. Additionally, there's
better async support as it embraces the concurrency features of Java 8. CDI updates have
also been leveraged along with underlying Java 8 alignment. Server Sent Events is a
popular web transport technique used for pushing one-way asynchronous updates to the
browser. SSE is supported in both client and server APIs. With SSE, it's possible to have a
communication channel kept open from the server to the clients, such that subsequent
communications from the server to connected clients can be sent. With SSE and WebSocket
its time to stop polling. While polling occasionally isn't that bad an idea, there are better
alternatives at our disposal. Polling in general adds to unnecessary resource usage and
undue complexity, which we can avoid now. The growing need for a real-time push has led
to new standards such as SSE, which is an HTTP-based solution for one-sided
communication and WebSockets an exciting standard allowing for bidirectional
communication between both client and server.

What's in Java EE 8? Chapter 1

[23]

The idea of SSE can be applied whenever a client needs to subscribe to updates from the
server, such as a stock quote update that the server may send to the client when there's any
change in the price. WebSockets, on the other hand, can be used for more complex use cases
as it supports two-way communication, such as messaging or collaboration tools which
require updates going in both directions. Needless to say, these can be used to replace the
age old polling solutions that always fall short. Now that we understand the differences
between SSE and WebSockets, it's also worth noting that HTTP/2 Push is unrelated to the
two. Simply put, HTTP/2 Push is a mechanism to push assets to the web browser in
advance to avoid multiple round trips.

JAXRS uses Providers, which are classes that you annotate with the @Provider annotation.
These classes are discovered at runtime and can be used to register filters, interceptors, and
more. You may think of these as layers that sit between the originating request and your
REST resource. These can be used to intercept the incoming request and thus allow for
applying any cross-cutting concerns across the application. Now, this is a good idea to
make use of given it promotes the separation of concerns. Imagine polluting your code with
redundant checks or validations for each request, which are part of the infrastructure or
protocol-related logic. This feature allows us to separate the infrastructure code from the
actual business logic that your component should focus on. We will go over more details in
the later chapters, but this should serve as a good reference regarding what JAXRS has to
offer.

Servlet 4.0
For the majority of developers, this may not impact the way you write servlet code, but it
does offer some performance benefits along with new abilities such as server push.
HTTP/2.0 is a binary protocol based on frames and is the new standard for the web. HTTP/2
standard was approved around February 2015 and is supported by most modern day
browsers. While the web has been evolving at a fast pace, the same can't be said about
HTTP itself. For years, developers had to work around the limitations of HTTP 1.x, but the
wait is finally over, as this version has better alignment with modern day demands. Some of
the HTTP/2 benefits include the ability to reuse the same TCP connection for multiple
requests, more compressed header information, priority and packet streaming, and server
push to send resources from the server to the client. This results in reduced latency with
faster content downloads. For the uninformed, this change won't be a crucial change and
your applications will continue to function as they did before with the added benefit of
faster performance.

What's in Java EE 8? Chapter 1

[24]

So, there are no new HTTP methods and no new headers or URL changes that you need to
worry about. Since Java EE servlets are primarily based on the HTTP protocol, it was only
logical for it to get updated to meet the changes in the HTTP standards. The 4.0 update is
mainly focused on adding support for the HTTP/2.0 standard, and thus is a 100% compliant
implementation for the HTTP/2 specification. What this update should bring with it is
increased performance.

Some of the features of HTTP/2 are:

Request/response multiplexing (bi-directional support)
Optimized headers (uses HPACK header compression)
Binary frames (this solves the HOL blocking problem present in HTTP/1.1)
Server Push
Stream prioritization
Upgrade from HTTP/1.0

Servlet 4.0 serves as an abstraction of the underlying protocol, allowing us to focus on the
high-level APIs that shield us from the intricacies of HTTP. It's also interesting to note that
the servlet specification itself is relied upon by other specs, such as JSF, which will be
utilizing these updates to their benefit. Typically, you can think of an HTTP
request/response cycle as one request and one response, but that just changed. Now one
request can be used to send out multiple responses. To put this into perspective, remember
the earlier workarounds of HTTP 1.1, such as domain sharding or where we tried to save
multiple requests in order to reduce the TCP connection overhead, such as using CSS
Sprites (one image combined with multiple images), well that’s no longer needed.

Server Push
There's a new Push builder API that can be used for server push features. Armed with the
server push ability, a server can push a resource to the client. This doesn't mean that there's
no request needed in the first place. You need to obtain a PushBuilder from the request
object and then use this for constructing a push request. Thus, there's always a request,
based on which, the push feature is enabled.

A sample of this is as follows:

PushBuilder pushBuilder = httpServletRequest.newPushBuilder();

What's in Java EE 8? Chapter 1

[25]

Once a pushBuilder instance is obtained from the request, you can use it to set the
required URI path, which is to be used for sending the push request. A sample is shown
here:

request.newPushBuilder()
.path(“/assests/images/product.png”)
.push();

Here, the paths beginning with / are considered absolute paths. Without the / prefix, the
path would be considered to be relative to the context of the request used to create the
instance of PushBuilder. While the short code shown here is handy, it must be used with
caution since there's a possibility that the call to newPushBuilder() may return null if
push is not supported.

If you are wondering how we put that newPushBuilder method on the request object,
remember that Java 8 has default methods. So, the signature of the method looks like the
following:

default PushBuilder newPushBuilder()

Building a push request involves setting the request method to GET and setting the path
explicitly, as that won't be set by default. Calling the push method generates the push
request from the server and sends it to the client, unless the push feature is not available for
some reason. You may add headers or query strings to the push request by using the
addHeader or queryString methods.

With the preceding code, the server will send a push to the client that made this request.
The client may already have the resource and thus can tell the server that it has this cached
from a previous request, and in turn will inform the server to not bother sending this
resource over the wire. You might have guessed by now that it's the client who can dictate
whether a resource should be pushed or not. Thus, the client can explicitly disable the
server push.

Let's imagine we need to push the logo to the client from our servlet. Here's how we might
write this code:

protected void processRequest(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 PushBuilder pushBuilder = request.newPushBuilder();
 if (pushBuilder != null) {
 pushBuilder.path("images/logo.png")
 .addHeader("Content-Type", "image/png")
 .push();

What's in Java EE 8? Chapter 1

[26]

 }
 try (PrintWriter writer = response.getWriter();) {
 writer.write(new StringBuilder()
 .append("<html><body>")
 .append("")
 .append("</body></html>").toString());
 }
 }

The Servlet API already provides Java SE 9 support for HTTP/2. There’s broadly just two
classes, HttpRequestGroup and HttpRequest. These are just enough to solve the most
common use cases but not exhaustive enough to replace a more established HTTP client
library. It will support both the earlier HTTP/1 version along with the newer HTTP/2
version.

JSF 2.3
There has been a rise in frontend frameworks, and these have competed with each other to
become dominant frameworks for the web. JavaServer Faces (JSF), while it isn't the new
kid on the block, still has a fairly large community and is the primary framework in the Java
EE space for building UIs, which makes it a force to be reckoned with.

JSF is the standard user interface for building applications with Java EE. It takes a
component-based approach to building the UI, which is different to the traditional request-
based model. While it has been around for over a decade, it didn't gain much traction,
arguably, until the 2.x release. There have been supporting frameworks and libraries built
around JSF, and thus it enjoys good community support. Frameworks such as PrimeFaces,
RichFaces, and IceFaces, along with libraries such as OmniFaces and more, have made it a
popular choice among developers. That doesn't mean there aren't any critics; a framework
this old is bound to have an opinionated community. With new client-side solutions
making their mark, including Angular and React, the competition has only grown tougher.
That's good news for developers, as it leads to a richer selection of choices for building your
next web application.

The latest update of 2.3 brings with it many enhancements and refinements and makes it
aligned with Java 8. Some of the major features include:

CDI integration, which makes it easy for injecting JSF artefacts into classes and EL
expressions
The confusion of Managed Bean annotations is finally resolved
Supports Java 8 date/time APIs

What's in Java EE 8? Chapter 1

[27]

f:websocket, which allows for easy usage of the WebSocket protocol
Validation and conversion enhancements
Lots of API updates and fixes

When writing a JSF application, its fairly routine to obtain references to certain context-
based objects. Earlier versions didn't have any easy way to obtain these, and developers had
to look up the instances by using some statically chained methods, such as the following:

FacesContext.getCurrentInstance().getExternalContext(). [get request map,
get request header map, and more get stuff]

This issue is solved by CDI, as it allows for injecting these artefacts directly in your classes.
Additionally, it's also possible to use these via the EL expression. All of this is possible
because JSF now provides some default providers for common use cases. A few handy ones
are listed in the following table:

Before EL variable
available Using Inject

FacesContext.getCurrentInstance() #{facesContext}
@Inject
FacesContext
facesContext;

FacesContext.getCurrentInstance()
.getExternalContext()
.getRequestMap();

#{requestScope}

@Inject
@RequestMap
Map<String, Object>
map;

FacesContext.getCurrentInstance()
.getExternalContext()
.getRequestHeaderMap();

#{header}

@Inject
@HeaderMap
Map<String, Object>
map;

FacesContext.getCurrentInstance()
.getExternalContext()
.getRequestParameterMap();

#{param}

@Inject
@RequestParameterMap
Map<String, Object>
map;

It's important to note that the general reference types, such as Map or others, would require
specifying a qualifier (RequestMap, HeaderMap, and so on), to assist in resolving the
required type. With CDI integration support, it's also possible to inject your own custom
validator and converter, too.

What's in Java EE 8? Chapter 1

[28]

JSF 2.0 brought it's own set of annotations, but as soon as CDI arrived, those annotations
had to be revisited. Since CDI has universal appeal in terms of managed beans, it conflicts
with JSF's own annotations. It was finally decided with the 2.3 release to deprecate the JSF
defined annotations in favour of the more flexible and universal CDI annotations. Thus,
Managed Bean annotations were deprecated in favor of CDI annotations.

There's support for Java 8 date/time APIs in the 2.3 release, with an update to the existing
converter tag, called <f:convertDateTime>. The type attribute now takes more values
along with earlier ones, such as both, date, time, localDate, localTime,
localDateTime, offsetTime, offsetDateTime, and zonedDateTime. If we have a bean
with a LocalDate property, then the same can be referenced in the facelets view, as
follows:

<h:outputText value="#{ticketBean.createdDate}">
 <f:convertDateTime type="localDate" pattern="MM/dd/yyyy" />
</h:outputText>

The WebSocket protocol offering full bi-directional communication support, as well as
developers wanting to utilize these abilities, has led to the inclusion of web socket
integration in JSF standard. It's now possible to register a WebSocket with the client using
the f:websocket tag, pushing messages to the client from the server using PushContext.
You can get this running with very little code; all you need to do is name the channel, which
is a required attribute for this tag, and then register a JavaScript callback listener through
the onmessage attribute. That's it for the client side. This callback would be invoked once
the server sends a message to the client. In case you are wondering, the message is encoded
as JSON and sent to the client. Here are a few snippets to help you understand this better.

This is the JSF view part, which registers the WebSocket:

<f:websocket channel="jsf23Channel"
onmessage="function(message){alert(message)}" />

Then, on the server side, the PushContext is injected and later used for sending the push
messages to the client:

 @Inject @Push
 private PushContext jsf23Channel;

 public void send() {
 jsf23Channel.send("hello websocket");
 }

What's in Java EE 8? Chapter 1

[29]

A few other enhancements include support for importing constants for page authors using
the <f:importConstants/> tag. Also, there will be support for the c:forEach method of
iteration using ui:repeat. While we are on the iterating point, it's worth mentioning that
support for map-based iteration has also been added, and this means you can now use
ui:repeat, c:forEach, and h:dataTable to iterate over the entries in a map. The
@FacesDataModel annotation allows for supplying your own custom registrable
DataModel objects that can then be used in ui:repeat or h:dataTable. This can be
utilized by library providers to add more flexibility to their components. An example of
ui:repeat using a map is shown here:

<ui:repeat var="anEntry" value="#{ticketMapOfFeatures}">
 key: #{anEntry.key} - value: #{anEntry.value}
</ui:repeat>

AJAX method calls are now supported—you can invoke a JavaScript method which in
turn will invoke a server-side bean method in an Ajax call. Those familiar with the
PrimeFaces p:remoteCommand can relate to this feature, with the difference being that it's
included as a standard now. This can be done using the h:commandScript component tag.
Similar to invoking the server-side code from JavaScript, you can also invoke JavaScript
from server-side code as well, which is made possible using API enhancement. This is done
by referencing the PartialViewContext and invoking the getEvalScripts method for
adding your JavaScript code to the response. With so many additions, JSF has once again
become worth adding to a developers arsenal when building web applications for Java EE.

Bean Validation 2.0
With the advent of so many technical choices such as microservices, rich front end
applications, data stores like NoSQL, and a plethora of systems always communicating with
each other and exchanging data, it's vital to get the data validation done right. There's a
growing need for data validation services; most APIs typically have some input and output
as part of their contract. The input and output are usually the candidates for applying some
validation on.

What's in Java EE 8? Chapter 1

[30]

Imagine you are trying to register a user in the system but the client didn't send the
username or email which was required by your business logic. You would want to validate
the input against the constraints defined by your application. In an HTML-based client, if
you were building a HTML form, you would want the input to meet certain criteria before
passing it down for further processing. These validations might be handled in the client-
side and/or in your server-side processing. Validation is such a common requirement for
any API that there’s room for standardizing these constraints and applying them in an
intuitive way on your APIs. Bean Validation specification defines a set of built-in
validations that can be used on your APIs in a declarative way using annotations. It would
be naive to think this covers every possible case, thus there’s a way to use your own custom
validators when the built-in ones just won't do.

As you might have guessed, this kind of validation is not only restricted to JAXRS web
services but can be applied across various specs such as JSF, JPA, CDI and even third-party
frameworks such as Spring, Vaadin, and many more. Bean Validation allows for writing
expressive APIs with constraints defined in a declarative manner, which get validated on
invocation.

Now, if you are familiar with the earlier version, then you might be wondering what's
changed in 2.0. Well, the main driving factor for the 2.0 release involved leveraging the
language changes brought in by Java 8 for the purpose of validation. We have new types,
such as LocalTime or LocalDate, as well as the possibility to repeat annotations or use
lambda expressions. So, an update to support and leverage these changes was only logical.

Let's assume we have a REST resource (web service) that takes a team as input to be added
into the system and outputs the updated list of teams. Here, we want a name to be provided
for a team and this can’t be null. So, here's the code for doing just that:

public class Team {
 private Long id;
 //NotNull suggest the name of a team can’t be null
 @NotNull
 private String name;
 //Rest of the code can be ignored
 ...
}

@Path("teams")
public class TeamResource {
 /* A method to add new team, which requires the input
 of Team to be Valid
 */
 @POST
 @Produces(MediaType.APPLICATION_JSON)

What's in Java EE 8? Chapter 1

[31]

 public List add(@Valid Team team) {
 //Rest of the code can be ignored
 ...
 }
}

Let's assume we have the preceding JAXRS resource running on a server. If you invoke this
API and supply team data as input, then it must have a name in order for the input to pass
the validation constraint. In other words, valid team input has the name field satisfying the
NotNull constraint. Similarly, it's possible to put a constraint on the result as well. A
rewritten method signature is shown as follows, which puts a NotNull constraint on the
response:

@POST
@Produces(MediaType.APPLICATION_JSON)
public @NotNull List<Team> add(@Valid Team team) { ... }

With Bean Validation 2.0, a whole new set of possibilities have been added. One of the
biggest features is validating collections. It's now possible to validate the contents of a type-
safe collection. We could, for instance, add type annotations to validate the contents of
generic collections such as List<@NotNull Team>, or even better, List<@NotNull
@Valid Team>:

@POST
@Produces(MediaType.APPLICATION_JSON)
public @NotNull List<@NotNull @Valid Team> add(@Valid Team team)
{ ... }

You could also use the @Email annotation on a collection like this, List<@Email String>,
to ensure the emails present within the list are conforming to the email validation
constraint. The API also allows you to supply your own regex to validate the input. Also,
it's interesting to note that @Email validation doesn't mean the value cannot be null. What it
means is that if a string is present, then it must be a valid email but can be null, too. It's best
to separate concerns from the core validation of the email and the NotNull validation for
the input.

A few more examples are:

List<@Positive Integer> positiveNumbers;

Map<@Valid Team, @Positive Integer> teamSizeMap;

What's in Java EE 8? Chapter 1

[32]

In the preceding example, we want our map to have valid team instances as the key, and
the value must be a positive integer:

@Size(max=10)
private List<String> only10itemsWillBeAllowed;

In the preceding case, we want to have a list containing a maximum of 10 items.

A more complex case would be validating a player list with a maximum of 11, and each
player must be a valid instance. Valid would mean meeting all validation constraints put on
a player class:

@Size(max=11)
private List<@Valid Player> players;

The preceding constraints provide for a very natural way to put constraints declaratively on
your code, which is much more readable and closer to the definition where it’s used.

Another way of validating a collection of items is to put the validation constraint near the
type parameter. So, while both the following approaches would work, the latter is
preferred:

@Valid
private List<Player> players;

It can also be:

private List<@Valid Player> players; //Preferred

Now, Bean Validation also makes use of the Optional class, where you can put validation
on the type it holds. For example:

public Optional<@Valid Team> getTeam() { ... }

A few more built-in constraints worth checking out are @NotBlank, @Future, @Past,
@Negative, @Pattern, @Min, and @Max. By default, the Bean Validation API has very nice
integration with key life cycle events of other specifications. This allows for all of the
validation to happen at key stages of an object's life cycle, such as that of JPA or JSF
managed beans.

What's in Java EE 8? Chapter 1

[33]

Java EE Security API 1.0
Security, while arguably not close to every developer's heart, sooner or later becomes a
critical topic that needs attention. In Java EE, security has generally been supported by
servers and also provided by third-party solutions. This is also one of the reasons why Java
EE security is considered confusing or non-portable at times. Security is not something new
to any of us, and put simply, web applications in general need to establish the identity of
the user and then decide if the user is allowed to see or perform an operation. This is called
authentication and authorization of resources. Security has evolved over the years from
simple form-based authentication or BASIC auth to LDAP and OAuth-based solutions.

If you are wondering why there's a need for security standards in Java EE, then couple of
reasons are to standardize the security mechanism and avoid vendor-specific configurations
when working with security, as well as meeting modern day demands. This being a new
specification and owing to various other reasons, the specification doesn't change things
drastically but instead will be focusing on standardization of existing security features
offered by various Java EE vendors. To ensure what is already out there doesn't break, the
enhancements have been modified to provide alternative options when configuring
security, rather than replacing what might already be in use.

This initiative will simplify the API by allowing for sensible defaults where applicable, and
will not require server configuration changes, which becomes a challenge with today's PaaS
or cloud-based delivery models. Another feature is using annotation defaults and
integration with other specs such as CDI. There is now an API for authentication and
authorization, along with an identity store API. An identity store can take the form of a
database, LDAP, or some other custom store. If you haven't heard of LDAP, then its just a
protocol to access data from a directory server which basically stores users. From an API
perspective, IdentityStore would be an abstraction of a user store. This would be used
by HttpAuthenticationMechanism implementations to authenticate users and find their
groups. Here, a group is used to denote a role to which the user belongs, but unlike a role,
think of a group as a more flexible option to map users in and out of. There will be two
methods provided by the IdentityStore API:

validate(Credential)

getGroupsByCallerPrincipal(CallerPrincipal)

What's in Java EE 8? Chapter 1

[34]

Support may be provided for either one or both based on the underlying implementation.
So, if the implementation only supports authentication but not authorization then only the
validate(Credential) method would be supported.

The feature list also includes additions related to password aliasing and role mapping and
excludes CDI support. The reference implementation for security in Java EE is provided by
the project Soteria.

The link to GitHub project is https:/ ​/ ​github. ​com/ ​javaee- ​security- ​spec/ ​soteria.

Summary
We have covered quite a few aspects of the Java EE 8 release train, while catching up on
new and existing changes. As a developer working on Java EE solutions, these capabilities
provide a big boost to one's productivity. The growing adoption of REST APIs with JSON as
its preferred data-interchange format has led to better support of JSON in the platform.
JSON now enjoys the same status as XML for support in Java EE. The widely used Servlets
API has been updated to be aligned with the HTTP/2 standards and its offerings. Other
noteworthy enhancements include updates to JAXRS, JSF, WebSockets, Server-Sent Events,
and a new reactive client API for JAXRS. Many of these APIs are influenced by Java 8
changes, which have played an influential role in updates.

CDI standard is now very well integrated in all the other specifications offered by Java EE.
The influence of CDI is not limited to EE alone, and it's a welcome entry into Java SE as
well. Bean Validation updates have made constraint additions to code an ease to work with.
Additionally, there have been maintenance updates to existing APIs and new additions
including Java security and JSON-B, which are now available under the umbrella spec of
Java EE.

https://github.com/javaee-security-spec/soteria
https://github.com/javaee-security-spec/soteria
https://github.com/javaee-security-spec/soteria
https://github.com/javaee-security-spec/soteria
https://github.com/javaee-security-spec/soteria
https://github.com/javaee-security-spec/soteria
https://github.com/javaee-security-spec/soteria
https://github.com/javaee-security-spec/soteria
https://github.com/javaee-security-spec/soteria
https://github.com/javaee-security-spec/soteria
https://github.com/javaee-security-spec/soteria
https://github.com/javaee-security-spec/soteria
https://github.com/javaee-security-spec/soteria
https://github.com/javaee-security-spec/soteria
https://github.com/javaee-security-spec/soteria

2
The CDI Advantage Combined

with JPA
In this chapter, we will go over CDI, which has become a ubiquitous API for dependency
injection and context management in Java EE. We will be looking at the new CDI 2.0
features along with the earlier ones, which are shipped with Java EE 8. Having completed
the CDI journey, we will move onto the standard persistence solution, Java Persistence API
(JPA) for Java applications.

The topics covered will be:

The CDI programming model:
CDI for Java SE 8
RequestContext activation
Event enhancements:

Asynchronous events
Ordered events

Annotation Literals
JPA:

Entities
Performing CRUD operations with entities
Entity listeners
Validations in entities

The CDI Advantage Combined with JPA Chapter 2

[36]

Introduction to context and dependency
injection
CDI caters to a very fundamental design idea, as that of dependency injection. When
writing any application, you would typically define multiple classes and some relationship
between them. Thus, to work with one object you would need to hand it its dependencies
during its creation. When using CDI, these dependencies are provided to the object, rather
than the owning object fetching them for itself. Dependency Injection (DI) leads to the
owning object becoming independent of the dependency creation and lookup code, which
makes it loosely coupled, and the code is testable. Both qualities, while difficult to pull off,
are worth striving for.

Now, before we get into the nuts and bolts of CDI and how it helps to structure the code,
let's explore what dependency injection is and what problems it helps solve with an
example. Consider a business scenario where we are building an issue management system.
It will facilitate collaboration between all members to look at various issue tickets that have
been created in the system and work on them as tasks. To begin with, we will have a Task
class which holds the current ticket number. To obtain this ticket number, we need to
somehow reach into the database and fetch the latest ticket that was assigned to a user.
Here’s what the Task class looks like:

public class Task {
 private String ticketId;
 private String status;

 public Task(User member) {
 DataSource ds = DatabaseResource.getDS();
 TicketPersistence ticketPersistence =
 new TicketPersistence(ds);
 this.ticketId = ticketPersistence
 .getLatestAssignedTicket(member);
 }
}

The CDI Advantage Combined with JPA Chapter 2

[37]

Now, this code is fairly simple to read as it takes a User instance during the Task
construction and fetches the ticketId value from the database. But in order to get the
ticketId, which is what the Task class really needs, it has to obtain an instance of the
TicketPersistence class, which requires a DataSource for the lookup of the latest
assigned ticket. There are quite a few things which aren't quite right about this code. Spend
a minute thinking about what you think is not right, then have a look at the points listed
here:

The instantiation of a Task has multiple dependencies, such as DataSource and
TicketPersistence class, making its construction complex.
The testing of a Task class would require setting up all the dependencies as well,
such as passing a User as a dummy object and setting up a test database for the
DataSource. But we are still left with using the real TicketPersistence,
which can't be swapped.
The Task class knows too much about TicketPersistence and its internal
dependency on a DataSource, while all it really wanted was the ticketId.
There may be other code that requires a Task object to be passed, such as a
TaskStatusReport class, which simply checks the status of a Task class for
reporting. Here, TaskStatusReport doesn't care about the ticketId, yet it has
to deal with the complexity of the Task creation, which occurs due to the
ticketId property.

Whenever the instantiation of an object becomes complex due to either a constructor or
static block initialisers, it hinders the testability of such objects. As a first step, we could
certainly move the construction of dependencies to some kind of factory class and then pass
the objects required to Task. Here's a refactored constructor of the Task class:

public Task(User member, TicketPersistence ticketPersistence) {
 this.ticketId = ticketPersistence
 .getLatestAssignedTicket(member);
}

While this is better than the earlier code, this would still leave us with the option of passing
both the User and TicketPersistence dependencies as mocks in order to test a Task.
Knowing that neither User nor TicketPersistence is actually being saved as local field
members of the Task class for referencing later, we can do away with these as well. A
cleaner and testable Task code looks like the following:

public class Task {
 private String ticketId;
 private String status;

The CDI Advantage Combined with JPA Chapter 2

[38]

 public Task(String latestTicket) {
 this.ticketId = latestTicket;
 }
}

With the preceding code, it's much easier to work with a Task object. Instead of concerning
itself with how to look up the ticketId value from the database, this code is asking for
what it needs, which is the ticketId value. The responsibility of looking up the ticketId
value from some repository can be moved to a factory or builder, or even a DI. The two key
points to take away from the preceding example are:

Ask for a dependency rather than getting it yourself
Don't use an intermediate object to get to the object that you really want

Going back to our Task class, which did have dependency on TaskPersistence, the same
could have been injected into the Task class or a even a Factory, with the following code
as a part of applying DI:

@Inject TaskPersistence persistence;
// Field injection

The following code could also be used:

@Inject Task(TaskPersistence persistence) { ... }
//Constructor injection

Here, DI (CDI) would create an instance of TaskPersistence and inject it into the calling
object, in this case Task would be provided as its dependency. Notice the type of object
injected is TaskPersistence, as that's the simplest form of injection.

When talking about dependency injection, another term that comes up is Inversion of
Control (IoC). It simply means to delegate the responsibility of finding the dependency to
another piece of code or container, which injects the object being asked for. Having given
you an understanding of dependency injection, let's explore CDI and how it helps to write
code when you do have dependencies to work with.

The CDI Advantage Combined with JPA Chapter 2

[39]

CDI programming model
This programming model unifies the various approaches taken by existing dependency
injection frameworks such as Spring, Guice, and Seam. It has been designed considering the
scope of objects as well. CDI was introduced in Java EE 6, and now with Java EE 8, we have
the latest CDI 2.0 version, which offers Java SE support as well. While Java EE 5 did make
resource injection possible, it did not have the support for general purpose dependency
injection for objects. With CDI, we have beans that are container managed, and these
managed beans are Plain Old Java Objects (POJOs) whose life cycle is controlled by the
Java EE container. The idea of the bean has been presented in Java for ages in various forms,
such as JSF bean, EJB bean, and so on. CDI takes this idea and provides a unified view to
managed beans across the entire Java platform, which is relied on by every other
specification including JSF, EJB, Servlet, JPA, and more. This allows you to take advantage
of this specification together with the services offered by other Java EE specifications. While
writing a trivial application, you may not find the benefits of DI appealing enough, but the
moment your code grows, as well as its dependencies, it can certainly benefit from using
CDI.

While CDI can be used in both SE and EE environments, there are few considerations to be
noted for its usage in the Java EE environment, which is component-based. CDI enhances
the EJB model by providing contextual life cycle management. While session beans can be
injected into other beans, the same can’t be said for message driven Beans and entity beans
as they are considered non-contextual objects. Since CDI allows for defining any bean with
a name, this feature allows you to reference the bean in JSF applications as well.

This specification defines five built-in scopes, which are:

RequestScoped

SessionScoped

ApplicationScoped

ConversationScoped

DependentScoped

It's also possible to define custom scopes if needed using portable extensions. Apart from
contextual scopes, we get a flexible event notification model and the ability to use
interceptors for cross-cutting concerns and decorators.

It’s not possible to cover all of what CDI has to offer in a single chapter, but we will go
through enough features to be proficient in utilizing CDI to our advantage. Those wanting
to explore further can do so by looking up the references mentioned later ahead.

The CDI Advantage Combined with JPA Chapter 2

[40]

A few of the services offered by CDI are listed here:

Type-safe dependency injection with the ability to swap a dependency for
another during deployment using metadata placed in XML
EL expression integration to allow for resolving beans in JSF or JSP pages.
Addition of interceptor bindings and decorators
Powerful event notification model which makes use of the observer pattern
Ability to extend CDI with portable extensions using its Service Provider
Interface (SPI)

CDI for Java SE 8
The 2.0 version does not mark the start of using CDI in SE, as that support was already
provided in a non-standard way. Both Apache OpenWebBeans and Weld did support the
SE mode, and these have been standardized now for use with CDI in Java SE. There are also
other projects that support CDI such as Apache DeltaSpike, which offers portable
extensions that are handy features for Java developers.

To get started, you can create a Maven project and declare a dependency on a CDI
implementation such as JBoss Weld. If Maven isn’t your cup of tea, you can use other means
to get the weld-se-core library added to your standalone SE project. Your pom.xml
should have a dependency declaration, as shown here:

<dependency>
 <groupId>org.jboss.weld.se</groupId>
 <artifactId>weld-se-core</artifactId>
 <version>3.0.0.Final</version>
</dependency>

Additionally, create a beans.xml file located under src/main/resources/META-INF/,
with the following contents:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/beans_2_0.xsd"
 bean-discovery-mode="all">
</beans>

The CDI Advantage Combined with JPA Chapter 2

[41]

From an API perspective, this library provides an implementation of CDI 2.0, and its basic
dependency graph is shown here for a maven project named cdi2-se-app (a few additional
dependencies have not been shown to keep it simple):

With the weld-se-core library added, we can now begin writing a CDI powered
application.

Let’s look at some sample code of the CDI in action:

public class BootCDI {
 public void doSomething() {
 System.out.println("do something called");
 }

 public static void main(String... args) {
 try (SeContainer container = SeContainerInitializer
 .newInstance().initialize()) {
 BootCDI appInstance = container
 .select(BootCDI.class)
 .get();
 appInstance.doSomething();
 }
 }
}

The SeContainerInitializer.newInstance().initialize() call starts up the CDI
container. This returns an SeContainer instance, which is our handle to the CDI container.
This class also allows for some basic looking up of beans without having to go through the
underlying BeanManager. As we used try-with-resources, the container resource will be
closed at the end of the try block.

The CDI Advantage Combined with JPA Chapter 2

[42]

The select method on the SeContainer instance will obtain the BootCDI bean instance in
a type-safe manner by returning an Instance<BootCDI> object, which is further used to
get the dynamically returned object of BootCDI type. That’s all it takes to boot up CDI in
your SE application in a standard way.

The SeContainerInitializer.newInstance() also allows programmatic configuration
by invoking methods such as addPackages and disableDiscovery to restrict the runtime
behavior to only look for classes that you are interested in, without having to work with
beans.xml. There are more possibilities that can be configured by exploring the APIs of the
Weld container, allowing for a highly configurable environment. Dependency injection itself
can be achieved by simply using @Inject in the code for the dependency. The annotation
can be used on method, constructor, and field. This allows setter, constructor, and field
injection support respectively.

We can now use classes such as Task with annotations, binding them to well-defined
contexts such as ApplicationScoped, SessionScoped, or RequestScoped. The Task
class in turn can use a constructor-based dependency on TaskPersistence, which will be
injected by the CDI. The scope of TaskPersistence will be bound to the scope of the Task
bean. If Task is declared as ApplicationScoped, then the dependency of
TaskPersistence is bound to the scope of Task, which is the owning object in this
situation. Thus, multiple calls to retrieve the Task bean would return the same Task
instance along with the same TaskPersistence object as its dependency. Here's what the
refactored Task using the CDI looks like:

class TaskPersistence {
 //Code omitted for brevity
}

@ApplicationScoped
public class Task {
 private final TaskPersistence persistence;
 @Inject Task(TaskPersistence persistence) {
 this.persistence = persistence;
 }
 //Rest of the code omitted for brevity
 ...
}

If an application code directly uses the new operator to instantiate a bean, then no
parameters or dependencies are injected for that bean and its life cycle is not managed by
the container.

The CDI Advantage Combined with JPA Chapter 2

[43]

RequestContext Activation
When we talk about context in Java EE, we are presented with various options, such as
Application, Request, Session, and Conversation context, but not everything makes sense
in an SE environment. While the Application context can be present in SE, which starts
with the container boot and lives till the container is shutdown, there isn't support for any
other context. The only additional context which is supported in CDI 2.0 is the request
context. There are two approaches to obtain the request context it can be framework
managed or it can be programmatically managed by the developer.

For programmatic access, you need to inject the RequestContextController instance in
your class and then use its activate() and deactivate() methods to work with the
request context in the current thread. Calling activate() within a thread will activate the
request context if not already active. Similarly, deactivate() will stop the active request
context if it exists, but may throw a ContextNotActiveException otherwise. Here’s the
API-based method of request context control:

@ApplicationScoped
public class Task {
 @Inject
 private RequestContextController requestContextController;
 public void doWorkInRequest(String data) {
 boolean activated = requestContextController.activate();
 //some work here
 if(activated) requestContextController.deactivate();
 }
}

For the container to automatically start a request context, an interceptor binding annotation
of @ActivateRequestContext can be used, which is bound to the method execution.
Here's an example of this in action:

@ApplicationScoped
public class Task {
 @ActivateRequestContext
 public void doWorkInRequest(String data) {
 //some work here, with request context activated
 }
}

With the preceding code, if you had a RequestScoped bean injected into the Task class,
then the same would be created for each invocation of the doWorkInRequest method.

The CDI Advantage Combined with JPA Chapter 2

[44]

In a Java SE application, the notion of request may not sound right, as Java EE developers
would typically talk of requests as HTTP requests. But if you consider some GUI
applications where a button is clicked, then you can relate this to a click event which is fired
as part of the button click request.

Enhancing events
CDI 1.1 had an event notification model, which has become popular among developers as it
helps with the decoupling of code, following the observer pattern. Version 2.0 builds on this
model and adds more enhancements, such as asynchronous event processing along with
the ordering of events. To observe an event, the bean simply defines a method that has the
@Observes annotation, and a parameter type that is used by CDI to identify the event type
(class type), which should be passed to this method:

public void process(@Observes Task task) { }

Further restrictions on which events are passed to the observer method can be applied by
using qualifiers at the injection point. Interestingly, the observer can work with generic
types as well. Given the following two observers, the container will invoke the appropriate
method based on the parameterized type of the event:

public void processTaskList(@Observes List<Task> taskList) { }
public void processTaskIds(@Observes List<Integer> taskIdList) { }

The raising of events is done using the Event interface methods for firing either
synchronous or asynchronous events with a payload. The order in which the observers are
called is not defined, unless the ordered events approach mentioned later is followed. It’s
also possible to change the data in an observer, since the data (or payload) passed is not
mandated to be immutable. Here's the relevant portion of the code snippet used for firing
an event:

@Inject Event<Task> event;

public void doSomething() {
 event.fire(new Task());
}

The corresponding observer would be as follows:

public void handle(@Observes Task task) {
// can update the task instance
}

The CDI Advantage Combined with JPA Chapter 2

[45]

With CDI 2 offering asynchronous events and ordered events, let's explore each in more
detail.

Asynchronous events
These were introduced as part of CDI 2.0, and allow for raising events in an asynchronous
way. The earlier version 1 had only synchronous event firing support, leading to the event
firing code having to wait for all the observers to finish execution, and only then could the
next line of code execute. It also meant that an exception in one observer would prevent
other observers from getting called. This was because all the observer calls were made
within the same thread.

With CDI 2, there's support for asynchronous observer invocation. The observers will be
running in different threads than the thread which fires the event. Owing to the nature of
different threads, the async events won't allow mutation of the payload. None of the CDI
built-in contexts will be propagated across these threads, other than the Application context
which is shared across. Async event firing is achieved by using the fireAsync method on
the Event interface and is observed by using the new @ObservesAsync annotation. The
fireAsync method returns a CompletionStage instance that was introduced in Java 8,
allowing for the handling of exceptions which are made available after a completion of calls
in a suppressed manner.

Having understood how synchronous and asynchronous events behave, let's look at a
summary of the difference between the two methods, provided by the Event interface,
namely fire and fireAsync:

public void fire(T event)

Synchronous call within same thread, where
payload is mutable. Exception in any one
observer breaks the next observer.

public <U extends T>
CompletionStage<U> fireAsync(U
event)

Asynchronous call with immutable payload.
Exceptions are suppressed and available after
completion.

public <U extends T>
CompletionStage<U> fireAsync(U
event, NotificationOptions
options)

Same as fireAsync, with additional options to
configure the observer methods notification, for
example, supplying an executor for async
delivery.

The CDI Advantage Combined with JPA Chapter 2

[46]

Ordered events
This basically orders the observers using the @Priority annotation. This feature can be
made use of when there are multiple observer methods and you need to control which ones
are called first and which ones are called later:

The lowest value would be the first observer method that gets called
The highest value would be called last
If there's no priority specified then this event will be considered mid-range
priority
For observer methods with the same priority, the ordering is undefined
No priority is applicable for asynchronous events, since they're not sequential

The usage of the ordered event is shown here:

public void observer1(@Observes @Priority(1) Payload event) { }
public void observer2 (@Observes @Priority(2) Payload event) { }

Given the behavior of ordered events using @Priority, along with the mutable state of the
payload, one could utilize this feature for certain use cases. Consider a fairly common
scenario in which the system should lock the user account based on the number of failed
login attempts. Additionally, send out a notification to the user, such as an SMS, if the
account gets locked in the process. In this case, we could define two ordered observers for
this type of event, with the first observer checking for failed attempts and setting the lock
status on the payload object. The second observer would then be able to see the changes
made to the payload by the first observer and thus, based on this change in status, it would
send the notification. Let us see, how this can be tackled in the sample code explained next.

A login service will raise a LoginEvent containing a user's ID and attempt count. Take a
look at the LoginEvent code:

public class LoginEvent {
 private final Integer attemptsMade;
 private final String userId;
 private boolean lockAccount = false;
 public LoginEvent(Integer count, String userId) {
 this.attemptsMade = count;
 this.userId = userId;
 }
 ...
}

The CDI Advantage Combined with JPA Chapter 2

[47]

The relevant code snippet for the AccountService, a class responsible for signing in the
user and raising an event, is shown here:

@Inject private Event<LoginEvent> event;

/* A login method on this class, raises the event for failed login attempts
using below line. */
event.fire(new LoginEvent(attemptsMadeCount, byUserId));

The first observer is responsible for checking and locking the account based on attempts
made:

public class MonitorAccountAccess {
 public static final Integer MAX_ATTEMPTS = 3;
 public void lockForFailedAttempts(
 @Observes @Priority(1) LoginEvent event) {
 if(event.getAttemptsMade() >= MAX_ATTEMPTS) {
 event.setLockAccount(true);
 //do more work to push status in database
 }
 }
}

The second observer is responsible for sending an SMS when an account gets locked. This
code relies on the lock account status update being changed in the
MonitorAccountAccess code block:

public class AccountLockNotification {
 public void sendSmsOnAccountLock(@Observes @Priority(2) LoginEvent
event) {
 if(event.isLockAccount() == false) return;
 sendAccountLockSms(event.getUserId());
 }
}

When the event is fired synchronously from the AccountService code,
MonitorAccountAccess will be called first, as it has @Priority(1). Later, the
AccountLockNotification code gets called, along with @Priority(2) and the updated
LoginEvent object.

The CDI Advantage Combined with JPA Chapter 2

[48]

Annotation literals
Before exploring annotation literals, let's look at @Qualifiers. For multiple
implementations of a bean type, the qualifiers can help specify which type to inject with the
help of qualifier annotation. These can be used to aid the container in injecting the correct
type of bean, as shown here:

interface OrderProcessor { ... }

@OrderPlaced
class OrderPlacedProcessor implements OrderProcessor {...}

@OrderCancelled
class OrderCancelledProcessor implements OrderProcessor {...}

Since there is more than one implementation of OrderProcessor, we can make use of a
qualifier to specify which implementation to inject. This would be used when implementing
classes as well as at the injection point:

@Inject @OrderPlaced private OrderProcessor processor;
@Inject @OrderCancelled private OrderProcessor processor;

There's an additional annotation called @Alternative, which is used to define an alternate
implementation. It is disabled by default and can be activated via deployment configuration
in beans.xml.

Qualifiers can also be added to the Event instance using either a qualifier annotation at the
injection point of the event or by passing the qualifier to the select method of the Event
interface:

@Inject @OrderPlaced private Event<ShopOrder> placedEvent;

Here, every event fired using placedEvent would have the qualifier ShopOrder. This
would invoke every observer that:

Has a type to which the event object ShopOrder is assignable
Does not have any event qualifier other than the one specified at the injection
point, such as OrderPlaced

The CDI Advantage Combined with JPA Chapter 2

[49]

It's not difficult to realize that soon we may end up having multiple qualifiers when dealing
with cases. For example, you may end up with event instances annotated with qualifiers
such as OrderPlaced, OrderCancelled, OrderShipped, and so on. Apart from the
verbosity that it adds to the code, this is also a challenge when you need to specify the
qualifier dynamically.

CDI allows for the creation of annotation instances. CDI 1 already had support for this, but
CDI 2 has brought in a more convenient method to create these using some helpers. These
will reduce the amount of code required to create an annotation literal. It provides an
option to subclass the AnnotationLiteral class and then pass the qualifier dynamically:

event.select(new AnnotationLiteral<OrderPlaced>() {})
 .fire(shopOrder);

A point to note here is that the select method can take multiple Annotation options, thus
allowing for multiple event qualifiers to be passed.

There are built-in annotation literals provided as well, as mentioned in the specification:

javax.enterprise.inject.Any

javax.enterprise.inject.Default

javax.enterprise.inject.New

javax.enterprise.inject.Specializes

javax.enterprise.inject.Vetoed

javax.enterprise.util.Nonbinding

javax.enterprise.context.Initialized

javax.enterprise.context.Destroyed

javax.enterprise.context.RequestScoped

javax.enterprise.context.SessionScoped

javax.enterprise.context.ApplicationScoped

javax.enterprise.context.Dependent

javax.enterprise.context.ConversationScoped

javax.enterprise.inject.Alternative

javax.enterprise.inject.Typed

The CDI Advantage Combined with JPA Chapter 2

[50]

Annotations that don't have any members can be instantiated using the constant named
INSTANCE, available on the static nested class Literal:

RequestScoped reqScopedLiteral = RequestScoped.Literal.INSTANCE;

Annotations with members have a different approach, as they provide a static factory
method for obtaining the instance:

Named literalObject = NamedLiteral.of(“beanName”);

With all these and more, CDI provides the Java developer with a solid programming model,
promoting loosely coupled communication between objects and allowing for better
structuring of code.

Here are a few references:

CDI 2.0 page on the JCP site https:/ ​/ ​jcp.​org/ ​en/ ​jsr/​detail? ​id=​365

CDI 2.0 specification http:/ ​/​docs. ​jboss. ​org/ ​cdi/ ​spec/ ​2.​0/ ​cdi- ​spec. ​pdf

CDI reference implementation http:/ ​/​weld. ​cdi- ​spec. ​org/ ​

Java Persistence API (JPA)
Before we start wielding JPA and CDI together, let’s get the basics out of the way for JPA.
The Java Persistence API allows for the modelling of the domain objects for accessing,
persisting, and managing data between POJOs and a relational database. JPA is the
standard for working with object-relational mapping (ORM) solutions. Popular ORM
solutions include Hibernate, EclipseLink (the reference implementation for all JPA
versions), Apache OpenJPA, and DataNucleus. JPA puts the focus back on the domain
model for retrieving and persisting data without having to deal with resource management
and vendor specific SQL.

Most developers would be accustomed to hearing about Hibernate in articles and projects;
it also shows up as a skill sought by employers. While Hibernate and the like can be used
directly, using JPA helps us avoid falling in the vendor lock-in pit and in turn maintains
portability. Hibernate is bundled as the default ORM for RedHat/JBoss servers, while
EclipseLink (RI) is bundled as part of Glassfish and Payara. Similarly, Apache OpenJPA is
used in TomEE.

https://jcp.org/en/jsr/detail?id=365
https://jcp.org/en/jsr/detail?id=365
https://jcp.org/en/jsr/detail?id=365
https://jcp.org/en/jsr/detail?id=365
https://jcp.org/en/jsr/detail?id=365
https://jcp.org/en/jsr/detail?id=365
https://jcp.org/en/jsr/detail?id=365
https://jcp.org/en/jsr/detail?id=365
https://jcp.org/en/jsr/detail?id=365
https://jcp.org/en/jsr/detail?id=365
https://jcp.org/en/jsr/detail?id=365
https://jcp.org/en/jsr/detail?id=365
https://jcp.org/en/jsr/detail?id=365
https://jcp.org/en/jsr/detail?id=365
https://jcp.org/en/jsr/detail?id=365
https://jcp.org/en/jsr/detail?id=365
https://jcp.org/en/jsr/detail?id=365
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.pdf
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.pdf
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.pdf
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.pdf
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.pdf
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.pdf
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.pdf
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.pdf
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.pdf
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.pdf
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.pdf
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.pdf
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.pdf
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.pdf
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.pdf
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.pdf
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.pdf
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.pdf
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.pdf
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.pdf
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.pdf
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.pdf
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.pdf
http://weld.cdi-spec.org/
http://weld.cdi-spec.org/
http://weld.cdi-spec.org/
http://weld.cdi-spec.org/
http://weld.cdi-spec.org/
http://weld.cdi-spec.org/
http://weld.cdi-spec.org/
http://weld.cdi-spec.org/
http://weld.cdi-spec.org/
http://weld.cdi-spec.org/
http://weld.cdi-spec.org/
http://weld.cdi-spec.org/

The CDI Advantage Combined with JPA Chapter 2

[51]

JPA has been tagged as a maintenance release, which has led to minor but noteworthy
updates in JPA 2.2. This release brings with it support for Java 8 and better CDI integration.

It all starts with an EntityManager. To work with JPA, you must obtain an
EntityManager instance, which acts as the gateway to perform any database operation.
The steps are outlined here:

Create persistence.xml and define one or more persistence-unit in it:1.

 <?xml version="1.0" encoding="UTF-8"?>
 <persistence version="2.1"
xmlns="http://xmlns.jcp.org/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence
http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd">

 <persistence-unit name="taskDb" transaction-type="JTA">
 <jta-data-source>jdbc/AppDS</jta-data-source>
 <exclude-unlisted-classes>false</exclude-unlisted-classes>
 <properties>
 <property name="javax.persistence.schema-generation.database.action"
 value="drop-and-create"/>
 <property name="eclipselink.logging.level" value="FINE"/>
 </properties>
 </persistence-unit>

 </persistence>

Obtain an EntityManager in a non-managed environment (using CDI):2.

 @Produces public EntityManager create() {
 return Persistence.createEntityManagerFactory("taskDb")
 .createEntityManager();
 }

 public void close(@Disposes EntityManager em) {
 em.close();
 }

Obtaining an EntityManager in a managed environment can be done like so:3.

 @PersistenceContext(unitName="taskDb") EntityManager em;

Use the EntityManager instance within a transaction to perform the operations4.
on an entity.

The CDI Advantage Combined with JPA Chapter 2

[52]

Entities
To activate Java persistence on a bean class, we can use the @Entity annotation, which lets
us map the bean to a database table. The identifier field denoted by @Id is used to map the
primary key column of the table. The mapping of a bean to a table can be done using
annotations or XML, but here we will stick to using annotations. One entity instance can be
considered as representing one row of a table.

XML mapping can be used to override the values defined by annotations.
This can be useful for deployment-based configuration changes without
changing the code.

An entity mapping structure is shown here:

JPA Entity class Database Create Table structure
@Entity
 @Table(name="task_detail")
 public class Task {
 @Id private Long id;
 private String name;
 private LocalDate assignedon;
 private LocalDateTime createdon;
 //Getters are setters omitted
 }

CREATE TABLE `task_detail` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `name` varchar(30),
 `assignedon` date,
 `createdon` timestamp,
 PRIMARY KEY (`id`)
)

The mapping defines an entity called Task, which is mapped to a table named
"task_detail". While JPA would use default names based on class and member names to
map it to corresponding tables and columns, there are times when you need to handle the
differences. Here, we have used the @Table annotation since our class name is Task but the
table name is task_detail. Similarly, if the field names are different then we could make
use of the @Column annotation. An example is as follows:

@Column(name = "last_modified")
LocalDateTime lastModified;

The CDI Advantage Combined with JPA Chapter 2

[53]

As of JPA 2.2, we now have support for these date/time classes:

java.time.LocalDate

java.time.LocalTime

java.time.LocalDateTime

java.time.OffsetTime

java.time.OffsetDateTime

Prior to JPA 2.2, while there was no support for the date/time APIs, we could have still
managed the conversion of LocalDate or LocalDateTime using an
AttributeConverter, as shown here, which is applied automatically to all entities having
such fields due to autoApply=true:

 @Converter(autoApply = true)
public class LocalDateConverter
 implements AttributeConverter<LocalDate, Date> {
 @Override
 public Date convertToDatabaseColumn(LocalDate entityDate) {
 return (entityDate == null ? null : Date.valueOf(entityDate));
 }

 @Override
 public LocalDate convertToEntityAttribute(Date dbDate) {
 return (dbDate == null ? null : dbDate.toLocalDate());
 }
}

It's now also possible to inject a bean within an AttributeConverter instance; this can be
useful to fetch a configuration object which may hold the needed format or other useful
information. Consider using a converter when you need to map the database representation
of a value to a Java representation that can't be mapped by default.

A few common use cases could be:

Mapping a number value such as one or zero to a Boolean field
Encryption of password for saving and decryption during fetch
Mapping a value to a corresponding enum type

The CDI Advantage Combined with JPA Chapter 2

[54]

When defining the entities, it's also common to put named queries in the entity itself, which
can later be referenced when querying the database using EntityManager. An example is
shown here:

@Entity
@Table(name="task_detail")
@NamedQuery(name = "Task.findById",
 query = "SELECT t FROM Task t WHERE t.id = :id")
@NamedQuery(name = "Task.findByName",
 query = "SELECT t FROM Task t WHERE t.name = :name")
public class Task {
 // code omitted
}

This can then be referenced during querying:

TypedQuery<Task> query = em.createNamedQuery("Task.findById", Task.class);
query.setParameter("id", 1);

//With TypedQuery you don't need a cast to Task type below
query.getSingleResult().getName();

When mapping an entity to a table, it's best to use the @Table annotation, rather than
changing the Entity name itself. The reasons are:

@Entity(name="tasks") class Task { ... }
em.createQuery("SELECT t FROM Task t"); // won't work
em.createQuery("SELECT t FROM tasks t"); // is correct, since we changed
the entity name

You may have noticed that we didn't use the NamedQueries container annotation. Well,
JPA 2.2 makes use of repeatable annotations; this means you can leave out the superfluous
container annotation and just repeat the one you need, such as NamedQuery. In the previous
versions, you needed to use a container annotation such as NamedQueries which would
then wrap multiple NamedQuery annotations. But that's no longer needed since JPA 2.2
takes advantage of the repeatable annotation feature introduced in Java 8:

Earlier versions of JPA With repeatable annotations support
@NamedQueries({
 @NamedQuery(name = ...),
 @NamedQuery(name = ...)
 })

@NamedQuery(name = ...)
 @NamedQuery(name = ...)

The CDI Advantage Combined with JPA Chapter 2

[55]

Most annotation are repeatable, such as:

NamedStoredProcedureQuery

NamedNativeQuery

NamedEntityGraph

AttributeOverride

PersistenceContext

It's fairly common to see fields such as created, last_modified in most if not all tables in
a database. When mapping such tables to entities, we can use a super class with the
annotation @MappedSuperclass and define the common mapping fields and associations,
which all subclasses inherit. The super class itself is not persisted and only used for field
inheritance. Here's an example of that:

@MappedSuperclass
public class MappedSuperEntity implements Serializable {
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 protected Long id;
 @NotNull
 @Size(min = 1, max = 4000)
 @Column(name = "name")
 protected String name;
 @NotNull
 @Column(name = "created")
 protected LocalDateTime created;
 @Column(name = "last_modified")
 protected LocalDateTime lastModified;
 // code omitted
}

A subclass can override the basic mappings by using the AttributeOverride annotation.
Notice we have used annotations such as @Size to put further validation constraints on our
bean. These are from the Bean Validation API that we looked at earlier.

When working with multiple entities, you may need to define a relationship between them.
In JPA, this is done by using annotations which support bidirectional and unidirectional
relations. The following four annotations can be applied on relational members of a class:

@ManyToMany

@ManyToOne

@OneToMany

@OneToOne

The CDI Advantage Combined with JPA Chapter 2

[56]

It's no surprise that a table in a relational database is not designed with object-oriented
thinking. Often, when mapping a entity to an table, we may want to group certain
fields/members and use a composition rather than declaring all the fields in a single class.
JPA provides @Embeddable to do just that.

Here's an example showing how we create a user entity with a has-a credential. The
database has all the fields present in a single table:

Entity with embedded object Single table in database
@Entity
 public class User {
 @Id Long id;
 @Embedded Credential credential;
 //other fields omitted
 }
 @Embeddable class Credential {
 String email;
 String password;
 }

CREATE TABLE `user` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `email` varchar(50),
 `password` varchar(30),
 PRIMARY KEY (`id`)
)

We have covered three major types of classes that you would typically create when working
with JPA:

Entity: This is the basic unit of bean which is used for persistence
MappedSuperclass: Class without its own table, but used for common field
inheritance by entities
Embeddable: Class without its own table, properties of which can be persisted
via embedding it in another entity

Performing CRUD operations with entities
The basic usage of an EntityManager is to execute the create, read, update, and delete
(CRUD) operations for the entity. These operations are performed using a transaction, and
JPA supports two kinds:

JTA container managed transactions: Demarcation of transactions are handled
by the container, such as using a method with a transaction required attribute as
part of a stateless bean. On completion of the method, the transaction will be
committed.

The CDI Advantage Combined with JPA Chapter 2

[57]

Resource local transactions: Demarcation of transactions must be done
programmatically. For example, using the EntityTransaction instance and
invoking its begin and commit operations.

Methods with read-only operations need not be performed within a
transaction, although in a JEE environment there is hardly any overhead
for a transaction with modern day containers. It's still best to measure this
for your use case and decide.

Once you have an EntityManager obtained, as described in the text, It all starts with an
EntityManager, then we can start performing the CRUD operations using it.

Creating an entity within the database is done using the persist operation on an
EntityManager, which creates a record in the table for the entity. This operation is
performed only on new entities which have no entry in the database.

In its simplest form, a persist operation can be done like so:

Task theTask = new Task(100L, "Work on next big thing");
em.persist(theTask);

The persist method inserts the non-managed entity into the database by firing an INSERT
statement. Once the entity is persisted, it enters a managed state and thus any changes
made to the entity within a transaction are tracked and updated in the database during the
commit. If the entity being persisted has an embedded annotation reference to an
embeddable class, then fields of that class are persisted as well. For example, a User having
a composition relation with the Credential class, as shown before.

Updating an entity is done by simply performing field changes on a managed entity within
a transaction and posting the transaction commits. The changes are automatically
synchronized with the database. The transaction can be container managed using the EJB
method within transactional bounds, or user managed, as shown here:

em.getTransaction().begin();
Task theTask = em.find(Task.class, 4L);
theTask.setAssignedon(LocalDate.of(2018, 7, 21));
em.getTransaction().commit();

It would be a mistake to follow this strategy to conditionally perform persist for a
managed entity, as shown next:

@Stateless
public class TaskService {
 @Inject EntityManager em;

The CDI Advantage Combined with JPA Chapter 2

[58]

 public void update() {
 Task task = em.find(Task.class, 2L); // Get existing task
 task.setName("updated name here");
 if(some condition) {
 em.persist(task); //Line won't make a difference
 }
 }
}

Here, the changed name of the task, will be synced to database irrespective of whether
em.persist call is executed or not. For updating a managed entity, it's not required to call
the persist method, as the entity will be saved as part of the transaction completion.

When working with detached entities, a merge operation is performed first, to synchronize
the changes done to the entity in its detached state.

Removing an entity is done by using the remove method of EntityManager. This is done
by first finding the entity, putting it into the managed state, then invoking the remove
operation. A detached entity (which is a non-managed entity) cannot be passed to remove,
and if passed it will throw an exception:

em.getTransaction().begin();
em.remove(theTask); // theTask is a reference to Task object
em.getTransaction().commit();

Reading an entity is very common and there are a variety of options available to perform a
read operation, such as using the APIs or using JPQL, which is the query language for Java
persistence. JPQL is similar to SQL but instead of working on tables and their columns, it
works on the entities and their associations. We already looked at one example a little
earlier when we used TypedQuery to find an entity by referencing a named query. Here's a
similar snippet using createQuery:

TypedQuery<Task> query = em.createQuery("SELECT t FROM Task t",
Task.class);
List<Task> tasks = query.getResultList();

The preceding code can be further expanded to restrict the data being fetched, such as in the
case of fetching a paginated list of records. For such use cases, the Query/TypedQuery
provides methods for result restrictions:

query.setFirstResult(start); //: Result would be fetched from the offset of
the start number.
query.setMaxResults(pageSize); //: Results can be less or the same as the
pageSize number.

The CDI Advantage Combined with JPA Chapter 2

[59]

If you don't need the flexibility of writing a query and need to just find an entity by its
primary key, then the same can be done using the find method with EntityManager:

Task task = em.find(Task.class, 100L);

With JPA 2.2, there's now support for getting a Stream<X> from the result set. Both
javax.persistence and TypedQuery / Query support the getResultStream method.
This returns a Stream instance. An example usage is shown here:

TypedQuery<Task> query = em.createQuery("SELECT t from Task t",
 Task.class);
 List<String> names = query.getResultStream().map(Task::getName)
 .collect(Collectors.toList());

It's thus possible to use the usual methods of stream, such as filter and map, to work with
the result set. But it's best to rely on your database/SQL for operations that can be
performed within the database, rather than trying to process it in the JVM. A WHERE clause
or an aggregate function such as sum or count are more efficiently done in SQL, rather than
trying to load the entire list in JVM and processing it using streams.

Before concluding CRUD aspects when using JPA, it's also worth noting that the read
operations are pulling in all the fields of an entity. There are times when you would require
a subset of fields, or fetching some aggregate value rather than loading the whole entity. In
those cases, an approach called projection is a better fit. It can be considered as having a
select query return only the required fields, and then using a constructor expression to map
it to a data transfer object or value object, rather than getting the entity directly.

Entity listeners
The listeners can be put to use for performing interception on entity life cycle operations.
We can also inject CDI managed beans into an entity listener for performing any additional
processing. Here are the seven life cycle callback annotations that can be used:

PostLoad This can be used to track the read calls made on an entity.

PrePersist
PreRemove
PreUpdate

These are called before performing the corresponding save, remove, or
update operation on an entity. These annotations can be combined and
placed in a single method as well.

PostPersist
PostRemove
PostUpdate

As the name suggests, these are performed after the corresponding save,
remove, or update operation on an entity. These annotations can be
combined and placed in a single method as well.

The CDI Advantage Combined with JPA Chapter 2

[60]

The Task entity has an entity listener associated with it, thus during its life cycle events, the
listener callback methods would be invoked. If there is more than one listener, then the
invocation is done in the order of the listener declaration:

@Entity
@Table(name="task_detail")
@EntityListeners({TaskAudit.class})
public class Task extends MappedSuperEntity {
 // code omitted
}

During each life cycle event of the Task entity, our TaskAudit class methods would be
invoked, which are listening to the event. Thus, to listen to the post persist event, the
following code declares a trackChanges method with the @PostPersist annotation:

public class TaskAudit {
 @PersistenceContext private EntityManager em;
 @PostPersist public void trackChanges(MappedSuperEntity entity)
 { ... }
}

While the listeners are handy to use for simple cases, they fall short for handling more
complex requirements. There are modules, such as Hibernate Envers, which provide
support for auditing capabilities with more capable features, but these are not part of the
standard JPA specification.

Validations the entity
The Bean Validation API defines many validation constraints that can be applied together
on the JPA entities. These are provided in the javax.validation.constraints package.

To apply validations on an entity, you can put the constraints on its fields. Consider our
Task entity with validations defined as follows:

@Entity
@Table(name="task_detail")
public class Task {
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Long id;

 @NotNull
 @Size(min = 1, max = 5)
 private String name;

The CDI Advantage Combined with JPA Chapter 2

[61]

 @Pattern(regexp = "[a-zA-Z]")
 private String title;

 @Future
 private LocalDate targetDate;
 // Getters & Setters to follow
}

Given the validation constraints defined here, the fields of the Task class will have the
following constraints:

name: A name cannot contain a null value and must be a minimum length of one
and a maximum length of five characters.
title: This is constrained by the regular expression pattern, suggesting that only
letters of the alphabets are allowed if a value is present. But the value of title may
be set to null.
targetDate: The valid value can be null or a date in the future, if present.

When trying to persist the bean using an EntityManager, the Bean Validation takes place,
and for any value that doesn't meet the defined constraints, there is a violation detected,
resulting in a javax.validation.ConstraintViolationException.

These validations are triggered as part of the life cycle of the event, such as pre-persist, pre-
update, or pre-remove. These can be controlled by configuring them in the
persistence.xml file. Here's a code that tries to save a Task object, but doesn't conform to
the constraints listed previously. It would result in an ConstraintViolationException,
which we can catch and print to the console:

public void save() {
 Task theTask = new Task();
 theTask.setName("A longer name than allowed");
 try {
 em.persist(theTask);
 } catch(ConstraintViolationException violation) {
 violation.getConstraintViolations().forEach(
 v -> System.out.println("violation " + v)
);
 }
 }

The CDI Advantage Combined with JPA Chapter 2

[62]

Since the name field has a constraint of @NotNull and @Size defined, this code would
result in the following output, as persist would fail:

Info: violation ConstraintViolationImpl{
 interpolatedMessage='size must be between 1 and 5',
 propertyPath=name,
 rootBeanClass=class org.company.project.domain.Task,
 messageTemplate='{javax.validation.constraints.Size.message}'
}

It's also possible to override the constraint message by using the message parameter on the
annotation during declaration. For example, @NotNull(message = "The task name
must not be null").

Now that we have looked at how JPA can trigger these constraint checks as part of the life
cycle of events, let's explore validating a entity programmatically. Consider that you have
an entity, perhaps as a result of a REST API input, and would like to validate the bean.
Here, you can inject a javax.validation.Validator instance and use its validate
method to find any ConstraintViolation instances. Here's the snippet to do just that:

@Inject Validator validator;
...
// Some method which takes Task object and validates
Set<ConstraintViolation<Task>> flaws = validator.validate(theTask);
flaws.stream()
 .map(ConstraintViolation::getMessage) // Get message string
 .forEach(System.out::println); // Print message string

If any violations are found, then the validate method will return a non-zero set of items.
That shows you how we can use the programmatic approach when you need more fine-
grained control over constraint checks.

Summary
As you may have noticed, getting started with JPA and CDI isn't that complex. With an
understanding of both, it's possible to build large applications which utilize these
technologies for various business cases. We looked at how dependency injection promotes
writing loosely coupled and testable code and how CDI, a ubiquitous API for dependency
injection and context management in Java EE, helps us do that.

The CDI Advantage Combined with JPA Chapter 2

[63]

CDI 2 brings ordered and asynchronous events to further enrich this programming model.
As of the 2.0 release, CDI is available for Java SE as well. JPA has been updated for utilizing
Java 8 Streams, repeatable annotations, and date/time APIs along with better CDI
integration support. The JPA entities are defined as classes using @Entity,
@MappedSuperclass, and @Embeddable annotations. To track state changes, we get to use
entity listeners that can be used with CDI as well. Bean Validation 2.0 can be leveraged
when defining constraints on JPA entities; this declarative method makes adding
validations a fairly easy task to do.

Having learnt about CDI and JPA, which are two fundamental APIs that are used for
building Java EE solutions; we can now switch our focus to microservices as we explore
API-driven architecture.

3
Understanding Microservices

The world of software is an ever-changing one, and within it there is an ever-increasing
need for faster deliveries. With businesses trying to reduce time-to-market for each
application, the onus of meeting such demands is with the engineering team, who also need
to maintain a balance between quality and speed.

There are many useful principles and patterns defined in the software ecosystem that help
meet these business needs to some extent. However, as neither business needs nor systems
remain constant, architectures must evolve as well to address these challenges. Maintaining
the competitive edge is vital for the survival of any business. Microservices have been
grabbing points for delivering software that meets these modern-day demands. It’s also a
unique architectural pattern, as it makes development and operations (DevOps) part of its
architecture. In the sections that follow, we will build an understanding of what
microservices mean and how Java EE developers and architects can leverage this new
paradigm using their enterprise Java skills.

Here are two definitions of microservices:

"Microservices are a loosely-coupled service-oriented architecture with bounded context."

– Adrian Cockroft (cloud architect at Netflix)

"Small autonomous services, that work together, modelled around a business domain."

– Used by Sam Newman (author of Building Microservices)

Understanding Microservices Chapter 3

[65]

Microservices is a term that has been around for a while but has gained momentum only in
recent years. This is an architectural style that can be considered as a variant or
specialisation of service-oriented-architecture (SOA). It's an architecture that talks about
how to go about building complex systems composed of fine grained services. There are
many theories and books published on this subject, concerning why you should be doing it
or why you shouldn't be. This is the only chapter of this book that will focus on the concepts
of microservices; the rest of the book will focus on the how-to.

Companies delivering large scale web solutions such as Netflix, Amazon, and eBay have
adopted the microservices way and have been successful in implementing it. It's worth
noting that these companies didn't start with this architectural style; instead, they had to
carefully carve out their microservices from their monolith applications. Before we grab our
sculpting tools, let's understand the problems we are trying to solve using this approach.
Let's consider the differences between approaches by first considering a traditional
monolithic application and then seeing how a microservice-based architecture solves some
of the shortcomings of the former.

What we will cover:

Traditional monoliths
Multiple small units of work
Single responsibility
The need for REST
Scale only what needs to scale
The bad parts, yes, there are few

Traditional monoliths
When building modern enterprise web applications, it's common to build it as a monolith.
In this architectural style, applications can be built as modules which are bundled as a
single deployable unit and executed in a single runtime process. Deploying a monolith can
be done by simply packaging the application as a web archive (WAR) file and publishing
the artifact to a server. Starting a project with the monolith approach is much easier than
trying to build a service-oriented or microservice architecture from the start. This approach
does have some benefits, such as the following:

Monoliths are simpler to work with, as even though developers may not get the
correct boundaries defined between the modules, it's not that hard to refactor

Understanding Microservices Chapter 3

[66]

Testing a monolith is simpler as there's less moving parts when compared to a
service-oriented architecture
Not much thought is needed for what to scale, as you can add more boxes and
the entire monolith application will scale horizontally
It's easier to enforce constraints on the team by means of centralised governance

Let's consider an example where you may be building an issue management system, which
has various modules such as document manager, users, audit, and ticket management.
Audit could be a web service API, but for convenience, it's bundled along with the same
application. Here, the application would be deployed as a single unit (WAR) and run on a
Java EE application server. If any of the modules are unable to cope with the load, then the
entire application is scaled to meet this demand. Here's what a scaled monolith looks like:

Understanding Microservices Chapter 3

[67]

While the monolith is good for simpler projects, it does have drawbacks when used for
larger complex applications. It is critical for architects and developers to understand the
benefits and drawbacks that each architecture brings with it. Here are the drawbacks of a
monolith:

As the code base grows, changes are difficult to make without impacting other
parts of the system.
Making changes in one area needs to be followed with testing the entire
monolith, so the duration of an iteration can't be kept short.
As both code and team size grow, it becomes a challenge for anyone to fully
understand the application.
Even for small changes, the entire application must be deployed.
It isn't possible to tailor the hardware resources specifically to module needs.
Changing a library or framework is a daunting task and can't be done often. This
results in outdated libraries lying around due to legacy code.
Hard to find root causes, with many collaborators but no ownership.

As we move through the evolution of software development, things are getting more
complex and the drawbacks of the traditional monolith start to outweigh its benefits.

Need for delivering new features quicker
In a competitive market where software is ubiquitous, businesses are realizing that success
depends on being able to deliver good quality software at a fast pace. There are various
practices and development methodologies that facilitate efficient delivery of software. The
drawbacks of a traditional monolith prevent it from meeting the demands of complex large-
scale applications, which require rolling releases at a fast pace.

Microservice architecture, meanwhile, promotes small modules focused towards business
capabilities that can be independently deployed as services. These smaller services can
subsequently be combined together to act as one large enterprise-level application. The
communication between the services can happen using HTTP or messaging, which is a
typical choice for lightweight communication. Successful microservice architecture is best
achieved with a small cross-functional team, as it aids in delivering solutions faster. By
keeping the code base small, it's often easier for the team to perform a refactor or rewrite
from scratch, if the situation so demands; this wouldn't be feasible in a monolith
application. The services are built as a separate application and interface with each other via
published service contracts. Thus, it is easier to change the implementation details of a
service without impacting other services, as long as the contract is honored.

Understanding Microservices Chapter 3

[68]

In the case of the issue management system, we would decompose the application by
breaking it into smaller services focused around a business capability. This process is
known as functional decomposition.

This would create a logical isolation for each service, which will have its own database,
potentially different from others such as relational or NoSQL as per the need of that service.
This is called polyglot persistence, which here means allowing your service to embrace the
persistence solution that is right for its needs. The impact of one service choosing a different
data-store is confined to that service itself, as none of the other services are affected by this
choice.

Here's how that would look in the microservices world:

Understanding Microservices Chapter 3

[69]

It's also possible, if not mandatory, to use container based solutions to deploy these services.
Container solutions such as Docker are the means to meet DevOps standards for consistent
and fast deployments. There are benefits to be gained when using this architecture, such as:

Ability to scale individual components/services.
Small business capability focused services are easier to maintain and refactor.
Business logic is confined to the context of a service and not spread across the
whole application.
Deploying a single service need not require testing the entire application.
Each service can be allocated an appropriate server instance as per its memory or
CPU needs. For example, a service such as audit could be CPU intensive, while
the tickets service may be memory intensive.
Production issues can be delegated to the right people, by knowing which cross-
functional team owns the service.
Since it's easy to deploy a single service with negligible impact to other services,
production fixes and changes can be rolled out faster.

When working with a microservice architecture, tooling becomes an essential ingredient for
success. Thus, it also promotes the adoption of DevOps practices such as:

Continuous Deployment:
Automated deployments are a must. Imagine having to deploy 20
or 100 services manually!
Unit/integration testing automation to allow for faster feedback on
builds.

Automated Infrastructure:
Tooling for logging, monitoring, performance metrics
Quick provisioning and de-provisioning of instances

This approach solves many of the scalability issues inherent in a monolith, but for it to be
effectively implemented, we need to look at how teams are structured. Switching to a
microservices architecture will require the creation of a cross-functional team that owns a
product (not project) focused towards the business need and adopting the DevOps
methodology. DevOps can be considered as a cultural change, an extension of agile
development practices. It tries to bridge the gap between the developers who build the
software and the IT operations that maintain it. This culture promotes teams to own the
build, test, and deploy cycle for the product they are responsible for delivering.

Understanding Microservices Chapter 3

[70]

Team size and dependency
Melvin Conway doesn't refer to software systems alone. For the information technology
world, his observation means that the design of a code base gets largely influenced by the
way an organisation structures its own teams. You might be wondering as to why we are
discussing team structures here. This has to do with certain characteristics of a
microservices architecture, which advocates the decentralizing of all things.

Conway's law :

Organisations that design systems are constrained to produce designs that
are copies of the communication structures of these organisations.

Traditionally, the choice of technology to be used is decided and applied organisation wide,
so you belong to either a Java camp or some other, such as Ruby or Golang. Similarly, the
choice of database is influenced primarily by the resource skills and not necessarily by the
need of the business. These choices get passed on to the teams, who are responsible for
building the solution. This is not necessarily a bad idea, as it ensures that the organisation is
aligned to a particular choice and usually has resources that are skilled in the chosen
technology. The problem lies in the one size fits all approach, which gets further aggravated
in a monolith as different business modules typically get clubbed into a single unit of work.
What may have been chosen as a right solution to begin with may not remain right as
things evolve.

In traditional monolithic applications, the development team would build a large enterprise
application, pass it on to the testers for quality checks, and then push it to operations for
deployment and maintenance work. Within a large development team, there can be further
silos created as developers are responsible for different modules and they often share
libraries built by other developers. Under such conditions, the question of who provides the
support and fix when an issue occurs often becomes a challenging one to answer. Here,
teams operate on multiple service or projects and are functionally separated. This can be
visualized, as shown in the following image:

Understanding Microservices Chapter 3

[71]

Greater success can be achieved with cross-functional teams, working on a common goal,
than with functional teams with a us versus them mind-set. This small team would include
people with different functional expertise such as development, testing, operations, and
others, who can promote innovation through collaboration, which can be critical to the
success of a business. In traditional organisational structures, work is passed from one large
team to another and the responsibility for building and maintaining a project is spread
across multiple teams.

Another notion that is promoted in microservice architecture is that of product not project.
This implies that the team should consider themselves to be working on a product and
owning it throughout its lifetime. A project, on the other hand, is executed and handed over
to operations on completion. In the cross-functional team, the onus of building and
maintaining the product throughout its lifetime will be on this single team. Having all the
necessary expertise in one team makes it highly productive and self-directed. This can be
visualized as follows:

Amazon has popularized the term two-pizza teams, for describing the maximum size of a
team responsible for a service. The idea being, that your team should be no larger than a
dozen people (they did have a large pizza). There will be times when you need to share
certain resources, as certain specialist roles need to be rotated. An infra engineer, for
example, won't always be occupied for a single service and may be able to contribute more
to others. A lead or architect can pitch in on various microservices and doesn't need to be
confined within one team. Thus, teams can depend on other specialized teams which
comprise of specialists like architects, managers, and others. These specialized teams would
probably have leads and in turn can publish standards and perform reviews, to ensure
everyone has the broader goal covered. But introducing too many external checks can have
a negative effect, as it would hamper the team's ability to progress and deliver fast. Thus,
it's important to give people enough control do their job, yet have a sense of balance
between governance of teams to help them when needed. A blanket rule for how to build
teams cannot be made, as that largely depends on how your organisation is currently
structured.

Understanding Microservices Chapter 3

[72]

Multiple small units of work
The idea is to take a complex problem and try to break it into smaller pieces. As mentioned
in one of the advantages of microservices—Small business capability focused services are easier
to maintain and refactor, we should build our microservice as a fine-grained service. This
even allows for replacing the service without having to spend weeks or months attempting
to do so. Each of these small units (microservices) should be capable enough to:

Provide for its own private datastore
Be independently deployable with its own runtime process
Publish the public interface for others to use in the form of a API contract
Be fault tolerant, so failure in one should not affect other services
Be confined to a bounded context (from Domain driven design (DDD))

Smaller code base
When working on any code base, its size is a detrimental factor in forming an
understanding of the application. Given the principle of having a separate team that owns
the microservice and its build, test, and deploy cycles, it is logical to maintain a separate
repository (Git or any VCS). A separate code repository allows for a smaller code base,
leading to reduced code complexity, and also avoids merge conflicts, which pester larger
code bases with multiple collaborators.

The small code base brings with it compelling advantages for the developers. Imagine
having chosen a tech stack only to realize that it isn't the right stack to use. Sounds familiar,
right? Mistakes will be made, and our only hope is to use an architecture that allows us to
dispose of the code and redo it using another choice. If your code base is small, then a
rewrite is no longer a distant dream. It's easier to squeeze performance out of this code base
than try to speed up a larger bundle of code modules put together.

The term micro in microservices doesn't mean less lines of code. Lines of code is a very
misleading measure and cannot be relied upon to keep your services small. As discussed in
the coding practices and single responsibility sections that follow, there are a few design
guidelines that should be followed to keep your services small.

Understanding Microservices Chapter 3

[73]

Coding practices
There are many best practices that are followed by developers around the world. Some of
these can be as simple as following a code convention, or applying a more advanced
pattern, principle, or general guideline. When building a microservice, its public APIs need
to be designed carefully. The internal structure of a microservice is an implementation
detail that doesn't get exposed to others.

You cannot ignore the fact that you are publishing a service, which is the face of your API.
REST APIs have certain best practices, which should be followed. It's beyond the scope of
this book to cover each of these practices, but standardizing on the resources and the
request and response formats will go a long way in making the code consistent and easy to
work with. Consider the following practices, which are focused towards this type of
architecture:

Follow DDD
Document it
Build for failure
Infrastructure as part of code

Follow domain-driven design
Focus on the responsibility that the microservice is trying to meet. The scope of the service
is more important than the lines of code used to build it. Teams would usually sit together
and build an understanding of the domain from the domain experts. Once the domain is
understood, then it is modeled as domain objects, which can be further grouped as sub-
domains. In a monolith, the entire domain model is within a single application, but the
microservice architecture would lead your domains to be used within different business
contexts.

Bounded Contexts is a term used in DDD, which maps the domain entities within the
context of its usage. A payment microservice might require a domain entity such as User, to
be used for billing purposes, and thus the User entity may need to have payment details
associated with it. But if the same domain entity is used in a notification service, then the
payment information is an additional detail, which shouldn't get leaked into this service.

The idea of a bounded context is further explained in the section on Single Responsibility.

Understanding Microservices Chapter 3

[74]

Document it
The service must be well-documented for it to be useful. The Web API contract of a service
can be published via documents which are manually built or generated automatically using
various build tools. SOAP APIs have a WebService Description Language (WSDL) used to
describe the service, but REST APIs do not have an equivalent. Given the growing
popularity of REST, there are other solutions that have come up to fill this gap. A possible
choice for documenting REST resources is Swagger. There is the Open API Initiative (OAI)
that is working to standardize REST API documentation. The specification is based on
Swagger, which defines the metadata that is used for documenting APIs.

Developers can make use of the maven Swagger plugin to generate an API document for
their microservice. There are other options to generate or document your APIs, but Swagger
does bring compelling features that make it an appealing choice. It potentially frees up the
developer from having to update the documents manually. There are some goodies it offers,
such as the ability to generate API information in a readable format that contains the REST
resource name, URL, HTTP method, and request and response formats. It also generates
JSON or YAML files which can be used by other tools to provide easy generation of client
libraries tailored to the service.

Some good qualities to have in documentation are:

It should be easy to generate and rely on the code itself, which is the best source
of truth.
The presentation of the document should be readable for humans and available
over the web for browsing.
Should contain samples, describing the service.
The ability to try out a service based on its documentation can be a valuable
addition.
Separation should be maintained between what is public API and what is private
API. Things which are to be used by others can be termed public API, but APIs
that are internal to a service should be flagged accordingly.
Clearly state the current and previous versions of the APIs published.

When using document generation tools, the generated documentation can itself be hosted in
some source repository or Docker registry (more on this later). This allows it to be versioned
and referenced by the team when required.

Understanding Microservices Chapter 3

[75]

References:

Swagger: http:/ ​/​swagger. ​io/ ​

Open API Initiative (OAI): https:/ ​/​www. ​openapis. ​org/ ​

Maven plugin: https:/ ​/​github. ​com/ ​kongchen/ ​swagger- ​maven- ​plugin

Build for failure
The demand of distributed computing requires services to be written so that they are
capable of handling failures. The failure of one service can lead to a cascading effect across
all and can be the biggest bottleneck in the application. When invoking REST APIs, consider
using time outs, as waiting for long periods will have an adverse effect on the response
times. When a response doesn't meet the defined service level agreement (SLA), you could
have a default response kept available for such cases.

If a service is timing out, then there's a good chance that it may be down or it may not be
available for a longer period. Using a circuit breaker allows you to avoid calling the service
that is timing out frequently. If a service is timing out beyond a defined number of times,
then the circuit breaker would prevent any further calls. After a defined interval, the circuit-
breaker would retry the target service, thereby allowing it time to recover.

These patterns can be written in plain Java code without relying on libraries to do it for you.
As an example, you could create an interceptor for all external calls made, which keeps
track of failures. Once the threshold of failures is reached, the interceptor can have logic that
tells it to not make any further calls to the target service until a defined period. After the
configured period is over, the interceptor can start allowing new calls to the service.

Infrastructure tooling as part of code
With containerisation solutions such as Docker, you can make the infrastructure part of
your code. Most environments require some form of configuration setup to work with. With
virtualisation support for cloud applications running on AWS and other cloud providers,
it's become a lot easier to build/test/deploy your code on server instances which can be spun
up and removed within seconds. Infrastructure as part of your code means to be able to
setup a server instance without having to go through the manual process of getting all the
needed OS libraries and versions figured out. You can use scripts, which can be written in a
readable language, to spin an instance that has the needed setup ready for your actual
application. This makes DevOps simpler for the developer who can now utilize tooling like
Ansible, Puppet, Docker, and so on to provision the infrastructure when needed.

http://swagger.io/
http://swagger.io/
http://swagger.io/
http://swagger.io/
http://swagger.io/
http://swagger.io/
http://swagger.io/
http://swagger.io/
https://www.openapis.org/
https://www.openapis.org/
https://www.openapis.org/
https://www.openapis.org/
https://www.openapis.org/
https://www.openapis.org/
https://www.openapis.org/
https://www.openapis.org/
https://www.openapis.org/
https://www.openapis.org/
https://github.com/kongchen/swagger-maven-plugin
https://github.com/kongchen/swagger-maven-plugin
https://github.com/kongchen/swagger-maven-plugin
https://github.com/kongchen/swagger-maven-plugin
https://github.com/kongchen/swagger-maven-plugin
https://github.com/kongchen/swagger-maven-plugin
https://github.com/kongchen/swagger-maven-plugin
https://github.com/kongchen/swagger-maven-plugin
https://github.com/kongchen/swagger-maven-plugin
https://github.com/kongchen/swagger-maven-plugin
https://github.com/kongchen/swagger-maven-plugin
https://github.com/kongchen/swagger-maven-plugin
https://github.com/kongchen/swagger-maven-plugin
https://github.com/kongchen/swagger-maven-plugin
https://github.com/kongchen/swagger-maven-plugin

Understanding Microservices Chapter 3

[76]

We will explore more on Docker and how to use it in practice in the next chapter. For now,
here's a quick reference of a Docker file; don't worry if you haven't seen this before, we will
be covering the details soon.

Take a look at the Dockerfile snippet, shown as follows:

FROM prashantp/centos-jdk:8

ADD wildfly-10.0.0.Final /opt/wildfly
EXPOSE 8080 9990
ENV WILDFLY_HOME /opt/wildfly

CMD ["/opt/jboss/wildfly/bin/standalone.sh", "-b", "0.0.0.0"]

This is a simple sample of a Docker file that can be used to run a JBoss/Wildfly instance on
your local machine.

Single responsibility
Your services should strive to achieve a single responsibility and not get tangled with
many, which leads to more reasons for it to change than are necessary. This is one of the
principles of SOLID design principles. The single responsibility principle is strictly speaking
not about microservices, but instead about classes and objects and maybe too simplistic for
it to be applied here. This principle, in the context of a microservice, results in each of the
components being highly cohesive and staying focused around one business capability.

When organizing code, Java developers often use packages to create modules. In a layered
architecture, modules are generally created by technical concerns, such as presentation,
business, and persistence. Packaging by layers has certain disadvantages, such as changes
to functionality usually requiring a change across all the layers involved. Another strategy
to organise code is to package by business domain or features. This approach results in
packages named tickets, users, and so on, which are created as feature modules. When
modules are organised after the domain, it helps developers who are looking at the code
structure build a quick understanding of what the application is about. It also tends to
promote high cohesion and loose coupling between modules.

Understanding Microservices Chapter 3

[77]

In microservice architecture, a service should focus on a single business capability. When
building an issue management system for working with tickets that are assigned to users, we
may choose to create a tickets microservice responsible for creating and fetching tickets.
Similarly, we may also build a users microservice for creating and getting the users within the
system. These services should be kept independent of one another and must have well-
defined boundaries. It's not enough to keep the business logic separated; even the domain
objects should be modeled to meet the purpose of a given microservice.

Typically, the domain entities are grouped as one big shared module (bundled as JAR),
which gets added as a dependency to the service. The moment a tickets service fetches a
Ticket entity (think JPA entity or a domain object), it inadvertently pulls in all related
entities along with it. Assume a Ticket entity references a User entity and User references
an Address entity; we would be polluting our tickets service with information it shouldn't
get coupled with, such as an Address.

The idea of a bounded context is described by Eric Evans in his seminal book, Domain
Driven Design. When crafting your domain model, you should identify the domain
boundaries and align them to the business capability the service caters to. As you develop a
model, you should identify its bounded context. Boundaries help prevent leaking of
information in unwanted parts of your code. Going back to issue management system, both
the users and tickets microservices may reference a Ticket object. Within the context of the
users service, a Ticket object may have just the Id and Name properties, which are
required. But the tickets service will require more details about the Ticket object, such as
the status, dates, priority, and so on. So even though the Ticket entity may mean the same
thing, it will be created as different classes, used by two different applications, with its own
database:

Understanding Microservices Chapter 3

[78]

This idea is very difficult to apply in a monolithic architecture, as most of the code base is
collocated. But if you have a separate cross-functional team with its own database in a
microservices architecture, this very same idea of bounded context is far more achievable.
Even if you don't hit perfection, it's an idea worth trying.

The need for REST
REST is a dominant communication style used in SOAs. The business domain model is
exposed as resources, where each resource is a published web service that has a defined API
contract. These APIs take input using a message format such as JSON and share a response
compliant to the protocol used. The microservice itself will have additional external
dependencies, such as other APIs for which it acts as the REST client. Since the
communication is over the network, it adds to the latency of a service call and thus it's vital
to keep this communication lightweight. Each service would also need to be resilient to
failures in other services.

Understanding Microservices Chapter 3

[79]

To deal with failures and performance issues in other services, a service may incorporate
strategies to overcome such cases. As an example, a users service may invoke the tickets
API/resource for fetching the latest tickets. For some reason, if the tickets resource is unable
to return a response (due to being slow or just not available), then the users service may use
a default list which is kept internally for such cases. There are other strategies such as
Bulkhead, Circuit-breaker, and Timeout that aid in dealing with the complexity of
distributed communication.

Since microservices are fine-grained and modeled around business capabilities, they need to
communicate with other services to get work done. In a large, complex application, a
request often gets processed by more than one service. When processing a use case such as
opening a new ticket or assigning a ticket to a user, there can be multiple services that will
participate in this request. Microservices typically communicate with each other using
REST. REST APIs facilitate lightweight communication over HTTP with flexible message
formats, such as JSON/XML/text, and so on.

Each service publishes a API, which is then consumed by other services which act as its
REST Client. Communication among the services can be point-to-point, or based on the use
case, it can be asynchronous publish-subscribe model, which is also lightweight. Here's how
the communication between our issue management microservices can be visualized:

Understanding Microservices Chapter 3

[80]

As you can see, while this is an acceptable practice, as the number of services grow, so will
the complexity inherent with point-to-point communication. Here's where an API Gateway
adds value to microservices by providing certain benefits:

A single entry point for external calls which gets routed to your services
internally
Acts as a layer of security, preventing any attacks from external sources
Can act as an adapter, allowing for the handling of different message protocols
Can provide monitoring and logging across services
It also takes away the problem of service discovery from the clients
The gateway can also apply the Circuit-breaker pattern for fault tolerance:

While the gateway does act as a layer for routing and message translations (almost similar
to an enterprise service bus), it's important to keep it dumb and not add any business logic
to it. This would allow the endpoints to evolve, without having to worry about part of its
logic residing on the gateway.

Understanding Microservices Chapter 3

[81]

Scale only what needs to scale
The ability to scale a particular application service is one of the greatest benefits of using
this architectural style. A business's ability to meet its growing demands depends on the
ability of its application to scale as needed. While breaking the application into
microservices gives us flexibility in scaling individual services, it also adds the complexity
of knowing which service to scale. You can pick microservices that deal with critical
business aspects, such as an eCommerce checkout service, and equip them with more
hardware resources.

When packaging a microservice, you can bundle it as an executable JAR file. Solutions such
as Spring Boot, Wildfly Swarm, and Dropwizard support this. With these approaches, you
can bundle your application along with a server which starts as part of your application.
You can also use Payara Micro, which provides a cleaner solution by separating the
infrastructure (server) and your code. You can start a Payara Micro instance using java -
jar payara-micro-xxx.jar and specify the WAR file that needs to be deployed on start
by using a command line argument. All these options result in a single runtime process,
hosting your microservice application.

In simple terms, scaling a microservice means you need to deploy more than one instance of
it. With a container based solution, you can replicate the container instance using an image
of your service and spawn a new instance with it. An API Gateway can act as the front for
your services and a load balancer would then route the requests to a cluster of microservice
instances:

Understanding Microservices Chapter 3

[82]

A practice often seen in enterprises is using a single machine to host multiple services (think
multiple JBoss/Payara instances on a single box). The problem with this is that if even one of
those processes goes haywire, it will end up taking all the services running on that machine
down with it. Docker containers, on the other hand, allow you to isolate each running
process, thereby mitigating the risk of one rogue service killing the others. In microservices,
you would want to take advantage of a container environment, to protect you from such
failures.

There are more advanced techniques to scaling, such as a three dimension scalability model,
as described in the book, The Art of Scalability. Once you have containerized an application
using Docker and produced a Docker image, you can use Kubernetes to manage the scaling
needs of your microservice applications. Kubernetes is an open source platform that helps
with deploying and scaling containerized applications. The project was originally
developed by Google for their internal applications. The application Google used was called
Borg, which can be considered a predecessor to Kubernetes.

The bad parts, yes, there are a few
Implementing the microservices architecture leads to a change in organisational culture,
and it is not an easy one to make. Seeing a few large companies achieving success by
following this model doesn't necessarily mean it's the right option for your company's need.
Before making any changes, it's best to make careful considerations of the benefits and
challenges ahead. SOA or having a monolith haven't become obsolete patterns, and neither
is microservices the ultimate solution. These points do not intend to drive you away from
using microservice architecture, but to make you aware of the disadvantages and certain
pitfalls that you'll need to pay attention to. You are probably going to run into rough edges
when trying this out at first, but it's essential to be able to learn from your mistakes and
decide what works and what doesn't for your team.

Modular services that are defined by business capabilities are not easy to do. There are
concepts of DDD, such as bounded context and single responsibility, that help guide us, but
these aren't easy to get right first time. It sometimes helps to start off by writing a monolith
and then refactor it into microservices later. This helps with defining the business
boundaries and modules to build, which is never clear at the beginning of a project.

Understanding Microservices Chapter 3

[83]

Having multiple databases can be challenging. Transactions across services which affect
various databases are not easy to work with. When a single request is made into the
application, the same is often passed downstream to other services which participate in the
request handling. Identifying the issue with a request becomes difficult when multiple
services are involved. To allow tracing of such requests within the application, a correlation
ID is generated at the start of the request and gets passed as a header to each service. The
idea is not unique to microservices, and is often used in SOA or other service orchestration
solutions.

No matter how much developers love to rewrite code following the next technology buzz,
not all projects are candidates for migrating to microservices. With any form of distributed
computing, there are challenges that are well-known in the computing world, such as:

Administering and monitoring dozens or hundreds of services is hard
Development and testing of distributed systems is not easy; thus, automation of
testing and deployment is essential to have
Decomposing may lead to violation of the DRY principle (duplication of code),
which needs some analysis
Another general issue is referenced as Fallacies of distributed computing, which is
also well-documented in material found on the internet

When doing microservices development, it's best to avoid some common mistakes. Here are
few Dos and Don'ts to consider, before we move on:

Dos Don'ts

A service is responsible for only one
business capability.

A service is responsible for more than one
business capability.

Single repository per microservice. All logs
and branches are focused on supporting this
one service.

Putting more than one microservice in the
same repository. Tracking release branches
and history becomes convoluted and
introduces complexity for build tools as
well.

All communication between services are
done only via its published interfaces such
as API contracts.

A microservice communicates with another
services repository directly without going
through its API contract.

Understanding Microservices Chapter 3

[84]

Avoid sharing database with multiple
microservices. Use one database per service.

Multiple microservices share a database.
While seemingly okay, it can lead to cross
dependencies, which in turn complicates
deployment and scalability.

Maintain the database SQL scripts or
infrastructure scripts, like Docker files and
so on, as close to the service as possible. For
example, use the same repository to store all
related artifacts for a service.

Maintaining infrastructure or database
scripts separately rather than associating it
with code repositories.

You are going to have multiple machines
and independent processes to work with.

One Tomcat/JBoss with two or more WAR
files.

Summary
We walked through the difference between building a traditional monolith application and
how a microservice-based architecture can add value to large complex applications. Now,
you know how a cross-functional team can help deliver software faster using DevOps and
other practices. Distributed computing has its own challenges and the solution is to not
think of it as an afterthought, but instead make it part of your requirement.

We saw how microservices are made by decomposing a monolith into functional
capabilities. This requires an understanding of the domain, which helps build the bounded
context for our domain model. We also covered a few of the disadvantages of using this as a
silver bullet, as one-size-fits-all is certainly not true.

Microservices can be considered a subset of SOA. Using this architecture for large
applications has many benefits such as a lower learning curve due to a smaller code base.
This allows for refactoring within short time frames. Testing of individual services can be
done without having to run a large test suite for the entire application.

4
Building and Deploying

Microservices
With an understanding of what makes a microservice, we can now take a deep dive into
bundling microservices and deploying them. We will make use of the containerization
solutions available and see how they can be used when working with this architectural
style.

Java EE has a rich set of APIs for building various types of applications. With decades of
experience in distributed applications, Java EE is a promising platform for use with
microservices. Enterprise features such as transactions, security, web sockets, persistence,
messaging, asynchronous processing, Restful APIs, and an ever-growing set of open source
tools and libraries, make it a compelling choice.

Here's what we will cover in this chapter:

Fat JAR
Skinny WAR
Examples using Payara Micro
MicroProfile:

Java EE already has support
WildFly Swarm
Spring Cloud

Docker containers:
Working with distributed teams
Building custom images
Running multiple containers
Fat JAR or Skinny WAR with Docker

Building and Deploying Microservices Chapter 4

[86]

When building microservices, we have two packaging choices for deploying our service:

Fat JAR: An Uber JAR approach which bundles the server runtime in it
Skinny WAR: Traditional slim war which is deployed on a server

Fat JAR
The way we have been thinking about application servers is changing. The basics of
developing a web application typically involves two steps:

Building a web project whose final output is a web archive (WAR) file. This1.
WAR file will contain the application code and optionally third party libraries,
which are not part of Java EE.

Deploying the artifact to an environment (local, test, prod) having the Java EE2.
application server. The environment will have all the needed configurations
applicable to it. There can be multiple WAR files deployed on a single JVM
process.

Here's a logical view of a traditional WAR file deployment on a server:

Building and Deploying Microservices Chapter 4

[87]

Fat JAR approach
The idea of creating a Fat JAR (all-inclusive JAR), is to allow us to have a single deployable
unit that has all the application and runtime code in it. Thus, instead of deploying your
application to an application server, you bundle everything needed to run your application
into a JAR file, which includes an embedded server. This single artifact can then be
promoted through your various environments, such as the test stage, till production.

Here’s the logical view for a Fat JAR based deployment with bundled server runtime/libs:

There already exist new frameworks that make it fairly easy to get started with
microservices. We will look at two popular choices, WildFly Swarm and Spring Boot.
WildFly Swarm is based on the WildFly application server, while Spring Boot is a popular
choice among developers.

Both Spring Boot and WildFly Swarm allow us to build Uber JARs that are self-contained
and have a small memory footprint, as they pack only the essentials of what the application
needs. Both of these projects provide good support for developing microservices by means
of third party library integrations such as Netflix OSS, which is a set of frameworks and
libraries for building microservice applications.

Other noteworthy mentions include DropWizard, which also offers a similar approach to
building an Uber JAR. We will see examples of WildFly Swarm and Spring Boot in the
sections to follow.

Building and Deploying Microservices Chapter 4

[88]

Skinny WAR
The approach of having a single JAR with all its needed dependencies may sound nice to
begin with, but this approach may not work for everyone. Fat JARs are easy to deploy and
run, but they do bring some complexities along with them:

Deployment size of the application JAR increases, as you would be bundling
some parts of an application server within the deployment file
Deployment time increases, considering the file size and the need to upload it to
different environments

The traditional Skinny WAR, when built against Java EE standards, can be measured in a
few kilobytes (KB). Moving this around over the network is much simpler than doing the
same with a Fat JAR, which bundles shared libraries along with the application code.

A more familiar style of working with web applications is to create a WAR file. This is your
unit of deployment, which gets placed in a Java EE application server such as WildFly,
Payara, or any other JEE compliant server. The WAR file contains only the application code,
but the runtime environment is provided to it by means of a Java EE server. In a
microservice architecture, the server would contain a single microservice, which is
deployed in it as a WAR file.

This approach provides for a clean separation of the infrastructure code from the
application code.

Examples using Payara Micro
Payara Micro offers a new way to run Java EE or microservice applications. It is based on
the Web profile of Glassfish and bundles few additional APIs. The distribution is designed
keeping modern containerized environments in mind. Payara Micro is available to
download as a standalone executable JAR, as well as a Docker image. It's an open source
MicroProfile compatible runtime.

Here’s a list of APIs that are supported in Payara Micro:

Servlets, JSTL, EL, and JSPs
WebSockets
JSF
JAX-RS

Building and Deploying Microservices Chapter 4

[89]

EJB lite
JTA
JPA
Bean Validation
CDI
Interceptors
JBatch
Concurrency
JCache

We will be exploring how to build our services using Payara Micro in the next section.

Building our services
Let's start building parts of our Issue Management System (IMS), which is going to be a
one-stop-destination for collaboration among teams. As the name implies, this system will
be used for managing issues that are raised as tickets and get assigned to users for
resolution. To begin the project, we will identify our microservice candidates based on the
business model of IMS. Here, let's define three functional services, which will be hosted in
their own independent Git repositories:

ims-micro-users

ims-micro-tasks

ims-micro-notify

You might wonder, why these three and why separate repositories? We could create much
more fine-grained services and perhaps it wouldn't be wrong to do so. The answer lies in
understanding the following points:

Isolating what varies: We need to be able to independently develop and deploy
each unit. Changes to one business capability or domain shouldn't require
changes in other services more often than desired.
Organisation or Team structure: If you define teams by business capability, then
they can work independent of others and release features with greater agility.
The tasks team should be able to evolve independent of the teams that are
handling users or notifications. The functional boundaries should allow
independent version and release cycle management.

Building and Deploying Microservices Chapter 4

[90]

Transactional boundaries for consistency: Distributed transactions are not easy,
thus creating services for related features that are too fine grained, and lead to
more complexity than desired. You would need to become familiar with concepts
like eventual consistency, but these are not easy to achieve in practice.
Source repository per service: Setting up a single repository that hosts all the
services is ideal when it's the same team that works on these services and the
project is relatively small. But we are building our fictional IMS, which is a large
complex system with many moving parts. Separate teams would get tightly
coupled by sharing a repository. Moreover, versioning and tagging of releases
will be yet another problem to solve.

The projects are created as standard Java EE projects, which are Skinny WARs, that will be
deployed using the Payara Micro server. Payara Micro allows us to delay the decision of
using a Fat JAR or Skinny WAR. This gives us flexibility in picking the deployment choice
at a later stage.

As Maven is a widely adopted build tool among developers, we will use the same to create
our example projects, using the following steps:

mvn archetype:generate -DgroupId=org.jee8ng -DartifactId=ims-micro-users -
DarchetypeArtifactId=maven-archetype-webapp -DinteractiveMode=false

mvn archetype:generate -DgroupId=org.jee8ng -DartifactId=ims-micro-tasks -
DarchetypeArtifactId=maven-archetype-webapp -DinteractiveMode=false

mvn archetype:generate -DgroupId=org.jee8ng -DartifactId=ims-micro-notify -
DarchetypeArtifactId=maven-archetype-webapp -DinteractiveMode=false

Once the structure is generated, update the properties and dependencies section of
pom.xml with the following contents, for all three projects:

<properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <maven.compiler.source>1.8</maven.compiler.source>
 <maven.compiler.target>1.8</maven.compiler.target>
 <failOnMissingWebXml>false</failOnMissingWebXml>
</properties>

<dependencies>
 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>

Building and Deploying Microservices Chapter 4

[91]

 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.12</version>
 <scope>test</scope>
 </dependency>
</dependencies>

Next, create a beans.xml file under WEB-INF folder for all three projects:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/beans_2_0.xsd"
 bean-discovery-mode="all">
</beans>

You can delete the index.jsp and web.xml files, as we won't be needing them.

The following is the project structure of ims-micro-users. The same structure will be
used for ims-micro-tasks and ims-micro-notify:

└── ims-micro-users
 ├── pom.xml
 └── src
 ├── main
 │ ├── java
 │ │ └── org
 │ │ └── jee8ng
 │ │ └── ims
 │ │ └── users
 │ │ ├── JaxrsActivator.java
 │ │ ├── boundary
 │ │ ├── control
 │ │ └── entity
 │ ├── resources
 │ └── webapp
 │ └── WEB-INF
 │ └── beans.xml
 └── test
 └── java

Building and Deploying Microservices Chapter 4

[92]

The package name for users, tasks, and notify service will be as shown as the following:

org.jee8ng.ims.users (inside ims-micro-users)
org.jee8ng.ims.tasks (inside ims-micro-tasks)
org.jee8ng.ims.notify (inside ims-micro-notify)

Each of the above will in turn have sub-packages called boundary, control, and entity. The
structure follows the Boundary-Control-Entity (BCE)/Entity-Control-Boundary (ECB)
pattern.

The JaxrsActivator shown as follows is required to enable the JAX-RS API and thus
needs to be placed in each of the projects:

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("resources")
public class JaxrsActivator extends Application {}

All three projects will have REST endpoints that we can invoke over HTTP. When doing
RESTful API design, a popular convention is to use plural names for resources, especially if
the resource could represent a collection. For example:

/users

/tasks

The resource class names in the projects use the plural form, as it's consistent with the
resource URL naming used. This avoids confusions such as a resource URL being called
a users resource, while the class is named UserResource. Given that this is an opinionated
approach, feel free to use singular class names if desired.

Here's the relevant code for ims-micro-users, ims-micro-tasks, and ims-micro-
notify projects respectively.

Under ims-micro-users, define the UsersResource endpoint:

package org.jee8ng.ims.users.boundary;

import javax.ws.rs.*;
import javax.ws.rs.core.*;

@Path("users")
public class UsersResource {
 @GET

Building and Deploying Microservices Chapter 4

[93]

 @Produces(MediaType.APPLICATION_JSON)
 public Response get() {
 return Response.ok("user works").build();
 }
}

Under ims-micro-tasks, define the TasksResource endpoint:

package org.jee8ng.ims.tasks.boundary;

import javax.ws.rs.*;
import javax.ws.rs.core.*;

@Path("tasks")
public class TasksResource {

 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public Response get() {
 return Response.ok("task works").build();
 }
}

Under ims-micro-notify, define the NotificationsResource endpoint:

package org.jee8ng.ims.notify.boundary;

import javax.ws.rs.*;
import javax.ws.rs.core.*;

@Path("notifications")
public class NotificationsResource {

 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public Response get() {
 return Response.ok("notification works").build();
 }
}

Once you build all three projects using mvn clean install, you will get your Skinny
WAR files generated in the target directory, which can be deployed on the Payara Micro
server.

Building and Deploying Microservices Chapter 4

[94]

Running our services
Download the Payara Micro server if you haven't already, from this link: https:/ ​/ ​www.
payara.​fish/​downloads.

The micro server will have the name payara-micro-xxx.jar, where xxx will be the
version number, which might be different when you download the file.

Here's how you can start Payara Micro with our services deployed locally. When doing so,
we need to ensure that the instances start on different ports, to avoid any port conflicts:

>java -jar payara-micro-xxx.jar --deploy ims-micro-users/target/ims-micro-
users.war --port 8081
>java -jar payara-micro-xxx.jar --deploy ims-micro-tasks/target/ims-micro-
tasks.war --port 8082
>java -jar payara-micro-xxx.jar --deploy ims-micro-notify/target/ims-micro-
notify.war --port 8083

This will start three instances of Payara Micro running on the specified ports. This makes
our applications available under these URLs:

http://localhost:8081/ims-micro-users/resources/users/

http://localhost:8082/ims-micro-tasks/resources/tasks/

http://localhost:8083/ims-micro-notify/resources/notifications/

Payar Micro can be started on a non-default port by using the --port parameter, as we did
earlier. This is useful when running multiple instances on the same machine.

Another option is to use the --autoBindHttp parameter, which will attempt to connect on
8080 as the default port, and if that port is unavailable, it will try to bind on the next port
up, repeating until it finds an available port.

Examples of starting Payra Micro:

java -jar payara-micro.jar
--port 8080 Starts the server on port 8080

java -jar payara-micro.jar
--autoBindHttp

Starts the server on 8080 if available, else tries to use the
next available port: 8081, 8082, and so on

java -jar payara-micro.jar
--port 8080
--autoBindHttp
--autoBindRange 3

Tries to start using 8080, if busy, tries 8081, 8082, 8083
respectively before giving up

https://www.payara.fish/downloads
https://www.payara.fish/downloads
https://www.payara.fish/downloads
https://www.payara.fish/downloads
https://www.payara.fish/downloads
https://www.payara.fish/downloads
https://www.payara.fish/downloads
https://www.payara.fish/downloads
https://www.payara.fish/downloads
https://www.payara.fish/downloads

Building and Deploying Microservices Chapter 4

[95]

Uber JAR option: Now, there's one more feature that Payara Micro provides. We can
generate an Uber JAR as well, which would be the Fat JAR approach that we learnt in the
Fat JAR section.

To package our ims-micro-users project as an Uber JAR, we can run the following
command:

java -jar payara-micro-xxx.jar --deploy ims-micro-users/target/ims-micro-
users.war --outputUberJar users.jar

This will generate the users.jar file in the directory where you run this command. The
size of this JAR will naturally be larger than our WAR file, since it will also bundle the
Payara Micro runtime in it. Here's how you can start the application using the generated
JAR:

java -jar users.jar

The server parameters that we used earlier can be passed to this runnable JAR file too.
Apart from the two choices we saw for running our microservice projects, there's a third
option as well. Payara Micro provides an API based approach, which can be used to
programmatically start the embedded server.

We will expand upon these three services as we progress further into the realm of cloud-
based Java EE.

MicroProfile
The MicroProfile project is an initiative to optimise Java EE for microservices. It was
launched around mid 2016, as a collaborative effort between Java application server
vendors and the enterprise Java community, with the intent of enabling fast innovation.
Despite being a relatively new specification, there's already a large number of members
participating in the project.

MicroProfile isn't limited to picking APIs from the Java EE specifications. It may also
include third party libraries and APIs, which the community may need for building
microservices. Since developers have great knowledge around the Java EE platform, they
can leverage their existing skills and API knowledge for building microservices. The
MicroProfile is a baseline standard, which defines APIs and their minimum version that all
vendors must support. This makes the code portable across multiple MicroProfile runtimes,
similar to standard Java EE portability.

Building and Deploying Microservices Chapter 4

[96]

The http:/​/​microprofile. ​io website has presentations and code samples that can help
developers to get started. A reference application called Conference Application has been
created for demonstrating MicroProfile capabilities, that can be run on the participating
vendor provided servers.

Java EE already has support
Java EE already ships with various specifications that are part of its standards. MicroProfile
is a specification, which groups together a subset of the existing APIs from Java EE and
adds new ones that are focused towards microservices. The idea of a profile isn't new; since
Java EE 6, there was a web profile defined which contained a subset of specifications that
made it lighter than a full Java EE system. MicroProfile can be considered to be even smaller
than the web profile. This is possible due to the modular design of Java EE.

The latest 1.1 MicroProfile specification contains support for:

JAX-RS 2.0: To publish RESTful web services, as the standard API for building
microservices
CDI 1.1: The programming model for building microservices
JSON-P 1.0: To enable working with the JSON format
Config 1.0: Allows for the modification of application configurations from
outside the application without needing the application to be repackaged

Payara is also part of the specification, and thus supports all APIs defined by the
specification of MicroProfile.

WildFly Swarm
WildFly, formerly called JBoss, is an application server, and WildFly Swarm is a project that
deconstructs the application server into modular parts. Swarm is aimed towards
microservice applications, allowing the putting together of just enough subsets of the Java
EE features that are required by the application.

An easy way to get started is to use the project generator page to select the features, or
fractions, as they are called in Swarm terminology, and generate a maven project.

http://microprofile.io
http://microprofile.io
http://microprofile.io
http://microprofile.io
http://microprofile.io
http://microprofile.io
http://microprofile.io

Building and Deploying Microservices Chapter 4

[97]

You can head over to the following link: http:/ ​/​wildfly- ​swarm. ​io/ ​generator/ ​:

The Wildfly Swarm link may change; it's best to use your favorite search
engine, such as Google, to look this up.

The page presents a form where you can specify the maven projects Group ID, Artifact ID,
and Dependencies. To create a microservice, let's use that page and fill in the following
values:

Group ID: org.jee8ng
Artifact ID: issue-manager-users
Dependencies: JAX-RS with JSON-P

Once done, you can click on the Generate Project button which will download the zipped
project file to your machine. If you unzip the file, you will be presented with the following
structure of the Maven project:

├── pom.xml
└── src

http://wildfly-swarm.io/generator/
http://wildfly-swarm.io/generator/
http://wildfly-swarm.io/generator/
http://wildfly-swarm.io/generator/
http://wildfly-swarm.io/generator/
http://wildfly-swarm.io/generator/
http://wildfly-swarm.io/generator/
http://wildfly-swarm.io/generator/
http://wildfly-swarm.io/generator/
http://wildfly-swarm.io/generator/
http://wildfly-swarm.io/generator/
http://wildfly-swarm.io/generator/

Building and Deploying Microservices Chapter 4

[98]

 └── main
 └── java
 └── org
 └── jee8ng
 └── issuemanagerusers
 └── rest
 └── HelloWorldEndpoint.java

The generated project is a simple Hello World project, containing one REST endpoint. Now,
let's create a JaxrsBootup class, which is required to activate JAXRS capabilities:

package org.jee8ng.issuemanagerusers.rest;

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("rest")
public class JaxrsBootup extends Application { }

Next, update the HelloWorldEndpoint.java file with the code given as follows, which
returns a JSON response when invoked. The code builds a JsonObject instance which
contains a name key and a string value associated with it:

package org.jee8ng.issuemanagerusers.rest;

import javax.json.Json;
import javax.json.JsonObject;
import javax.ws.rs.Path;
import javax.ws.rs.core.Response;
import javax.ws.rs.GET;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;

@Path("/hello")
public class HelloWorldEndpoint {

 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public Response doGet() {
 JsonObject json = Json.createObjectBuilder()
 .add("name", "hello microservice")
 .build();
 return Response.ok(json).build();
 }
}

Building and Deploying Microservices Chapter 4

[99]

Open the pom.xml and update the finalName tags value to match, as shown in the
following code:

<finalName>issue-manager-users</finalName>

Also update the dependencies section, with the following single dependency of
microprofile:

 <dependencies>
 <!-- WildFly Swarm Fractions -->
 <dependency>
 <groupId>org.wildfly.swarm</groupId>
 <artifactId>micropofile</artifactId>
 </dependency>
 </dependencies>

You will notice that there's just one dependency specified. We don't even a need Java EE
dependency, as the microprofile dependency already includes JAXRS, CDI, and JSON-P
transitively.

Apart from these, we have the wildfly-swarm-plugin declaration, which enables the
Uber JAR generation.

Open a terminal, and from the project root directory, run the following command, which
will build and start the application:

 mvn wildfly-swarm:run

Once the application starts up, you can access the URL via a browser, or use the following
curl command to fetch the response:

 curl http://localhost:8080/rest/hello

Response: {"name":"hello microservice"}

Stopping the application is as simple as pressing Ctrl + C on the running terminal window.

If you look within the target directory of the project, you can see that the wildfly-swarm-
plugin has generated two artifacts:

issue-manager-users.war 4 KB file containing just the application code.

issue-manager-users-swarm.jar
44 MB file. This is an Uber JAR which has
application and server runtime.

Building and Deploying Microservices Chapter 4

[100]

Since the Uber JAR has the server runtime within it, we can execute it like any other
standalone Java application JAR file:

 java -jar issue-manager-users-swarm.jar

That will start up the WildFly swarm instance with the minimal dependencies that have
been used. This allows our application footprint to be smaller, as we are packaging only a
subset of WildFly fractions/modules.

The Java heap memory for this application can be as low as 17-22 MB, which would have
been a dream stat when compared to running a full WildFly application server.

Spring Cloud
Spring framework needs no introduction for Java developers. Spring offers dependency
injection as its core feature and provides many supporting modules such as Web MVC,
persistence, AOP, and a huge number of integrations with popular projects.

Spring also integrates nicely with most IDEs and offers Spring Tool Suite (STS), which is
an eclipse-based IDE for spring application development. In case of NetBeans, there's a NB
Spring plugin, which enables support for spring-based development.

Spring Boot makes it very easy to get started with Spring-based projects. It sets up default
configurations, and thus requires minimal to zero setup. It provides starter maven
dependencies, which helps make the application production ready in a short amount of
time. Similar to the WildFly Swarms generator approach, to get started with Spring Boot,
you could use the link: https:/ ​/​start. ​spring. ​io/ ​.

If you prefer to use an IDE, then you could use STS or any other IDE with Spring support to
generate the project.

Here's how the New project wizard looks when using NetBeans, File | New Project |
Maven | Spring Boot Initialize Project (this is provided by the NB Spring plugin):

https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/

Building and Deploying Microservices Chapter 4

[101]

Having filled the fields as needed, you can select the Web dependency on the next step of
the wizard. Once you finish the wizard, a Maven project is created with the following
structure:

├── pom.xml
└── src
 └── main
 └── java
 │ └── org
 │ └── jee8ng
 │ └── issuemanager
 │ └── users
 │ └── MicroUsersApplication.java
 └── resources
 ├── application.properties
 ├── static
 └── templates

Building and Deploying Microservices Chapter 4

[102]

Here's the relevant snippet of MicroUsersApplication.java:

@SpringBootApplication
public class MicroUsersApplication {

 public static void main(String[] args) {
 SpringApplication.run(MicroUsersApplication.class, args);
 }
}

This allows the application to be started using its main method. The next step would be to
create the REST endpoint, the Spring way. Create a class called
HelloRestController.java with the following code:

@RestController
@RequestMapping("/hello")
public class HelloRestController {
 @RequestMapping("")
 public String get() {
 return "hello microservice";
 }
}

It's a fairly simple code, which will publish a REST endpoint at the /hello path. When
invoked, it should return the text hello microservice.

If you open the pom.xml, it will have these essential snippets:

<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.5.6.RELEASE</version>
</parent>
<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
</dependencies>

The spring-boot-starter-web dependency is used to add support for full stack web
development using the Tomcat web server and the Spring MVC framework.

Similar to wildfly-swarm-plugin, Spring provides a spring-boot-maven-plugin for
Spring Boot projects. This enables the creation of an Uber JAR that can then be executed as a
standalone application.

Building and Deploying Microservices Chapter 4

[103]

Open a terminal, and from the project root directory, run the following command, which
will build and start the application:

 mvn spring-boot:run

Once the application starts up, you can access the URL via a browser, or use the following
curl command to fetch the response:

 curl http://localhost:8080/hello

Response: hello microservice

Stopping the application is as simple as pressing Ctrl + C on the running terminal window.

After running mvn clean install to build the project, if you look within the target
directory of the project, you can see the Uber JAR, which is approximately 14 MB in size:

issue-manager-users-0.0.1-SNAPSHOT.jar.original
4 KB JAR containing
application code alone

issue-manager-users-0.0.1-SNAPSHOT.jar
14 MB executable runtime
JAR file

Since the Uber JAR has the Spring runtime that contains an embedded Tomcat within it, we
can execute it like any other standalone Java application:

java -jar issue-manager-users-0.0.1-SNAPSHOT.jar

This will start up the Tomcat instance and publish the REST endpoint. The Java Heap
Memory (JHM) for this application can be as low as 18-25 MB (similar to WildFly Swarm).

Docker containers
Environment-specific issues have always plagued developers and operations teams. A
developer may work locally on a Windows or Mac computer, while his code may end up
running on a Linux server. When promoting builds from one environment to another (test,
stage, production), yet again the environment changes and leads to more possibilities of
failure.

Building and Deploying Microservices Chapter 4

[104]

Consider a few simple cases of what can go wrong with changes in the environment:

The file path separator used in Windows is a back slash \, while Linux requires
the forward slash /
Java version mismatch issues between environments
Environment variables or configurations, such as datasource name or other
application server settings can differ
The OS library versions may not be the same and any dependencies on these can
break the code
The database drivers are usually part of the application server and the versions
may not be in sync across environments

To overcome the environment disparity or it works on my machine conversations, solutions
such as virtual machines (VM) and containers have come up to provide a consistent and
portable environment. Most Java architects and developers would have come across virtual
machines.

It's useful to compare a container to a virtual machine; this helps us to understand some of
the key differences. Virtualisation is used for creating multiple environments based on a
single physical hardware system.

Docker isn’t the same as traditional virtualisation, though there are similarities between the
two, since they share some characteristics. Both provide isolation for your application and
the ability to bundle the solution as a binary image. Docker provides an isolated
environment called a container, which allows for packaging and running an application
such as a microservice.

A VM houses not only the application, but an entire operating system with all its bells and
whistles. The way you build a VM is by creating an OS image which has everything in it
and can be stripped down later, based on your application needs. This is in contrast to how
you work with containers. A Docker container is built by putting together the minimum
software that is required for running the application.

Docker, unlike VM, is an application delivery solution which meets high scalability needs.
Another aspect that is different from VMs is that your application data doesn't live within a
container. Data is saved outside the container using defined volumes, which gets shared
between multiple instances of a container. A container can save data to its filesystem as
well; this will remain persisted until the container is deleted.

Building and Deploying Microservices Chapter 4

[105]

Deploying the actual container can be done on physical or virtual machines, on cloud, or on
premise. Docker doesn't enforce any constraint regarding the underlying infrastructure,
thus you can mix and match strategies as per your needs.

Technically, a VM requires a hypervisor which enables running multiple Guest OS's on top
of the host machine. Each virtual machine will have its own operating system, along with
all the libraries and applications within it. Docker, on the other hand, doesn't require the
additional hypervisor layer, as it directly utilizes the host machine's kernel, making it
lightweight and incredibly fast to start and stop. VMs are usually gigabytes in size, while
containers can be measured in a few megabytes.

The following table demonstrates the differences between the two:

Virtual Machine Container

Measured in GB Can be as small as 5MB

Requires a Hypervisor layer on top of OS No hypervisor required, shares Host Kernel

Stateful as data lives inside it Data lives outside container by using defined
volumes

Backup of VMs is a must to avoid data loss Container backups aren’t required since no
data is stored within the container

Slower than a container Faster than a virtual machine

Virtualises the hardware Virtualises the OS

Provides extreme isolation which can be
useful for preventing any breakout by
malicious applications

Operates at process level with isolation
around process

Deployment unit is a machine Deployment unit is an application

Building and Deploying Microservices Chapter 4

[106]

Here’s a pictorial view of how the VM and Docker containers differ:

The Docker world can be considered to have these 3 parts:

Docker Engine
Client
Registry

Here is the pictorial representation of the Docker world:

Building and Deploying Microservices Chapter 4

[107]

Docker Engine: This is the server process that manages the runtime environment
for containers. A host would have one daemon process running in the
background, which provides a remote API for clients to talk to over network
sockets.
Client: Docker provides a command line tool, which is used for working with
Docker. Client is used for passing the instructions to the Docker daemon which
does the actual work of hosting the container applications. The client/server
model allows the client to talk to any number of servers, where the server can be
on a remote host.
Registry: Used for the storage and transfer of container images. There are
applications which allow you to run private registries, or you can even make use
of cloud/public based ones. The installation process of Docker is well-
documented here: https:/ ​/ ​docs.​docker. ​com/ ​engine/ ​installation/ ​.

Once the installation is done, you can start playing with Docker. As a example, running the
following command will set a CentOS instance running locally and place you in its
terminal:

 docker run -t -i centos:latest

Working with distributed teams
With Docker, anyone can replicate an environment on their local machine. Docker provides
a consistent development environment for the entire team. Team members need not
struggle to set up their local machines with all the needed scripts and libraries needed to
start working on a project. They can simply pull a Docker image and start working in a few
seconds. Since Docker containers run as a process, most IDEs can be used to connect to the
running instance for any debugging of applications as needed, without having to SSH into
any remote system.

Docker features such as mounting Host machine volumes and exposing ports can be
leveraged for local development. A developer working on a service can focus on just that
and have other dependency services run as containers, without needing to know the details
of how to run them.

https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/

Building and Deploying Microservices Chapter 4

[108]

In our example of Issue Management System, a team working on the ims-micro-tasks
(tasks) microservice may need to run the ims-micro-users microservice as a dependency.
Here, the users microservice team can build an image of its service and upload it to either a
public or private registry. So, the tasks microservice team can simply download/pull the
image and run it as a container. Thus, teams can share their application with all the
required dependencies as Docker images.

This sharing becomes more convenient when the microservices are written using different
languages, or cater to different needs. As an example, a team working on the UI in Angular
need not know anything about the microservices written in Java. They can simply use
Docker to run the Java-based microservices as a dependency.

Building custom images
You can build Docker images by creating a file called Dockerfile, which is used by Docker.
This file can be considered to have executable instructions which are used to build the
image. When building an image, it helps to recall that Docker is not a VM, but more of a
process. So don't start bundling things that aren't really required for your application. Build
an image based on the essentials that are required. There are many Docker images that rely
on some OS, which influences the final image size as well.

A good base image selection can help to keep your image size in check. For example, an
alpine Linux image is 5 MB versus a CentOS image, which can be close to 200 MB. Many of
the official Docker images are moving to Alpine Linux as well. Consider using a JRE image
rather than using a JDK if your project really needs just the Java runtime. The image size not
only impacts the local storage but also the network latency while transferring it over the
network. Smaller images help speed up build times and deployments.

Here's a simple Dockerfile for our ims-micro-users project. Create this file in the projects
root directory next to the pom.xml.

The contents of ims-micro-users/Dockerfile are as follows:

FROM payara/micro:5-SNAPSHOT
COPY target/ims-micro-users.war $DEPLOY_DIR

The FROM instruction tells Docker to use a payara/micro image which is tagged as 5-
SNAPSHOT. This image is a public image hosted on Dockerhub that will be downloaded to
your local machine when you run it for the first time. Think of it as a complete environment
that is capable of running a Payara Micro server.

Building and Deploying Microservices Chapter 4

[109]

Next, run the following command, which will create an image for our application:

 docker build -t jee8ng/ims-micro-users .

This builds an image on your local machine ready to be run or distributed to other members
of your team. After you ran the preceding command, you should have a local image, which
can be looked up by using the docker image commands:

Now, running the generated Docker image can be done like any other container:

 docker run -p 8080:8080 jee8ng/ims-micro-users

This starts up the docker container and maps the local port 8080 to the container's port
8080.

Running multiple containers
It's possible to run multiple docker containers on any machine. Since they are lightweight
processes, it is possible to run more containers locally than would have been possible with a
virtual machine.

Just like we can run multiple application server instances on the same machine, we can run
multiple docker containers too.

For example:

 docker run -p 8080:8080 jee8ng/ims-micro-users
 docker run -p 8081:8080 jee8ng/ims-micro-users

Notice that we specified different local binding ports for the Host machine (8080 and
8081), but the docker containers use port 8080. This is possible because each docker
container has its own virtual Ethernet IP address.

Fat JAR or Skinny WAR with Docker
A Dockerfile can be used to describe the executable steps required to build an image, and
this can be done for both Far JAR or Skinny WAR. When we built our custom image for the
ims-micro-users project, we actually took our Skinny WAR and bundled it with the
Payara Micro server. This resulted in a Docker image that we were able to run locally.

Similarly, a Fat JAR or Uber JAR is just an executable and can be used to build a Docker
image; it has just enough runtime for it to run.

Building and Deploying Microservices Chapter 4

[110]

Since the Fat JAR already has the server bundled in it, all that's left as a requirement is to
provide an environment, which has an appropriate Java runtime.

Let's build an Uber JAR for ims-micro-tasks (this can be any Fat JAR project you may
have). To build an Uber JAR with Payara Micro, we can issue the following command:

java -jar payara-micro.jar --deploy ims-micro-tasks.war
--outputUberJar ims-micro-tasks.jar

If you check the size of the WAR and generated JAR, you will notice the Fat JAR is 66 MB as
it bundles the server along with it (JAR has the server and application code):

66M ims-micro-tasks.jar
22K ims-micro-tasks.war

The ims-micro-tasks.jar is an executable JAR, which we can use to create our Docker
image. This JAR would require a JRE to be run independently, so let's define a Dockerfile
for our Fat JAR, kept here ims-micro-tasks/Dockerfile.

FROM openjdk:8-jre-alpine

COPY target/ims-micro-*.jar /app.jar

CMD ["/usr/bin/java", "-jar", "/app.jar"]

Observe the preceding code:

The openjdk 8 acts as the base image, which is a JRE installed within Alpine
Linux. This is the minimal runtime that is required for our Fat JAR.
The COPY command will copy the specified file (JAR) and name it app.jar,
which is placed at the root of the filesystem of the container.
The CMD command is the line which executes the Java application.

To build the image and then run it, you can issue the following commands from the project
root directory:

 docker build -t jee8ng/ims-micro-tasks

Followed by:

 docker run -p 8080:8080 jee8ng/ims-micro-tasks

Building and Deploying Microservices Chapter 4

[111]

That should run the application and make it available at the following URL:
http://localhost:8080/ims-micro-tasks/resources/tasks/.

There are going to be multiple containers running in a cluster and managing these requires
specialized tools. A few popular container orchestration tools include:

Amazon EC2 Container services: An Amazon offering
Docker Swarm: Offered by Docker
Kubernetes: An open source tool that has its origins tied to Google
Mesos: An apache project for managing large scale clusters

The choice
Since we saw both ways of building a Docker image, which one should we pick? There are a
couple of factors to consider.

Building a Fat JAR image is done by bundling all the libraries into a single file. This has an
impact on the build time, which can be significant based on the number of libraries being
bundled.

Skinny WAR, which depends on Java EE, specifies its dependencies as provided (maven
scope). What this means is that the application doesn't contain the dependencies, but they
will be provided to it by the application server. This results in the Skinny WAR, which leads
to faster builds and deployments.

When creating a Docker image in Java EE, the base image contains an OS like CentOS or
any other, along with another layer of an application server like Payara. Since these layers
don't change, the image building process is faster, since it only deals with the rebuilding of
the small WAR file. This rebuilding of the application is what developers keep doing all
day, and getting the build times to be faster will help with developer productivity.

Sometimes, the difference may not be too much to worry about. But you need to consider
how many times you will be building the project. How many microservices are you
planning to deploy? Deployment time can become a bottleneck when the number of
deployments and frequency increases. Overall, the choice is usually influenced by
developer and team preference, but it's best to measure and decide.

Building and Deploying Microservices Chapter 4

[112]

Summary
While we have explored Payara Micro and MicroProfile, both of these have plenty to offer.
It's best to get your hands dirty by following the sample applications offered by both.
MicroProfile is relatively new and is gaining momentum in the Java community, so you can
expect more specifications to get added to this soon.

Docker and microservices are becoming a perfect match and there is a growing number of
tools being built around these. Fat JAR and Skinny WAR are both appealing choices and the
teams can pick the one that meets their needs.

Building Docker images and running containers on select machines is one thing, but taking
it to production with scalability needs is another matter.

5
Java EE Becomes JSON

Friendly
JSON enhancements in Java EE allow for working with JSON in a much simpler way than
before. The addition of JSON processing and binding has turned it into a first-class citizen
of Java EE. Use APIs to serialize and deserialize Java objects, to and from JSON documents.
JSON-B does for JSON, what JAXB did for XML. No longer do you have to rely upon third-
party libraries to work with JSON. Most features will work out of the box, with sensible
defaults.

We will cover the following topics in this chapter:

REST prefers JSON
JSON first-class citizen
No more third-party libraries
JSON processing:

JSON-P 1.1
JSON pointer and JSON patch
JSON merge patch
JSON collectors

JSON binding:
Similar to JAXB with default mappings
Standardize current solutions (Jackson, Gson, and so on)
Mapping between classes and JSON
Customisation APIs

A few tips in practice

Java EE Becomes JSON Friendly Chapter 5

[114]

REST prefers JSON
Web services are meant to be language-neutral which facilitate communication between
disparate systems. REST APIs combined with JSON as the data interchange format is
becoming the default choice for building web services. These APIs are published over the
HTTP protocol and get invoked by passing some headers and a message body. Unlike
SOAP which requires XML as its body, RESTful APIs don't enforce a constraint on the
format. This flexible approach allows for the message body types to be Text, XML, HTML,
binary data, or JSON, which is a text format easily readable by humans and machines. JSON
doesn't have complex data types, but instead defines only a handful of them that are
supported by almost every language. This makes JSON a very appealing choice as a data-
interchange format for web services.

According to http:/ ​/​json. ​org:

JavaScript Object Notation (JSON) is a lightweight data-interchange
format. It is easy for humans to read and write. It is easy for machines to
parse and generate. It is based on a subset of the JavaScript.

Here's the relevant bits of the REST endpoint, that defines a method that is mapped to the
HTTP GET request for /tasks. The annotation javax.ws.rs.Produces on
the get method marks it as a producer of JSON content type. This method returns a JSON
representation of a Ticket instance, when the request header Accept contains the value
application/json:

@Path("tasks")
public class TasksResource {
 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public Response get() {
 return Response.ok(
 new Ticket(1, "Fix slow loading")
).build();
 }
}

The Ticket class is shown as follows, which is used within the REST endpoint:

public class Ticket {
 private int id;
 private String name;
 // Assume the usual getters and setters here
}

http://json.org
http://json.org
http://json.org
http://json.org
http://json.org
http://json.org
http://json.org

Java EE Becomes JSON Friendly Chapter 5

[115]

To get a JSON representation of the resource, we can invoke it by passing the Accept
header with value application/json:

curl -X GET -H 'Accept: application/json'
http://localhost:8080/ims-micro-tasks/resources/tasks/

The preceding call would return a JSON document as its response, which is shown as
follows:

{
 "id":1,
 "name":"Fix slow loading"
}

Since, JSON is the default, we could have invoked the URL without passing any request
headers and still got back the JSON response.

To get an XML representation of the Ticket data, we would invoke it by passing the
Accept header with value application/xml. Here's an example using the curl
command:

curl -X GET -H 'Accept: application/xml'
http://localhost:8080/ims-micro-tasks/resources/tasks/

But this call would fail, as the TasksResource only supports producing JSON responses.
To enable XML support, we need to update Ticket class with JAXB annotations:

@XmlRootElement
@XmlAccessorType(XmlAccessType.FIELD)
public class Ticket {
... code omitted ...
}

Additionally, we need to update the @Produces annotation of the get() method to
support producing both XML and JSON:

@GET
@Produces({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})
public Response get() {
 return Response.ok(
 new Ticket(1, "Fix slow loading")
).build();
}

Java EE Becomes JSON Friendly Chapter 5

[116]

With these changes in place, now the earlier curl invocation for XML will work:

curl -X GET -H 'Accept: application/xml'
http://localhost:8080/ims-micro-tasks/resources/tasks/

The preceding call returns the XML representation of Ticket, shown as follows:

<ticket>;
 <id>1</id>
 <name>Fix slow loading</name>
</ticket>

With these updates, we can have the resource support both JSON as well as XML responses.
It's worth noting that for JSON's response we didn't require any annotation to be applied to
the Ticket class. This is facilitated by JSON-B, which is a new standard that handles object
to JSON, and JSON to object conversions for us.

XML, the once dominant format for data exchange is being replaced with JSON as the
preferred data interchange format in APIs. JSON is considered to be simpler and lighter,
compared to the verbosity of XMLs. This does not mean developers should banish XMLs
and crown JSON for all things. Developers must possess a wide range of tools to pick from
for a given task. Which tool to pick is dependent on the task at hand rather than wielding
one tool for every job. With the advent of JSON, XMLs may no longer be the best tool or
choice for data transfer between systems. But XML has a lot more to offer, with established
features such as namespaces, schema rules, and style sheets (XSLT) to transform its display,
which makes it a viable choice for cases other than data exchange.

JSON, a first-class citizen
The simplicity of JSON has led to it gaining great support in various languages. If you ever
considered XML to be simple, then you can think of JSON as being simpler. Have a look at
the JSON site (http:/ ​/​www. ​json. ​org/ ​), which has a list of programming languages that
support JSON.

http://www.json.org/
http://www.json.org/
http://www.json.org/
http://www.json.org/
http://www.json.org/
http://www.json.org/
http://www.json.org/
http://www.json.org/
http://www.json.org/
http://www.json.org/

Java EE Becomes JSON Friendly Chapter 5

[117]

Many established businesses with an online solution publish their product capabilities as
services. Companies such as Facebook, Twitter, Google, and Amazon all have web services
that make use of JSON as the data-interchange format. It's no surprise that the new breed of
architectural solutions such as microservices have chosen JSON as the preferred
communication format. Similar to many of Google's products, Gmail has APIs published for
accessing its features such as providing access to a user's inbox. The Amazon platform too
provides REST APIs, which can be used to work with EC2 instances and many of its other
offerings such as Simple DB or S3 storage. JSON has not only influenced the application
stack but also other parts such as databases, making it a first-class citizen across the entire
stack.

JSON in databases
JSON has made inroads not only over the web, but also in the database world. A relational
database system is considered structured, which stores its data against a defined schema.
On the other hand a NoSQL database is better equipped to store schema-less data.
Document based databases such as MongoDB make use of JSON to store the documents as
records, similar to rows of a table in the relational world. The support is not just for storage
and retrieval, but also for operating over the data. Most relational databases have
introduced JSON as a datatype for storage and allow for operating over this by means of
functions, with some additionally providing operators as well. It's possible for JSON
documents to be stored in a string based data type too, but this would not be an efficient
way to work with this specialized format. Databases such as MySQL, PostgreSQL, Oracle,
and others offer JSON support which can be leveraged by developers for their use case,
rather than any makeshift approach. This allows for a hybrid solution, where a SQL based
relational database can be used for storing non-structured information in the form of JSON
documents.

While PostgreSQL did have JSON support for a while, MySQL only started providing
native JSON support in version 5.7. Here's a short sample of how it looks:

//Using JSON type in MySQL 5.7
create table issue (json_doc JSON)

insert into issue values ('{
 "id":1,
 "name":"Fix slow loading",
 "priority":"High"
}');

insert into issue values ('{
 "id":2,

Java EE Becomes JSON Friendly Chapter 5

[118]

 "name":"Increase JVM memory",
 "priority":"Low"
}');

Now, with our issue table having two records, we can perform JSON-based operations
over this data. Here's how one could filter rows, based on the attribute/key of the stored
JSON document:

//Selecting a record
select json_doc from issue where JSON_EXTRACT(`json_doc` , '$.id') = 2;

We get back:
{"id": 2, "name": "Increase JVM memory", "priority": "Low"}

Apart from the preceding code, it's also possible to use the provided functions for further
processing over this data. As an example, we can use the following statements to update the
priority from Low to High, for the 2nd entry having the JSON id value of 2:

update issue set json_doc =
JSON_REPLACE(
 `json_doc` ,
 '$.priority' ,
 'High'
)
where JSON_EXTRACT(`json_doc` , '$.id') = 2;

For more information on these kind of capabilities, it's best to reference your preferred
databases documentation.

No more third-party libraries
XMLs are still widely used in many applications and have had great support in the Java
language, but the same couldn't be said for JSON until recent times. Java didn't provide a
convenient and portable way to work with JSON earlier, which resulted in developers
having to rely upon third-party libraries for its support. Some of these libraries include:

Jackson

Gson

json-simple

Java EE Becomes JSON Friendly Chapter 5

[119]

Developers using such libraries would have to learn specifics of each based on which one is
being used in the project. The learning from one implementation can't be utilized fully for
another implementation, since these are not based on a standard. This isn't necessarily bad;
it's just not a part of the standard EE solution stack. Do you need a portable solution today?
Well, maybe not. But will you need one in the future? That is an answer one cannot
honestly predict. For Java EE, the much awaited JSON support has finally arrived as part of
its standard. Specifications such as JSON-P and JSON-B makes Java a lot friendlier to JSON
than it used to be before.

JSON-P offers mainly two approaches to work with the documents, one being an object
model similar and the other a streaming solution for processing big JSON data. The
streaming solution can be considered a low-level approach, which offers a memory efficient
alternative to process data using tokens. JSON-P is also aligned with JSON-B and JAXRS.
JSON-B is the binding layer for the conversion of a Java class to/from JSON.

JSON processing
JSON-P provides the ability for parsing, generating, querying, and transforming JSON
documents in Java. The API allows producing and consuming JSON text in a streaming
manner as well as a Java object model. Java EE 7 introduced the JSON-P specification for
working with JSON documents. Java EE 8 is taking this a step further to keep it updated
with the newer RFC standards by updating the version to JSON-P 1.1. With this, we have
new features, such as:

JSON Pointer: RFC 6901
JSON Patch: RFC 6902
JSON Merge Patch: RFC 7386/7396

To work with JSON, you can use any JEE 8 compliant server which provides the json-api
1.1, a corresponding maven dependency specific to JSON API, shown as follows:

 javax.json
 javax.json-api
 <version>1.1</version>
 <scope>provided</scope>
</dependency>

Java EE Becomes JSON Friendly Chapter 5

[120]

With the API dependency set, you can write JSON processing code in either using the object
model or the streaming fashion, shown as follows:

Object Model approach: JSON Object model API for simpler ways of working
with JSON documents in-memory:

 JsonObject json = Json.createObjectBuilder()
 .add("name", "Raise alert on failure")
 .add("id", Long.valueOf(2003))
 .build();
 String result = json.toString();

Streaming approach: JSON Streaming API which parses a document and emits
events without loading the entire document in memory. This is useful for large
documents which can't be processed in-memory:

 JsonParser parser = Json.createParser
 (Main.class.getResourceAsStream("/sample.json"));

 while (parser.hasNext()) {
 JsonParser.Event e = parser.next();
 System.out.print(e.name());
 switch (e) {
 case KEY_NAME:
 System.out.print(" - " + parser.getString());
 break;
 case VALUE_STRING:
 System.out.print(" - " + parser.getString());
 break;
 case VALUE_NUMBER:
 System.out.print(" - " + parser.getString());
 }
 System.out.println();
 }

JSON-P 1.1
JSON processing API 1.1 is an updated version which introduces some useful
enhancements to the earlier JSON-P 1.0 version. The API changes include few additions to
the Json class in the form of static methods, such as:

public static JsonString createValue(String value)

public static JsonNumber createValue(int value)

Java EE Becomes JSON Friendly Chapter 5

[121]

And similar methods for long, double, BigDecimal, and BigInteger, which also return
a JsonNumber.

Additionally, we now have methods for creation of a JSON Pointer, Patch, or Merge Patch
using the following static methods:

public static JsonPointer createPointer(String jsonPointer)

public static JsonPatch createPatch(JsonArray array)

public static JsonMergePatch createMergePatch(JsonValue patch)

The API makes use of builder pattern to provide for a convenient and easy way to build a
JsonObject or JsonArray. It is also possible to start building with an initial value based
on an existing JsonObject or JsonArray. When instantiating a builder with the initial
value, there are some editing methods provided for updating the underlying object. Once
the builders build method is invoked, it returns an immutable JsonObject or JsonArray
based on the builder type used.

Here's a sample usage:

JsonArray array =
Json.createArrayBuilder().add("java").add("ruby").build();

JsonArray transformedArray = Json.createArrayBuilder(array)
 .add(0,"python") //puts in first, shifting others
 .remove(2) // removes the 3rd element
 .build();
//Results in transformedArray having two values
[python, java]

Both JsonReader and JsonWriter have got new methods. These are backward compatible
and doesn't break the API, which works because of the default method introduced in Java 8:

JsonReader: public default JsonValue readValue()
JsonWriter: public default void write(JsonValue jv)

We also have API updates that are used for low level operations on the JsonPatch class.

Java EE Becomes JSON Friendly Chapter 5

[122]

JSON Pointer and JSON Patch
JSON Pointer is a string syntax which acts as the pointer to a target location within a JSON
document. The format is defined by RFC 6901 and contains reference tokens prefixed with a
(/) character. The path used is an absolute path, so you can't use relative references.

Consider the following example issues.json document which holds a JSON array of
issue objects:

[
 {
 "id": 1122,
 "name": "Fix slow loading"
 },
 {
 "id": 2003,
 "name": "Raise alert on failure"
 },
 {
 "id": 1903,
 "name": "Reponsive home page"
 }
]

The following table shows the pointer value used and the target value at the specified
location that is referenced:

/1 {"id":2003,"name":"Raise alert on failure"}

/1/id 2003

/0/name Fix slow loading

Consider the following code:

JsonArray issuesJson = ... // Assume the example JSON document is loaded
here

JsonPointer pointer = Json.createPointer("/1");
JsonValue value = pointer.getValue(issuesJson);

System.out.println(value.toString());
pointer = Json.createPointer("/0/name");
value = pointer.getValue(issuesJson);

System.out.println(value.toString());

Java EE Becomes JSON Friendly Chapter 5

[123]

// The output from the above code
{"id":2003,"name":"Raise alert on failure"}
"Fix slow loading"

JSON Patch is a standard described in RFC 6902 by Internet Engineering Task Force
(IETF). This is a format for describing partial updates to an existing JSON document. The
idea is to send a JSON document which describes the patch operation to be performed on
the resource. These operations that need to be performed can be specified within the
document, which can have one of these values: add, remove, replace, move, copy, or
test.

If any operation fails, then the whole patch fails. Here, we continue to reference our
example JSON document, which has an array of JSON values (issues.json). So, going
back to our issues.json document as defined previously, lets assume we wanted to
update the name of the second object (id = 2003) and remove the third object (id =
1903). For doing this, we need to submit a JSON patch which looks like the following:

[{"op":"remove","path":"/2"},{"op":"replace","path":"/1/name","value":"Fix
alert not firing"}]

It's important to note that we are not sending just the key-value pair of changes, but instead
we are sending a set of changes which describe how to apply these to the resource.

In the patch document, the path takes a JSON Pointer as its value, which references the
location within the target document on which the operation will be applied. When
programming, you need not create such patches by hand, as Java has a convenient way to
build a patch in the form of the JsonPatch class, whose instance is obtained by using the
Json.createPatchBuilder() static method. The JsonPatch class has an apply method
which is used to perform the operation on the target entity passed as an argument to it.

Here's the complete code to create a JsonPatch and apply it to our example JSON
document:

JsonArray issuesJson = ... // Assume the example JSON document is loaded
here

JsonPatch patch = Json.createPatchBuilder()
 .remove("/2")
 .replace("/1/name", "Fix alert not firing")
 .build();

JsonArray result = patch.apply(issuesJson);

//The resulting output with changes is stored in the variable result
[{"id":1122,"name":"Fix slow loading"},{"id":2003,"name":"Fix alert not

Java EE Becomes JSON Friendly Chapter 5

[124]

firing"}]

RESTful APIs use HTTP methods as verbs to describe the action on a resource. It's common
to use the POST, GET, UPDATE, DELETE (CRUD) methods to work with a resource. The RFC
5789 adds a new HTTP method, PATCH, which is meant to modify an existing HTTP
resource. An excerpt taken from the document states the following:

"The existing HTTP PUT method is meant to allow a complete replacement of a document
and it does not have any notion of partial updates."

JSON Patch offers a standardized way of a client who may not always be aware of the latest
state of the resource that it's updating, so sending the entire JSON (state) for an update may
not be a reliable approach. Consider a Tickets resource, where multiple clients may make
modifications and send the updates over the PUT method. Each client would need to first
perform a GET of the Tickets resource that it's modifying and then send the entire
document, even though only a single field may have changed. This leads to an unnecessary
exchange of large documents along with possible race conditions. Here, the JSON Patch
combined with the PATCH method can be used to send only the changed data, along with
the operation describing the change.

To make use of JSON Patch within REST APIs in a standard way, we should use it along
with the PATCH method (@PATCH in JAXRS 2.1). The media type (Content-Type head) for
this would be application/json-patch+json.

A REST endpoint method signature supporting the patch operation is shown as follows:

 @PATCH
 @Path("{id}")
 @Consumes(MediaType.APPLICATION_JSON_PATCH_JSON)
 public Response patch(@PathParam("id") Long id,
 JsonArray patchArray) {
 JsonPatch patch = Json.createPatch(patchArray);

 JsonObject jsonObject = ... // Code to load the Json entity
 JsonObject updatedJson = patch.apply(jsonObject);
 return Response.ok(updatedJson).build();
 }

Java EE Becomes JSON Friendly Chapter 5

[125]

Here, we have made use of the @PATCH annotation along with the Json.createPatch()
method usage, which takes a JsonArray. If we wanted to update the name of the stored
entity, we could do so by using the following curl command:

curl -X PATCH -H 'Content-Type: application/json-patch+json' -d @patch.json
http://localhost:8080/ims-micro-tasks/resources/tasks/2003

{"id":"2003","name":"The new name goes here"}

Here, -X is used to specify the HTTP Method and -d @patch.json points to a file
containing the actual JSON patch, which looks like the following:

[
 { "op": "replace", "path": "/name",
 "value": "The new name goes here" }
]

JSON merge patch
This is a standard described in RFC 7386/7396 by IETF. It can be considered to serve a
similar purpose to JSON Patch, but takes a different approach. The syntax of the patch
document is close to the target that is to be updated. It too uses the HTTP PATCH method for
submitting the patch document with the content type as application/json-patch+json.
When doing an update using the HTTP PUT method, we would send across the entire
document, but with the HTTP PATCH we send only the partial change of the entity. A null
value is used to denote a delete operation.

Null has a special meaning, as it represents a delete operation. This can be
a limitation for use cases where you may want to set a key's value as null.

Document Patch Result
{
 "id": 1122,
 "name": "Fix slow loading",
 "priority": "Low"
 }

{"priority": null}

{
 "id": 1122,
 "name": "Fix slow
loading"
 }

Java EE Becomes JSON Friendly Chapter 5

[126]

To implement the preceding tabular sample, we need to create a JsonObject to represent
the document. Next, we will create the actual JsonMergePatch instance which will hold
the patch that needs to be applied. Once a patch JSON is created, the same can be passed to
Json.createMergePatch, which builds the JsonMergePatch instance. This instance can
then be utilized for applying the patch on a target document.

Here's the code showing that:

//Load JSON from a file called 'issues.json' which has our target JSON
JsonReader reader =
Json.createReader(Main.class.getResourceAsStream("/issues.json"));
JsonObject json = reader.readObject();

//Create the Patch
JsonObject removeName = Json.createObjectBuilder()
 .add("name", JsonValue.NULL)
 .build();

JsonMergePatch mergePatch = Json.createMergePatch(removeName);
JsonValue result = mergePatch.apply(json);

System.out.println("result: " + result);

//Output
result: {"id":1122,"priority":"Low"}

JSON Collectors
When working the JSON in Java 8, you would typically want to use them with streams
sooner or later. JsonObject is a Map, while JsonArray is a List, which makes it possible
to use them with lambda expressions and streams. While there are collectors for List and
Map, we also would require similar collectors for JsonObject and JsonArray.

The class JsonCollectors provides static methods which can be used to return a
Collector. These methods come in handy when working with streams, as it can be passed to
the streams collect operation to transform the stream result into a JsonArray or
JsonObject.

toJsonArray: Collect the stream result into JsonArray
toJsonObject: Collect the stream result into JsonObject

Java EE Becomes JSON Friendly Chapter 5

[127]

There's also a groupingBy method that provides us with functionality similar to an SQL
group by clause. This can be used to group JsonObjects by passing a function classifier to
the method as an argument.

Consider this sample JSON:

[
 {
 "id": 1122,
 "name": "Fix slow loading",
 "priority": "Low"
 },
 {
 "id": 1123,
 "name": "Implement feature X",
 "priority": "High"
 }
]

Now, we can write the following code to find all JSONObjects which have the priority set
as High and collect them into an JsonArray:

JsonArray jsonarray = ...//This represents the above JSON
JsonArray result = jsonarray.getValuesAs(JsonObject.class)
 .stream()
 .filter(j ->; "High".equals(j.getString("priority")))
 .collect(JsonCollectors.toJsonArray());

Here's the groupingBy in action, which groups the JsonObject by priority:

JsonArray jsonarray = ...//Assume same as above JSON
JsonObject result = jsonarray.getValuesAs(JsonObject.class)
 .stream()
 .collect(JsonCollectors.groupingBy(
 x -> ((JsonObject)x).getJsonString("priority")
 .getString()
));
System.out.println("result: " + result);

//Output
result: {"High":[{"id":1123,"name":"Implement feature
X","priority":"High"}],"Low":[{"id":1122,"name":"Fix slow
loading","priority":"Low"}]}

Due to the Streams support, it's also possible to make use of operations that can run
concurrently when processing big JSON data.

Java EE Becomes JSON Friendly Chapter 5

[128]

JSON binding
With JSON binding, it can be thought of as similar to JAXB. While we do have JSON-P, it's a
specification that can be considered for parsing and writing JSON files. But when you need
JSON to be mapped to Java objects, JSON-P falls short and thus we have JSON-B to fill this
gap. The JSON-B, being a new addition to the Java EE 8 family of specifications, has the
version 1.0. Yasson project is the reference implementation for JSON-B. For maven projects,
the following dependency can be specified, which relies upon the server for providing the
implementation:

<dependency>
 <groupId>javax.json.bind</groupId>
 <artifactId>javax.json.bind-api</artifactId>
 <version>1.0</version>
 <scope>provided</scope>
</dependency>

The main class to get started with JSON-B is the Jsonb class. To obtain an instance of this
class, one would call the create method of JsonbBuilder, shown as follows:

Jsonb jsonb = JsonbBuilder.create();

The Jsonb class has two methods, which are overloaded:

toJson: Writes the Java object tree to a string as a JSON document
fromJson: Reads the JSON from a InputStream or Reader or String, and
returns a Java object

Both of these methods also support working with collections. Consider the following Issue
class, which we will be using for our examples to follow:

public class Issue {

 private Long id;
 private String name;
 private String priority;
 //... Getters and Setters
}

Java EE Becomes JSON Friendly Chapter 5

[129]

Similar to JAXB with default mappings
This makes it possible to convert a Java class to a JSON representation and vice versa. There
are defaults which get applied by a mapping algorithm when performing the conversion.
These defaults can be customized by means of certain Java annotations on the class. JSON-B
also supports mapping of collections which can be raw types or generic types.

The default mapping requires no configuration and no annotations. Here's a sample usage
of how to obtain an Issue instance from a JSON string:

Jsonb jsonb = JsonbBuilder.create();
Issue newIssue = jsonb.fromJson(
 "{\"id\":1123,\"name\":\"Implement feature X\",\"priority\":\"High\"}",
 Issue.class
);

Similarly, to convert the object model Issue to a JSON string representation, one would use
the toJson method:

Issue issue= new Issue();
issue.setId(200L);
issue.setName("Test");
Jsonb jsonb = JsonbBuilder.create();
String jsonString = jsonb.toJson(issue); // JSON String

There are overloaded version of toJson, which can be used to write the JSON string to an
output stream. As an example, we could write the following liner to store the generated
JSON text in a file:

JsonbBuilder.create().toJson(issue, new FileWriter("issue.json"));

The default mapping handles the basic types such as String, Character, Byte, Short, Integer,
Long, Float, Double, Boolean, and additionally other specific types like BigInteger,
BigDecimal, and so on. With default mapping, the static and transient fields are skipped,
along with fields which have null values.

Java EE Becomes JSON Friendly Chapter 5

[130]

Standardizes current solutions (Jackson, Gson,
and so on)
Both Gson and Jackson are open source projects and widely used in Java for working with
JSON. These libraries not only provide basic mapping support, but also offer the ability to
map objects without modifying their code. While these solutions are great to pick, there are
discrepancies in the APIs and behavior. As an example, both of these handle Null values
differently:

Gson: Does NOT serialize null values by default
Jackson: Does serialize null values by default

For ignoring of properties, both frameworks provide different annotations, making it
difficult to swap one implementation for another if required.

JSON-B is an API to marshal and unmarshal Java objects to and from JSON. The API draws
upon the best practices of existing libraries such as Gson, Jackson, and so on. Thus, it's not
a competitor to any of these, but instead defines the common interface that each of the
providers can adapt. Features such as ignoring properties, customization through adapters,
and more are already established in some of these frameworks and JSON-B defines a
standard way to utilize them all.

Mapping between classes and JSON
The default mapping rules would map the Java class's property name to a similarly named
JSON property name. When the mapped name during serialization needs to be different
than the one given to the Java property name, one can make use of the @JsonbProperty
annotation.

The annotation @JsonbProperty can be placed on:

Field: This will affect the custom change during both serialization and
deserialization
Getter only: This will affect serialization, but won't have any affect on
deserialization
Setter only: This will affect deserialization, but won't have any affect on
serialization

Java EE Becomes JSON Friendly Chapter 5

[131]

We could place the @JsonbProperty annotation on the name field of the Issue class,
which would look like the following:

@JsonbProperty("issue-label")
private String name;

Resulting in the following JSON object:

{
 "id": 200,
 "issue-label": "Test",
 "priority": "High"
}

There are times when use cases require ignoring of certain properties and this can be
achieved by using the @JsonbTransient annotation. As mentioned in the json-b user
guide, this annotations placement dictates changes to the processing behavior:

Field: Property is ignored during serialization and deserialization
Getter only: Property is ignored during serialization only
Setter only: Property is ignored during deserialization only

Customisation APIs
JSON-B supports customization of the mapping rules by using compile time options such as
annotations and runtime customization by using the JsonbConfig class. The JsonbConfig
class can be configured by using its withXXX methods, where XXX will be replaced with a
specific version of the method. Here's how one can format the JSON output when using
Jsonb:

JsonbConfig config = new JsonbConfig().withFormatting(true);
Jsonb jsonb = JsonbBuilder.create(config);

Calling toJson on this jsonb instance would result in a formatted output. Apart from
formatting, the customization allows for changes in the naming strategy for property names
and change in the ordering of serialized properties.

Java EE Becomes JSON Friendly Chapter 5

[132]

Few tips in practice
Let's have a look at the following tips:

Dealing with null: If you use the following code and try to obtain the JSON
string, then you might be surprised by the output:

 Issue issue= new Issue();
 issue.setId(200L);
 issue.setName("Test");
 issue.setPriority(null);
 Jsonb jsonb = JsonbBuilder.create();
 String jsonString = jsonb.toJson(issue); // JSON String

Here, the output would ignore the priority field as it's having a null value. This
is the default behavior, but it can be changed using multiple ways. A convenient
option is to change it globally by using the JsonbConfig class:

 JsonbConfig nillableConfig = new JsonbConfig()
 .withNullValues(true);

Other options include using the @JsonbNillable annotation on the class or
using @JsonbProperty(nillable=true).

Use Adapters for more control: When annotations aren't an option, such as for
cases where you may not be in control of the code of the class which is being
serialized, then you can make use of Adapters. Using Adapters, it's possible to
get better control over the serialize/deserialize process. What this requires is to
create a class which implements JsonbAdapter and overrides its two methods:
adaptToJson and adaptFromJson.
JsonObject in JAXRS: When working with JAXRS, consider using the
JsonObject itself in the domain model for your input and output needs, which
can lead to eradication of the DTO requirement. JsonObject can itself serve as a
DTO or value object.

Java EE Becomes JSON Friendly Chapter 5

[133]

Summary
We saw how JSON-P and JSON-B have turned JSON into a first-class citizen for Java EE 8,
which is a welcome addition for developers working on REST APIs. The JSON Processing is
a flexible API, as it offers an object model for working with in-memory JSON data and a
streaming option for processing large JSON data. The JSON APIs are RFC compliant and
have been updated according to the standards of JSON Patch, Merge, and Pointer. A JSON
Pointer can be used to lookup a value within the target document, while a Patch or Merge is
used along with HTTP PATCH for partial updates.

JSON-B does for JSON what JAXB did for XML. It offers a standard way of mapping Java
classes to/from JSON. If you don't like the default JSON Binding mapping rules, which are
useful for most use cases, you can still use the customisations available for both compile
time and runtime.

While these APIs can be used on their own, the JAXRS alignment helps using JSON
processing within the REST APIs as well. When delivering REST standard APIs, these offer
the much needed flexibility to build a real world application, as we will see in the next few
chapters.

6
Power Your APIs with JAXRS

and CDI
Web service APIs are no longer kept hidden in the dark alleys of the internet. They have
started surfacing more than ever, as businesses are using them a lot more than a decade
ago. These businesses, building software solutions, need ways to broaden their reach in a
simple yet effective manner. A company offering ticketing, e-commerce, insurance, or any
other online solution, would want to make it easy for potential customers to reach them.
The need to make the solution available over multiple channels such as desktop or mobile
has led to the growth of web services. Web services can also be used by potential business
partners with their own online presence.

Consider a simple example in which a company, AbcDroid, sells flight tickets and another
company, EzTrips, sells hotel tickets. A customer who books a flight using the AbcDroid
portal can be offered a hotel at their destination city. The hotel booking is offered by
EzTrips as a web service; this makes it possible for AbcDroid to integrate this
capability. The easier it becomes to integrate a business service, the greater its chances of
higher adoption.

In this chapter, we will cover the following topics:

Resources:
URI templates
Matching requests to resource methods

Providers:
Entity providers
Exception mapping

Power Your APIs with JAXRS and CDI Chapter 6

[135]

Client API:
Targets
Reactive clients

Filters and interceptors
Validation
Asynchronous processing
Server-Sent Events
WebSockets
Context
Swagger:

API
Maven plugin

Resources
JAXRS allows developers to define REST APIs, which play a fundamental role in building
microservices. JAXRS 2.1 is also one of the most important specifications in Java EE 8. But
before we see all that in action, let's understand how a REST resource is represented over
the web. A resource typically represents an entity and allows for operations on it (think
domain entities such as User, Address, City, and so on). Typically, an entity will allow for
create, read, update, and delete operations. In the RESTful world, a web resource is
identified by its URI, and the actions to be performed are defined by HTTP methods such as
POST, GET, UPDATE, and DELETE.

Here's an example of the /users URI, which is used to represent a web resource that is
invoked over the HTTP protocol. The HTTP method used in the invocation signifies the
operation to perform. Here are some samples of URI and HTTP method invocations in the
following URI request table:

URI Http Method Request Body Description

/users POST {"name": "John"} Create a new user

/users GET Get all users

/users/100 GET Get user identified by a value of 100

/users/100 PUT
{"name":
"Johnson"}

Update the user identified by a value
of 100 with given details

Power Your APIs with JAXRS and CDI Chapter 6

[136]

/users/101 DELETE
Remove user identified by a value of
101

The URI is the first aspect that a caller comes across for a REST resource and acts as the
selector of the target resource. The specification itself doesn't define stringent rules
concerning the URI format. But there are some basic principles that can be applied when
defining a resource URI to keep it simple and intuitive:

Keep URI naming convention consistent rather than mixed, so it's intuitive for
others to make use of
Use plural nouns for the resource URI such as users, tasks, projects, and so
on
To work with a specific item within the collection, use subresources such
as /tasks/12, where 12 is the identifier for the item within the collection of tasks
Attributes of the resource can be part of the query string, such as
/tasks?status=open&priority=high

Use HTTP status codes as part of the response to signal the invocation status
Use JSON as the default format for the API request and response
Use some form of version identifier for resources either in the request header or
as part of the URI

In JAXRS, there are two kinds of resources that can be defined by the developer:

A root resource is created by applying the @Path annotation on a Java class
A subresource is a public method of the resource class which has @Path applied
to it

To enable JAXRS features, we first define a class which will be used to define the base URI
for all resources. This is done by creating a class which
extends javax.ws.rs.core.Application and has an annotation of @ApplicationPath
with the base URI value:

@ApplicationPath("resources")
public class JaxrsActivator extends Application { }

Power Your APIs with JAXRS and CDI Chapter 6

[137]

Then a resource class that defines operations such as read all entities, read single entity, add
entity, update entity, delete entity, for the resource. The following code only highlights the
relevant parts of a REST resource, which maps to the URI request table shown earlier:

@Path("users")
public class UsersResource {
 @Inject private UsersService service;

 @GET public Response getAll()...
 @GET @Path("{id}")
 public Response get(@PathParam("id") Long id)...
 @POST
 public Response add(User newUser,
 @Context UriInfo uriInfo)...
 @PUT @Path("{id}")
 public Response update(@PathParam("id") Long id,
 User existingUser)...

 @DELETE @Path("{id}")
 public Response delete(@PathParam("id") Long id)...
}

The requests will be handled by these resource methods. A new instance of a resource class
will be created for each request made. As for the order of execution, first the public
constructor will get executed followed by any dependency injections, and finally the
resource method. If there are fields that have any of the following annotations, then the
value is injected before the resource method is invoked:

@QueryParam: Extracts the value of a URI query parameter
@MatrixParam: Extracts the value of a URI matrix parameter
@PathParam: Extracts the value of a URI template parameter
@CookieParam: Extracts the value of a cookie
@HeaderParam: Extracts the value of a header

You could make use of these for injecting parameters, and if you need defaults, then
combine this with the @DefaultValue annotation. Here's a field declaration within a
resource class, which injects the API version for the requested resource from the X-
version request header:

@DefaultValue("v1") @HeaderParam("X-version")
private String apiVersion;

Power Your APIs with JAXRS and CDI Chapter 6

[138]

The value of the apiVersion field will be injected by extracting the X-version request
header; if there is no such header then the default value of v1 will be used.

The UsersResource class has resource methods returning
the javax.ws.rs.core.Response type. It's also possible to return other types. Here are
return types that you can make use of:

void: This results in an empty response body with the HTTP status code 204,
meant for denoting no content.
Response: This class allows for setting the entity which will be used as the
response body along with the defined status. The default status, if nothing is
specified explicitly, will be set to 200. Use this class for more control over the
response body and its metadata.
GenericEntity: This class allows for wrapping an entity as the response body.
When an entity is wrapped, this results in a 200 response code or else a 204 for
no entity/content.

URI templates
A resource class URI is defined by the deployed application context followed by the value
of @ApplicationPath and @Path annotations used. So, our application, with the context
as ims-micro-users and the UsersResource class ,would result in the following URI:

/ims-micro-users/resources/users

The subresources, which are methods annotated with @Path annotations, are identified by a
combination of the @Path value of the resource class followed by the method's own @Path
annotation value. So, in the example used, we can invoke the get subresource method
present on the UsersResource class by using the following URI:

/ims-micro-users/resources/users/10

The @Path ("{id}") annotation on the public get method exposes the subresource as
/users/xxx, where xxx is replaced by the value 10, based on the URI invocation. The
method parameter makes use of another annotation called @PathParam, which is used to
inject the passed value of 10 into the id method parameter.

Power Your APIs with JAXRS and CDI Chapter 6

[139]

Matching requests to resource methods
When a request is made to the resource, URI normalization is done as a first step. This is
syntax-based normalization, which typically includes case normalization and percent
encoding normalization, all of which is covered in the RFC Standard 3986. This resultant
URI is also available from the UriInfo object.

Request matching is done in stages by implementation providers, using an algorithm
suggested by the JAXRS specification. While vendors may tweak the internals of the
algorithm, the basic gist is as follows:

Normalize the request URI as per the IETF RFC 3986 standard, which simply
does the case percent encoding that we often see in browser-based requests
Identify the root resource classes; these are all classes with the @Path value
matching the request
Identify the potential resource methods from the obtained list of resources and,
finally, select the one that matches based on a few tasks:

Checking the HTTP method supported, such as GET or POST; if
none is found then a 404 response is returned
Checking for the media type of the input body; if none is found
then a 415 response is returned
Checking for the media type of the output data format; if no
suitable match is found then a 406 response is returned

The preceding is not a complete set of rules, but a short reference to keep in mind when
mapping URIs to resource methods. These may also be useful when dealing with errors,
such as a 415 or when a resource may return a 404 error.

Http request Resource method mapped

GET /users @GET public Response getAll()

GET /users/10
@GET @Path("{id}")
public Response get(@PathParam("id") Long id)

POST /users
{"name": "sam"}

@POST
public Response add(User u, @Context UriInfo uri)

PUT /users/10
{"name": "samson"}

@PUT @Path("{id}")
public Response update(@PathParam("id") Long id,
User existing)

Power Your APIs with JAXRS and CDI Chapter 6

[140]

DELETE /users/10
@DELETE @Path("{id}")
public Response delete(@PathParam("id") Long id)

These are the general rules that should help when mapping the request to corresponding
resource classes and methods. You can see how JAXRS makes it fairly simple to start
building REST APIs with just a few lines of code.

Providers
When you start publishing services, you typically come across scenarios which require
some additional layers of processing. You might need some special processing for mapping
representations of entities and their Java types. Such cases are handled by supplying an
entity provider to the JAXRS runtime. A provider class would implement JAXRS-specific
interfaces and additionally use the @Provider annotation, which is used at runtime for
auto-discovery of all providers. Apart from entity providers, there's context providers and
exception mapping providers.

Entity providers
Entity providers can be used to do the marshaling and un-marshaling of Java objects to and
from another representation. There are two options:

MessageBodyReader: This class is used to provide a mapping service between
an incoming request entity message body to the Java method parameter. Based
on the media type used and the Java type of the method parameter, an
appropriate MessageBodyReader provider is chosen at runtime.
The MessageBodyReader.isReadable method is used to check if the provider
supports the Java type, and if it returns true, then
the MessageBodyReader.readFrom method is invoked. In the case of failure, no
entity and a NotSupportedException of the 415 status code is generated.

Power Your APIs with JAXRS and CDI Chapter 6

[141]

MessageBodyWriter: This class is used to provide mapping services for
mapping the return value to the message entity body. When using the Response
return value, the wrapped entity of the Response is considered for applying this
provider. Based on the media type of the response and the Java type returned, an
appropriate MessageBodyWriter provider is chosen at runtime. The
MessageBodyWriter.isWriteable method is used to check if the provider
supports the Java type, and if it returns true, then the
MessageBodyWriter.writeTo method is invoked. In the case of failure, no
entity and an InternalServerErrorException of the 500 status code is
generated.

Exception mapping
Exceptions in the resource method or provider code can be handled by registering a
provider to handle checked or runtime exceptions. This application-supplied provider
implements the ExceptionMapper<T> interface. When multiple providers are used, then
the runtime will choose the provider whose generic type is the nearest superclass of the
exception thrown. Exception mapping providers can only be used with server-side code
and are not supported in client APIs.

Similar to aspect-oriented programming, having an exception mapper allows for the
separation of exception detection and processing code from the business logic. Let's assume
a resource method throws an exception of IllegalArgumentException type, then the
same can be mapped to a Response with status code of 400, for a bad request. Instead of
using built-in exceptions such as IllegalArgumentException, we can map our own
exception type too when needed.

@Provider
public class ResourceExceptionMapper
 implements ExceptionMapper<Throwable> {
 @Override
 public Response toResponse(Throwable exception) {
 if(exception instanceof IllegalArgumentException) {
 return Response.status(Response.Status.BAD_REQUEST)
 .build();
 }
 return Response.serverError().build();
 }
}

Power Your APIs with JAXRS and CDI Chapter 6

[142]

Client API
JAXRS has a Client API which is used for accessing web resources and also integrates with
providers. When running microservices or writing tests, the Client API serves as a tool for
invoking target web resources. To work with the API, we must first obtain an instance of
Client using the ClientBuilder.newClient method. Using the fluent API, a request is
created and submitted by chaining method invocations whose names should be self-
descriptive:

Client client = ClientBuilder.newClient();
Response res = client.target("http://somewhere.org/hello")
 .queryParam("param","...");
 .request("application/json")
 .header("X-Header","...")
 .get();

Both Client and WebTarget provide for registering filters and interceptors on the client-
side. The API can also be utilized for building complex URI paths, which makes it fairly
handy when building targets, as shown in the next section.

Targets
When resource URIs have complex paths to be resolved, such as /users/xxx, where xxx is
the identifier for a user such as /users/12, then creating a target can be achieved as shown
here:

Client client = ClientBuilder.newClient();
WebTarget baseResource = client.target("http://ex.org/resources/");
WebTarget userResource = baseResource.path("users").path("{id}");

Response response = userResource.resolveTemplate("id", 12)
 .request("application/json")
 .get();
User user = response.readEntity(User.class);

The preceding code can be broken into steps that build WebTarget instances and then
finally fires the request for getting the User entity Response:

baseResource: This is a WebTarget instance which is immutable and points to
the base path of the web resource.

Power Your APIs with JAXRS and CDI Chapter 6

[143]

userResource: This is another WebTarget instance which is created by
appending the path to the existing baseResource. The next path("{id}") sets
the URI template parameter which will be resolved later.
response: A response is obtained by using the resovleTemplate method to
resolve the id URI template parameter to the value of 12, which is then sent over
the network. The final get() method is a synchronous invocation which returns
the Response object with the User entity.

Reactive clients
While synchronous and asynchronous calling was already supported in the Client API, now
a new reactive style has been introduced with JAXRS 2.1. The Client API leverages the Java
8 CompletableFuture class (which implements CompletionStage<T>) and existing
JAXRS 2.0 API to provide a reactive programming style:

Client client = ClientBuilder.newClient();
WebTarget base = client.target("http://ex.org/resources/planets");
CompletionStage<User> cs = base.request("application/json")
 .rx().get(String.class);
cs.thenAccept(System.out::println);

The main difference is the addition of the rx() method call, which switches from the
sync/async approach to a reactive one. This provides for greater flexibility in the
computation of asynchronous responses. This addition now makes it easy to fetch data from
multiple resources in parallel and then use the results to perform a task. Here's the code
snippet showcasing that:

CompletionStage<Phone> csp = client.target("phones/{item}")
 .resolveTemplate("item", "android")
 .request().rx()
 .get(Phone.class);

CompletionStage<Number> csf = client.target("ratings/{item}")
 .resolveTemplate("item", "android")
 .request().rx()
 .get(Number.class);
csp.thenCombine(csf, (phone, rated)
 -> buyWhenAvailableAndRated(phone, rated));

Power Your APIs with JAXRS and CDI Chapter 6

[144]

The example fetches the phone and rating number in parallel to different resources, and
then it combines the results to buy the phone if available and rated. The thenCombine
method requires both the stages to be completed with their values, and only then will it
invoke the passed Consumer code of buyWhenAvailableAndRated(...).

Reactive programming with the Client API is a powerful addition to the developer's toolkit,
and an approach that will only grow.

Filters and interceptors
Filters and interceptors are registered as providers. Filters are typically used for modifying
the message headers. To understand filters, let's look at a practical use case. Cross-origin
requests are requests that are made from one domain to another. It's not alien to have your
web resources hosted on one domain while the requests may originate from another. For
security reasons, browsers restrict such requests, which are made within scripts. The
solution is Cross-Origin Resource Sharing (CORS); this mechanism allows servers to
publish the set of origins that are allowed for making web browser requests to it. This is
done by adding the Access-Control headers to the response, and to do that we would
need to define a provider which implements the ContainerResponseFilter interface:

@Provider
public class CorsRespFilter implements ContainerResponseFilter {
 @Override
 public void filter(ContainerRequestContext requestContext,
 ContainerResponseContext rspCtx) throws IOException {
 rspCtx.getHeaders().add("Access-Control-Allow-Origin", "*");
 ...
 }
}

Server-side: For processing on the server, there are two filters that we can make
use of:

ContainerRequestFilter

ContainerResponseFilter

If you want to share data between the filters, then that can be achieved using an
instance of ContainerRequestContext for the request and
ContainerResponseContext for the response. Both of these provide a map-
based structure to store a key-value pair. Thus, an item stored in one of the
request filters can be later retrieved in the response filter.

Power Your APIs with JAXRS and CDI Chapter 6

[145]

Client-side: Similar to server-side filters, there's also client-side filters:
ClientRequestFilter

ClientResponseFilter

ClientRequestFilter can be used to intercept the request before it's sent to the
network, while the ClientResponseFilter is invoked before the response is
sent to the application code.

Both Client and Container filters can stop any further chain execution by
calling the abortWith(Response) method in their corresponding context object.

Controlling execution order with priority: It's also possible to have multiple
providers, and when such implementations are detected the order can be
specified by making use of the @Priority annotation. This allows for controlling
the order in which filters and interceptors are executed as part of their execution
chain. The @Priority runtime annotation has been added to the JAXRS 2.1
specification. For request filters, the providers are sorted in ascending order by
their priority numbers and executed from low to high. This is different to
response filters, which are sorted in descending order by their priority numbers
and executed from high to low. For example, if you had two response filter
providers, A and B, with A having @Priority(5) and B having @Priority(6), then the
order of execution would be B then A. This would be reversed for request based
filters, where the execution order would change to A followed by B.
Interceptors: An interceptor is primarily used for manipulation of the message
payload. The entity interceptor would implement either ReaderInterceptor or
WriterInterceptor or both, based on what aspect it wants to intercept. It
would also need to invoke the proceed method to continue the execution chain.
Similar to filters, these are registered as providers. WriterInterceptor
provides a method called aroundWriteTo, which wraps calls to
MessageBodyWriter.writeTo. Similarly, the ReaderInterceptor provides a
method called aroundReadFrom, which wraps calls
to MessageBodyReader.readFrom. The API hasn't changed in JAXRS 2.1.

Power Your APIs with JAXRS and CDI Chapter 6

[146]

Validation
JAXRS 2.1 now enables declarative validation support by leveraging its integration with the
Bean Validation API. This is done by using the constraint annotations for validating Beans,
method parameters, and return values. These annotations can be placed on resource classes,
fields and properties. For example, the following is a sample showing a User entity having
a field level constraint of @NotNull. The same User class is then used as an argument to the
resource method add which uses the @Valid annotation. A POST request would trigger the
validation of the User entity field name to meet the @NotNull criteria:

class User {
 @NotNull
 private String name;
 ...
}

@Path("/")
class ResourceClass {
 @POST public void add(@Valid User newUser) { ... }
}

Similar to the method parameter, the response can also be validated by applying constraints
on the return type, as shown:

@GET @Path("{id}") @Valid
public User get(@PathParam("id") String id) { ... }

There are features such as custom validators and more that can be explored by looking up
the specification and Java EE 8 docs online for more details.

Power Your APIs with JAXRS and CDI Chapter 6

[147]

Asynchronous processing
JAXRS supports asynchronous processing in both server and client APIs:

Server API: Asynchronous processing allows the resource method to inform the
JAXRS runtime that a response is not ready yet and will be provided at a future
time. This is done by temporarily suspending the connection and then resuming it
once the response becomes available. For a resource method to utilize async
processing it must inject an AsyncResponse instance using the special
@Suspended annotation. The resource method code may perform a long-running
operation as desired, and then finally publish the response using the resume
method of the AsyncResponse instance. AsyncResponse also allows for
specifying timeouts and callbacks:

 @GET public void timeConsumingActivity(
 @Suspended final AsyncResponse ar) {
 executor.execute(() -> {
 //Executor to run job in background
 longRunningCode();
 ar.resume("async response here");
 });
 }

We can also specify a timeout value by using the setTimeout method on the
AsyncResponse instance. If the timeout does occur then the server will generate
and return a 503 status. It's also possible to control the timeout behavior by
supplying a timeout handler; this is done by setting an instance of
TimeoutHandler and passing it to the setTimeoutHandler of the
AsyncResponse instance.

Since JAXRS can be used along with EJBs, it's possible to use annotations such as
Singleton and Stateless on root resource classes. This makes it possible to use the
@Asynchronous annotation on the resource method, thus avoiding the need for
any executor logic, since the EJB container will be responsible for the allocation of
the needed resources for execution:

 @GET @Asynchronous
 public void timeConsumingActivity(
 @Suspended final AsyncResponse ar) {
 longRunningCode();
 ar.resume("async response here");
 }

Power Your APIs with JAXRS and CDI Chapter 6

[148]

Client API: While the server API allows for asynchronous processing, it's also
possible to use async invocations on the client-side. Going back to our earlier
code sample in the Client API section, let's see how we can convert the sync call to
an async invocation. Here's the code:

 Client client = ClientBuilder.newClient();
 Future<Response> res = client.target("http://somewhere.org/hello")
 .request("application/json")
 .async() // doesn't block calling thread
 .get(new InvocationCallback<Response>() {
 @Override
 public void completed(Response response) {...}

 @Override
 public void failed(Throwable throwable) {...}
 });

The async() call returns immediately and the type used is AsyncInvoker. This
provides the get() method which accepts an InvocationCallback<T> where
the type parameter specifies the response type to be used. All async calls return a
Future<T> instance where the type parameter matches that of the
InvocationCallback<T> The Future instance allows for monitoring and
canceling of the async call if required.

Server-Sent Events
Server-Sent Events (SSE) is a standard and part of HTML 5; it allows for one-way
communication from the server to the client. So, a client can make one request and the
server can keep sending multiple responses on the same connection. The client opens the
connection with a server by passing the Accept header as text/event-stream. This connection
is a long-running one between the client and server. The server can then publish events
over the HTTP protocol. This allows for a better solution for pushing updates to clients than
clients having to resort to inefficient means such as polling. JAXRS 2.1 has made API
enhancements to support SSE. On the server-side, we can define a resource that produces
text/event-stream, which clients can register with to receive events. Let's look at an example,
where we combine CDI and JAXRS to push task updates to the interested clients. First, we
need to understand the tools at our disposal to create this magic.

Power Your APIs with JAXRS and CDI Chapter 6

[149]

In order to listen to client requests, we need to publish a resource that produces the media
type of text/event-stream. We also require a handle to two more APIs, the Sse and
SseEventSink instances, which can be injected using @Context:

@Singleton
@Path("updates")
public class TaskUpdatesSSE {
 private SseBroadcaster broadcaster;
 private Sse sse;
 @GET @Produces(MediaType.SERVER_SENT_EVENTS)
 public void subscribe(@Context Sse sse,
 @Context SseEventSink eventSink) {
 this.sse = sse;
 if(this.broadcaster == null) {
 this.broadcaster = sse.newBroadcaster();
 }
 this.broadcaster.register(eventSink);
 } ...

The TaskUpdatesSSE makes use of the following APIs from the javax.ws.rs.sse
package:

Sse: This is the entry point we need for creating OutboundSseEvent and
SseBroadcaster instances
SseEventSink: This can be used to send an individual OutboundSseEvent
SseBroadcaster: This allows for managing multiple instances
of SseEventSink

The code creates a single shared SseBroadcaster if not already created, and then registers
the SseEventSink instance that was injected by the runtime. This SseEventSink is
considered the return type, similar to async processing, thus the resource method itself has
defined a void return type. Once we have a broadcaster created we can call
the braodcast(OutboundSseEvent) method, which publishes an SSE event to all
registered SseEventSink instances. Since we want to publish task updates, what better
way to do it than using CDI observers? Observers are a perfect fit for code that needs to be
triggered/informed of events to which it subscribes. We could define an observer in the
same class that would look for task updates and then broadcast the information to
everyone:

public void observeTaskUpdates(@Observes TaskUpdated updated){
 if(this.broadcaster == null) return;
 String stats = JsonbBuilder.create().toJson(updated);
 this.broadcaster.broadcast(this.sse.newEvent(stats));
}

Power Your APIs with JAXRS and CDI Chapter 6

[150]

The TaskUpdated class is just a Java class with some properties to publish the updated
information about a task. Here, we also make use of JsonbBuilder to create() Jsonb
instance and convert the TaskUpdated instance toJson(). Finally, the following line
creates an OutboundSseEvent and passes it to the broadcast method:

this.sse.newEvent(String) - returns OutboundSseEvent

Any code within the project can fire the TaskUpdated event using the Event API. An
instance of Event<TaskUpdated> would invoke the fire(TaskUpdated) method. This
code should be enough to get an SSE feature running on the server-side.

WebSockets
As mentioned in Chapter 1, What's in Java EE 8?, while SSE is an HTTP-based standard for
one-sided communication, WebSockets is a standard allowing for bidirectional
communication between both client and server. WebSockets can be used in scenarios which
require two-way communication, such as chat-based applications. WebSockets are
published as endpoints using either a programmatic approach or an annotated one.

An endpoint would either extend the javax.websocket.Endpoint class for
programmatic style or use the easier approach of using @ServerEndpoint annotation. An
endpoint instance is created per connection:

@ServerEndpoint("/chat")
public class ChatEndpoint {
 @OnMessage
 public void onMessage(final Session session, String msg) {
 try {
 session.getBasicRemote().sendText(msg);
 } catch (IOException e) { ... }
 }
}

Power Your APIs with JAXRS and CDI Chapter 6

[151]

While this is a simple way to send messages to one connected peer, there's also the
possibility of sending a message to all connected peers. This can be done by saving the
opened sessions in a collection from within the @OnOpen method and then using the
@OnMessage code to broadcast the message to all such sessions that are still open. Here's
how it can be done:

savedSessionsSet.stream().filter(Session::isOpen).forEach(s -> {
 try {
 s.getBasicRemote().sendObject(msg);
 }catch(Exception e) {... }
});

There are also other annotations that can be made use of, as shown in the following table:

Annotation Sample usage Purpose

@OnOpen
@OnOpen
public void open(Session session) Open a new connection

@OnMessage
@OnMessage
public void message(Session session,
String msg)

One new message received

@OnClose
@OnClose
public void close(Session session) The connection is closed

WebSockets can also make use of encoders and decoders to handle the message payload
processing. An instance of Encoder.Text<T> would override the encode method to
convert a Java type to string, and a Decoder.Text<T> instance would override the decode
method for converting a string to desired Java type. These can be configured on the server
endpoint itself as argument to the @ServerEndpoint annotation.

Power Your APIs with JAXRS and CDI Chapter 6

[152]

Context
JAXRS applications typically need context-based information to be obtained; this is made
available by use of the @Context annotation. This information is available for all root
resource classes and providers. Instances of an Application subclass can be used to store
central configuration, and the same instance can then be accessed via @Context injection in
resources or provider classes. We looked at UsersResource.add earlier, making use of ,
which was injected as a parameter. This instance can be injected into class fields or method
parameters using @Context annotation. Similarly, there are other types that can be injected
using this annotation, such as:

Application

UriInfo

HttpHeaders

Request

SecurityContext

Providers

ResourceContext

Configuration

It's also important to understand that the context is specific to a request.

Swagger
Java EE 8 standards don't define any documentation standards, but this gap is filled by a
popular choice called Swagger. As described on the swagger.io home page, it is an API
tooling solution.

Swagger is the world's largest framework of API developer tools for the
OpenAPI Specification (OAS), enabling development across the entire
API lifecycle, from design and documentation, to testing and deployment.

Power Your APIs with JAXRS and CDI Chapter 6

[153]

This API tool allows for REST API documentation that stays closer to the code and evolves
along with it. As an API framework, Swagger allows us to use annotations on the resource
classes and its resource methods. Swagger has a lot to offer, and many features that are
beyond the scope of this short brief. Developers should explore it further on its site.

The basic idea is to document the code with enough metadata in the form of annotations
and then use build tools such as Maven to generate a JSON or YAML document that
describes the API. This generated file (swagger.yaml) can then be used in other swagger
tools to browse and explore the APIs. There's also support for bundling swagger-ui with
the project, which can be very handy.

The Swagger website allows for two approaches, one called top down that allows for
defining the details via a Swagger editor and then using code generation tools to create the
code conforming to the specification. The bottom up approach, on the other hand, is used to
create a Swagger definition from an existing REST API. The varying range of tools and
support in build tools makes this a popular choice to leverage when documenting or
generating code for JAXRS.

API
You can make use of Swagger annotations by adding the Maven dependency to it. This
allows us to use metadata on the resource class and methods that are then used by the code
generation tools to generate the Swagger format from it.

The following Maven dependency is required:

<dependency>
 <groupId>io.swagger</groupId>
 <artifactId>swagger-annotations</artifactId>
 <version>1.5.16</version>
</dependency>

Then the resource class can have annotations such as the few listed as follows:

Api: To mark a resource as a Swagger resource
ApiOperation: Describes an operation or typically an HTTP method against a
specific path
ApiResponse: To describe the response of a method
ApiParam: Additional metadata for operational parameters of a method

Power Your APIs with JAXRS and CDI Chapter 6

[154]

Maven plugin
A Maven plugin can be used to generate the swagger.yaml file based on the metadata
placed on the code:

<build>
...
<plugin>
 <groupId>com.github.kongchen</groupId>
 <artifactId>swagger-maven-plugin</artifactId>
 <version>3.1.5</version>
 <configuration>
 <apiSources>
 <apiSource>
 <springmvc>false</springmvc>
 <locations>org.jee8ng.users.boundary</locations>
 <schemes>http</schemes>
 <host>localhost:8081</host>
 <basePath>/${project.build.finalName}/resources
 </basePath>
 <info>
 <title>Users API</title>
 <version>v1</version>
 <description>Users rest endpoints</description>
 </info>
 <outputFormats>yaml</outputFormats>
 <swaggerDirectory>${basedir}/src/main/webapp
 </swaggerDirectory>
 </apiSource>
 </apiSources>
 </configuration>
 <executions>
 <execution>
 <phase>compile</phase>
 <goals>
 <goal>generate</goal>
 </goals>
 </execution>
 </executions>
</plugin>
...
</build>

Power Your APIs with JAXRS and CDI Chapter 6

[155]

The swaggerDirectory is where the swagger.yaml file gets generated. This way, it's
possible to use a combination of plugins and annotations to create the Swagger Spec format
with the desired output, such as JSON, configured here. The plugin and API details can be
explored further on the Swagger website and on the GitHub pages of the plugin.

Summary
REST APIs are the standard for building web services that publish business capabilities. The
Java EE 8 release has enhanced the underlying JAXRS specification to version 2.1, and has
brought in additions that help programmers efficiently work with the APIs. The
enhancements are not restricted to server-side, but there are changes such as reactive-style
programming for Client APIs. Integration with CDI and Bean Validation APIs have made
declarative programming a breeze. The validation of API input and output, along with
container-based dependency injection of resources and support for JSON, makes this a
powerful model to use for microservices.

While standards aid in building services, external tools such as Swagger fill the gap of
documentation support. SSE, as part of JAXRS, along with WebSockets, bring in different
capabilities that can be leveraged when building solutions that meet modern day demands.

In the next chapter, we will put this knowledge into action by building a real-world
application that publishes business capabilities as microservices.

7
Putting It All Together with

Payara
We have covered enough ground in the Java EE 8 realm; now, we can start building an end-
to-end application. Our application, which serves the purpose of building an understanding
of the concepts learned so far, is by no means a trivial one. It brings together real-world
practices when working with Java EE 8 and microservice architecture.

In this chapter, we will cover the following topics:

Building an Issue Management System backend
Using Java EE 8 technologies:

Defining the data model
Building microservices using REST
Swagger documentation
Using JPA for persistence
Deploying on Payara
Uber JAR and Skinny WARs

Running multiple microservices in Docker
Learning to use the new features of Payara Micro
Extras:

CDI event bus
Tips and tricks

Putting It All Together with Payara Chapter 7

[157]

Building an Issue Management System (IMS)
backend
We will be building an Issue Management System (IMS), which serves the purpose of
creating tickets as issues, and allows a team to track and close them. The concept is fairly
simple and one that most developers and teams should be familiar with. The system will
facilitate a user to access the list of issues and view its details. A user should also be able to
create and update the issue. It will also be helpful for getting updates about various issues in
the system. The activities done for an issue can be tracked by means of comments added to it.
It would also be nice to be able to chat with other users.

We will develop the backend for this system using a microservice architecture leveraging
Java EE 8 technologies. Our domain model will consist of user, issue, chat message, chat thread,
and comment. We will also need to model the notifications for updates around an issue. To
keep things simple, the chat can be considered a group chat with all. When defining the
number of services required, the idea is to keep it fine-grained enough for it to be efficiently
worked upon. We will develop the following microservices for the IMS backend, which can
be managed by separate teams with an independent workflow:

ims-users: Services for user-specific features
ims-issues: Services for task-related features which are represented as issues
ims-chat: Chat for bidirectional communication using WebSockets
ims-comments: Services for comments on issues within the system

You can explore the completed project by simply cloning the Git repository. To keep things
simple to refer, the project has been put in a single repository, but if greater separation is
desired, then each project can be placed within its own repository:

git clone https://github.com/PacktPublishing/Java-EE-8-and-Angular

As a prerequisite, apart from JDK 8, you need to have Git, Maven, and Docker installed.

Each project directory contains a buildAndRun.sh script, which has the Maven and Docker
commands to build and run the project. Just navigate to each of the project folders and run
the script in a terminal. The script performs three steps for a project:

Builds the Maven project1.
Builds the Docker image containing the generated WAR file2.
Runs a container using the Docker image3.

Putting It All Together with Payara Chapter 7

[158]

Having run the script for all the four projects, we should now have Docker containers
started locally with port bindings, shown as the following:

The preceding image shows Docker containers started for ims-chat, ims-comments, ims-
users, and ims-issues.

The first column is the image name, followed by the container name and port binding
information. Each container runs on port 8080, but for the host (local machine), we have
different port bindings to make it available locally without conflict.

Using Java EE 8 technologies
The backend system will comprise of REST APIs delivered as microservices. We will be
using JAXRS for creating the web resources in each project and CDI as a dependency
injection solution. While not strictly required, it is a popular choice of pattern. The project
structure will make use of the Boundary-Control-Entity (BCE) or the Entity-Control-
Boundary (ECB) pattern. The persistence layer will be written using the Java Persistence
API (JPA) and the services will be stateless EJBs, which helps bolster scalability needs.

Defining the data model
Given the requirements, we can identify the following list of entities:

ims-issues: Issue is the work item that needs to be resolved by a user
ims-users: User represents the user of the IMS system
ims-comments: Comment will represent the comments made on an issue
ims-chat: Chat is a single chat message that a user sends and gets
ims-chat: ChatThread groups the chat messages into a chain of messages

Putting It All Together with Payara Chapter 7

[159]

When developing each of these services, we will create our domain entities with just
enough information that's relevant for the microservice, following the bounded context
approach. Thus, an Issue entity within ims-issues would have a reference to a User
entity, which will have only the minimal attributes, such as the user's id and username.
This is enough to assign an issue to the user. But the User entity defined within the ims-
users microservice will have more attributes in addition to these:

ims-issues | Entity: User ims-users | Entity User
public class User {
 Long id;
 String name;
 Issue issue;
}
public class Issue {
 Long id;
 String label;
 User assignedTo;
}

public class User {
 Long id;
 String name;
 String email;
 Credential credential;
}
public class Credential {
 String username;
 String password;
}

So, our issues REST endpoint will have a JSON with issue information along with the basic
user information to whom the issue is assigned:

{
 "assignedTo":{
 "id":23,
 "name":"marcus"
 },
 "created":"2017-12-04T14:38:47.654Z",
 "description":"Bug A is critical for product",
 "id":7564,
 "label":"Fix Bug A"
}

We continue following the bounded context principle and define the Comment entity
within ims-comments to have only the IDs of an issue and user and nothing more. We
avoid polluting the comments microservice with user and issue details; it isn't concerned
with that. When the comments resource displays the comments, we enrich the comment by
user data by querying the users microservice for the username. We will look at more
details about this approach in later sections, when we explore intercommunication within
microservices.

Putting It All Together with Payara Chapter 7

[160]

Building microservices using REST
Our microservices are Java EE 8 web projects, built using maven and published as separate
Payara Micro instances, running within docker containers. The separation allows them to
scale individually, as well as have independent operational activities. Given the BCE
pattern used, we have the business component split into boundary, control, and entity,
where the boundary comprises of the web resource (REST endpoint) and business service
(EJB). The web resource will publish the CRUD operations and the EJB will in turn provide
the transactional support for each of it along with making external calls to other resources.

Here's a logical view for the boundary consisting of the web resource and business service:

The microservices will have the following REST endpoints published for the projects
shown, along with the boundary classes XXXResource and XXXService:

ims-users ims-issues ims-comments

• GET /users
• POST /users
• DELETE /users/{id}
• GET /users/{id}
• PUT /users/{id}

• GET /issues
• POST /issues
• DELETE /issues/{id}
• GET /issues/{id}
• PUT /issues/{id}

• GET /comments/{issueid}
• POST /comments/{issueid}
• DELETE
/comments/{issueid}/{id}

Endpoint: UsersResource Endpoint: IssuesResource Endpoint: CommentsResource

Service: UsersService Service: IssuesService Service: CommentsService

Putting It All Together with Payara Chapter 7

[161]

The ims-issues project also leverages the code we looked at in Chapter 6, Power Your
APIs with JAXRS and CDI, for Server-Sent Events. In IMS, we publish task/issue updates to
the browser using an SSE endpoint. The code observes for the events using the CDI event
notification model and triggers the broadcast.

The ims-users and ims-issues endpoints are similar in API format and behavior. While
one deals with creating, reading, updating, and deleting a User, the other does the same for
an Issue. Let's look at this in action. After you have the containers running, we can start
firing requests to the /users web resource.

The following curl command maps the URI /users to the @GET resource method named
getAll() and returns a collection (JSON array) of users. The Java code will simply return
a Set<User>, which gets converted to JsonArray due to the JSON binding support of
JSON-B.

The method invoked is as follows:

@GET
public Response getAll() {... }

curl -v -H 'Accept: application/json'
http://localhost:8081/ims-users/resources/users
...
HTTP/1.1 200 OK
...
[{ "id":1,"name":"Marcus","email":"marcus_jee8@testem.com"
 "credential":{"password":"1234","username":"marcus"}
},
{ "id":2,"name":"Bob","email":"bob@testem.com"
 "credential":{"password":"1234","username":"bob"}
}]

Next, for selecting one of the users, such as Marcus, we will issue the following curl
command, which uses the /users/xxx path. This will map the URI to the @GET method
which has the additional @Path("{id}") annotation as well. The value of the id is
captured using the @PathParam("id") annotation placed before the field. The response is
a User entity wrapped in the Response object returned.

Putting It All Together with Payara Chapter 7

[162]

The method invoked is as follows:

@GET @Path("{id}")
 public Response get(@PathParam("id") Long id) { ... }

curl -v -H 'Accept: application/json'
http://localhost:8081/ims-users/resources/users/1
...
HTTP/1.1 200 OK
...
{
 "id":1,"name":"Marcus","email":"marcus_jee8@testem.com"
 "credential":{"password":"1234","username":"marcus"}
}

In both the preceding methods, we saw the response returned as 200 OK. This is achieved
by using a Response builder. Here's the snippet for the method:

return Response.ok(..entity here..).build();

Next, for submitting data to the resource method, we use the @POST annotation. You might
have noticed earlier that the signature of the method also made use of a UriInfo object.
This is injected at runtime for us via the @Context annotation. A curl command can be used
to submit the JSON data of a user entity.

The method invoked is as follows:

@POST
public Response add(User newUser, @Context UriInfo uriInfo)

We make use of the -d flag to send the JSON body in the request. The POST request is
implied:

curl -v -H 'Content-Type: application/json'
http://localhost:8081/ims-users/resources/users -d '{"name": "james",
"email":"james@testem.io",
"credential": {"username":"james","password":"test123"}}'
...
HTTP/1.1 201 Created
...
Location: http://localhost:8081/ims-users/resources/users/3

Putting It All Together with Payara Chapter 7

[163]

The 201 status code is sent by the API to signal that an entity has been created, and it also
returns the location for the newly created entity. Here's the relevant snippet to do this:

...
//uriInfo is injected via @Context parameter to this method
URI location = uriInfo.getAbsolutePathBuilder()
 .path(newUserId) // This is the new entity ID
 .build();
// To send 201 status with new Location
return Response.created(location).build();

Similarly, we can also send an update request using the PUT method.

The method invoked is as follows:

@PUT @Path("{id}")
public Response update(@PathParam("id") Long id, User existingUser)

curl -v -X PUT -H 'Content-Type: application/json'
http://localhost:8081/ims-users/resources/users/3 -d '{"name": "jameson",
"email":"james@testem.io"}'
...
HTTP/1.1 200 Ok

The last method we need to map is the DELETE method, which is similar to the GET
operation, with the only difference being the HTTP method used.

The method invoked is as follows:

@DELETE @Path("{id}")
public Response delete(@PathParam("id") Long id)

curl -v -X DELETE http://localhost:8081/ims-users/resources/users/3
...
HTTP/1.1 200 Ok

You can try out the Issues endpoint in a similar manner.

Putting It All Together with Payara Chapter 7

[164]

For the GET requests of /users or /issues, the code simply fetches and returns a set of
entity objects. But when requesting an item within this collection, the resource method has
to look up the entity by the passed in id value, captured by @PathParam("id"), and if
found, return the entity, or else a 404 Not Found is returned. Here's a snippet showing
just that:

final Optional<Issue> issueFound = service.get(id); //id obtained
if (issueFound.isPresent()) {
 return Response.ok(issueFound.get()).build();
}
return Response.status(Response.Status.NOT_FOUND).build();

The issue instance can be fetched from a database of issues, which the service object
interacts with. The persistence layer can return a JPA entity object which gets converted to
JSON for the calling code. We will look at persistence using JPA in a later section.

For the update request which is sent as an HTTP PUT, the code captures the identifier ID
using @PathParam("id"), similar to the previous GET operation, and then uses that to
update the entity. The entity itself is submitted as a JSON input and gets converted to the
entity instance along with the passed in message body of the payload.

Here's the code snippet for that:

@PUT @Path("{id}")
public Response update(@PathParam("id") Long id, Issue updated) {
 updated.setId(id);
 boolean done = service.update(updated);
 return done ?
 Response.ok(updated).build() :
 Response.status(Response.Status.NOT_FOUND).build();
}

The code is simple to read and does one thing—it updates the identified entity and returns
the response containing the updated entity or a 404 for a non-existing entity.

The service references that we have looked at so far are @Stateless beans which are
injected into the resource class as fields:

// Project: ims-comments
@Stateless
public class CommentsService {... }

// Project: ims-issues
@Stateless
public class IssuesService {... }

Putting It All Together with Payara Chapter 7

[165]

// Project: ims-users
@Stateless
public class UsersService {... }

These will in turn have the EntityManager injected via @PersistenceContext.
Combined with the resource and service, our components have made the boundary ready
for clients to use.

Similar to the WebSockets section in Chapter 6, Power Your APIs with JAXRS and CDI, in IMS,
we use a @ServerEndpoint which maintains the list of active sessions and then uses that to
broadcast a message to all users who are connected. A ChatThread keeps track of the
messages being exchanged through the @ServerEndpoint class. For the message to be
sent, we use the stream of sessions and filter it by open sessions, then send the message for
each of the sessions:

chatSessions.getSessions().stream().filter(Session::isOpen)
.forEach(s -> {
 try {
 s.getBasicRemote().sendObject(chatMessage);
 }catch(Exception e) {...}
});

Swagger documentation
We annotate the resource class with additional metadata, which makes it a Swagger
resource. These annotations are then processed by the Maven plugin and a swagger.yaml
gets generated in the src/main/webapp folder, which becomes available in the project's
root URL. To achieve this, here's an example of UsersResource with Swagger annotations:

@Path("users") @Api(value = "users")
public class UsersResource {
...
 @GET
 @ApiOperation(value = "Get all users")
 public Response getAll() { ... }

 @GET @Path("{id}")
 @ApiOperation(value = "Get user by id",response = User.class)
 @ApiResponses({
 @ApiResponse(code = 400, message = "Invalid input"),
 @ApiResponse(code = 404, message = "User not found")
 })
 public Response get(@ApiParam(
 value = "ID of user that's to be fetched", required = true)

Putting It All Together with Payara Chapter 7

[166]

 @PathParam("id") Long id) { }

 @POST
 @ApiOperation(value = "Create user",
 notes = "This can only be done by the logged in user.")
 public Response add(User newUser, @Context UriInfo uriInfo)
 { }

The APIs are part of the artifact swagger-annotations library, which we add to our
project as a dependency. We then use swagger-maven-plugin as part of the build to
generate the Swagger Spec file (swagger.yaml):

<plugin>
 <artifactId>swagger-maven-plugin</artifactId>
 ...
 <apiSource>
 ...
 <locations>org.jee8ng.users.boundary</locations>
 <schemes>http</schemes>
 <host>localhost:8081</host>
 <basePath>
 /${project.build.finalName}/resources
 </basePath>
 <info>
 <title>Users API</title>
 <version>v1</version>
 <description>Users rest endpoints</description>
 </info>
 <outputFormats>yaml</outputFormats>
 <swaggerDirectory>
 ${basedir}/src/main/webapp
 </swaggerDirectory>
 </apiSource>

</plugin>

That's it for getting swagger.yaml file generation done. The same can be loaded in the
online editor provided at: https:/ ​/ ​editor. ​swagger. ​io/​.

Another option is to bundle the Swagger UI along with the WAR file; this can be done by
simply copying the UI dist directory to the src/main/webapp folder. Next, we need to edit
the index.html file to the updated swagger.yaml file location reference.

The Swagger UI git location is: https:/ ​/ ​github. ​com/ ​swagger- ​api/​swagger- ​ui/ ​tree/
master/​dist.

https://editor.swagger.io/
https://editor.swagger.io/
https://editor.swagger.io/
https://editor.swagger.io/
https://editor.swagger.io/
https://editor.swagger.io/
https://editor.swagger.io/
https://editor.swagger.io/
https://editor.swagger.io/
https://editor.swagger.io/
https://github.com/swagger-api/swagger-ui/tree/master/dist
https://github.com/swagger-api/swagger-ui/tree/master/dist
https://github.com/swagger-api/swagger-ui/tree/master/dist
https://github.com/swagger-api/swagger-ui/tree/master/dist
https://github.com/swagger-api/swagger-ui/tree/master/dist
https://github.com/swagger-api/swagger-ui/tree/master/dist
https://github.com/swagger-api/swagger-ui/tree/master/dist
https://github.com/swagger-api/swagger-ui/tree/master/dist
https://github.com/swagger-api/swagger-ui/tree/master/dist
https://github.com/swagger-api/swagger-ui/tree/master/dist
https://github.com/swagger-api/swagger-ui/tree/master/dist
https://github.com/swagger-api/swagger-ui/tree/master/dist
https://github.com/swagger-api/swagger-ui/tree/master/dist
https://github.com/swagger-api/swagger-ui/tree/master/dist
https://github.com/swagger-api/swagger-ui/tree/master/dist
https://github.com/swagger-api/swagger-ui/tree/master/dist
https://github.com/swagger-api/swagger-ui/tree/master/dist
https://github.com/swagger-api/swagger-ui/tree/master/dist
https://github.com/swagger-api/swagger-ui/tree/master/dist
https://github.com/swagger-api/swagger-ui/tree/master/dist

Putting It All Together with Payara Chapter 7

[167]

If you did checkout/clone the putting-together-ims project, then these changes are
ready for you to explore. From a running container, you can simply browse to swagger-ui,
as shown here, for the two projects: http://localhost:8081/ims-users/swagger-ui.

In the IMS backend, Swagger, as an example, has been set up for the ims-users project,
while the other projects have not used this. Just like in a microservices architecture, each
team can make their own decision about how to present the APIs to other parties. But,
needless to say, using Swagger does have its advantages.

Using JPA for persistence
Our service needs to interact with a database for working with the entities. As an example,
we have set up H2 as an in-memory database for our microservices. We need to have a
datasource configured, which will be used by JPA. This can be done by using the
<datasource> tag in the web.xml file:

<data-source>
 <name>java:global/datasource</name>
 <class-name>org.h2.jdbcx.JdbcDataSource</class-name>
 <url>jdbc:h2:mem:users;DB_CLOSE_DELAY=-1</url>
</data-source>

The <url> value defines the H2 in-memory database called users, and the
DB_CLOSE_DELAY flag is used to ensure the database is retained in memory, even if
connections are closed to it.

Then the datasource/name is referred to in src/main/resources/META-
INF/persistence.xml:

...
 <persistence-unit name="UsersDS" transaction-type="JTA">
 <jta-data-source>java:global/datasource</jta-data-source>
 <exclude-unlisted-classes>false</exclude-unlisted-classes>
 <properties>
 <property
 name="javax.persistence.schema-generation.database.action"
 value="drop-and-create"/>
 </properties>
 </persistence-unit>
...

Putting It All Together with Payara Chapter 7

[168]

Each project is configured with a JPA and H2 database, but we can easily swap the
underlying persistence solution with any external database such as MySQL or PostgreSQL.

Our entities, such as User, Issue, ChatThread, Chat, and Comment, would accordingly be
mapped as a JPA @Entity with an @Id property. Here's how the User entity is used:

@Stateless
public class UsersService {
 @PersistenceContext private EntityManager em;
...
 public void add(@Valid User newUser) {
 em.persist(newUser);
 }

 public Optional<User> get(Long id) {
 User found = em.find(User.class, id);
 return found != null ?
 Optional.of(found) :
 Optional.empty();
 }
...
@Entity
public class User {
 @Id @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Long id;

 @NotNull @Size(min=2, max=20)
 private String name;
...

The validation constraints are not only updated for improved runtime behavior, but the
same will also reflect in the swagger.yaml file. You can apply a @Valid constraint on a
service or on resource methods. By doing this, an invalid entity message payload (failing to
meet the constraint added to the name property) would get rejected with a 400 Bad
Request.

While we have the UsersResource and IssuesResource providing similar CRUD
operations, the CommentsResource always works with an Issue, thus its endpoint accepts
an issue ID for its operations:

@Path("comments/{issueid}")
public class CommentsResource {
 @PathParam("issueid")
 private Long issueId;
...
 @GET

Putting It All Together with Payara Chapter 7

[169]

 public Response getAll() {
 return Response.ok(service.getAll(issueId)).build();
 }
...

The service for comments works with a Comment entity for three operations: get all
comments, add comment, and delete comment. While fetching comments for an issue ID,
we also request the ims-users microservice for additional user details. Following the
bounded context approach, the comments service doesn't store a user's name, but instead it
references the ID of the user who made the comment. The code first obtains a list of
comments from its database, then for each comment retrieves the user's name from
the users endpoint, as shown here:

return commentsList.stream()
 .map(CommentInfo::new) // Map Comment to CommentInfo
 .map(CommentsService::updateName) //Update UserName
 .collect(Collectors.toSet());
....
class CommentInfo {
 Comment comment;
 String byUserName;
 CommentInfo(Comment c) { ... }
 ...
}

public static CommentInfo updateName(CommentInfo info) {
 Client client = ClientBuilder.newBuilder()
 .connectTimeout(500, TimeUnit.MICROSECONDS)
 .readTimeout(700, TimeUnit.MICROSECONDS).build();

 JsonObject userJson = client.target(
 "http://ims-users:8080/ims-users/resources/users/{id}")
 .resolveTemplate("id",info.getComment().getByUser())
 .request().get(JsonObject.class);
 info.setByUserName(userJson.getString("name"));
 return info;
}

Putting It All Together with Payara Chapter 7

[170]

For the ims-users microservice, we are using the http://ims-users.. hostname, which
is resolved in the docker container IP for the ims-users container name. When running the
comments container, we link it with the ims-users container, thus allowing for this
lookup:

docker run -d -p 8083:8080 --name ims-comments --link ims-users
org.jee8ng/ims-comments

Deploying on Payara
While there are other manual ways to run a local Payara Micro instance, the Docker way is
more flexible and allows for disparate developer teams to work together quicker. Docker
images of Java runtimes can be shared to the UI team, who may not really have Java
installed. Docker makes it easy to share infrastructure and applications with other
developers. Each of the IMS projects contain a single Dockerfile, which defines the
custom image for the application. This file extends the payara/micro image and adds an
application WAR file to the deployable directory, identified by the {DEPLOY_DIR} variable.
The payara/micro image uses OpenJDK 8 images with an Alpine Linux base, which helps
keep image size fairly small. Here's the Dockerfile contents:

FROM payara/micro:5-SNAPSHOT
COPY ./target/ims-*.war ${DEPLOY_DIR}

Building an image involves running the mvn build command and then creating the Docker
image containing the latest code:

mvn clean package && docker build -t org.jee8ng/ims-users .

After having got the image, we can run this image as a container using the following
Docker command:

docker run --rm -d -p 8081:8080 --name users org.jee8ng/ims-users

Uber JAR and Skinny WARs
We touched upon this in the Chapter 4, Building and Deploying Microservices, where we
looked at both options. For the IMS backend, we are using the Skinny WARs approach.

Putting It All Together with Payara Chapter 7

[171]

Docker builds can be created extremely fast, given we are using the standards and have
very little external dependency. This keeps our WAR file size small, which helps in building
the Docker image quicker. On decent machines, you may get images built in less than a
second. Your result may vary, but this still shows the promising world of Docker. Here's the
general output you would see when building the image:

docker build -t org.jee8ng/ims-users .
Sending build context to Docker daemon 8.318MB
Step 1/2 : FROM payara/micro:5-SNAPSHOT
 ---> 44c7a1b4d858
Step 2/2 : COPY ./target/ims-*.war ${DEPLOY_DIR}
 ---> 6e992011086c
Successfully built 6e992011086c
Successfully tagged org.jee8ng/ims-users:latest

If the WAR file doesn't change and you issue the docker command again, then Step 2 will
print a line stating Using cache, due to no real changes being present in the COPY
instruction.

Alternatively, it's easy to switch to Uber JAR if desired—instead of using the Docker-based
images, we use the payara-micro JAR to create our JAR and run it as an executable. This
will bundle the server within the application, making it self-contained:

java -jar payara-micro.jar --deploy ims-users.war --outputUberJar users-
payara.jar

java -jar users-payara.jar

Running multiple microservices in Docker
We can have multiple instances of the same service or just different services altogether
running on a single machine. Docker containers are self-contained and isolated. Since each
Docker container has its own virtual Ethernet IP address, there are no port conflicts. When
running containers, it's often desired to have more than one container deployed for load
balancing needs. There are full-scale solutions, such as Docker Swarm or Kubernetes, for
the production of grade container orchestration, which greatly help. Multiple containers can
also help when one of the services/containers is not responding or needs to be replaced. The
speed by which you spawn new containers and add them to the cluster of containers will
matter.

Putting It All Together with Payara Chapter 7

[172]

If you are running containers on a single machine and want to spawn another instance
of ims-issues, then you need to invoke the docker run command using the ims-issues
image we built earlier, and specify a different local port binding:

docker run --rm -d -p 8085:8080 --name ims-issues-2 org.jee8ng/ims-issues

Here are the containers. You can see ims-issues and ims-issues-2 are running:

This makes the service available on both these URLs locally:

http://localhost:8082/ims-issues/resources/issues

http://localhost:8085/ims-issues/resources/issues

Learning to use the new features of Payara
Micro
Payara Micro takes a new approach to deploying and running Java applications. It also
comes with automatic and elastic clustering and takes into consideration modern day
approaches, such as Docker containers. The Payara Micro executable itself is less than 70
MB and is a self-contained JAR. This JAR can be used to generate an Uber JAR or start a
micro instance with the application deployed to it. Some of the capabilities that Payara
offers are:

Embedded servers
Uber JAR approach
Deploying and running an application using the Payara JAR executable
Automatic clustering

Putting It All Together with Payara Chapter 7

[173]

This capabilities can be briefly explained as follows:

Embedding server: This can be done by using the fish.payar.micro package,
which offers APIs for bootstrapping a micro instance programmatically with a
single line:

 PayaraMicro.bootstrap();

Uber JAR approach: An Uber JAR is generated by passing arguments to the
Payara executable for outputting the executable JAR along with the application
WAR file. The WAR file is placed separately in META-INF/deploy, within the
JAR.
Deploying and running: The application is deployed and run by issuing the
following simple command:

 java -jar payara-micro.jar --deploy application.war

It's also possible to deploy multiple applications in a single micro instance, using
the --deploy option twice.

Automatic clustering: Clustering features are provided by Hazlecast. When you
run multiple micro instances, they can automatically discover each other, and
members form a group. When instances join or leave the cluster, this is all
managed by Hazlecast internally. If you look at the server logs, you will see a
similar output for the members discovered and listed:

 Members [3] {
 Member [172.17.0.2]:5900 - cdaa2b2a-3bc1-4097-a299-ac39d1e05467
 Member [172.17.0.3]:5900 - ffb58095-fde7-4c7d-a571-e1cafbd9e308
this
 Member [172.17.0.4]:5900 - 27870c1d-b80d-4f68-9270-2cc2a84b5ae3
 }

Extras
MicroProfile: Since Payara Micro supports this profile, it has support
for Microprofile Configuration API to inject configuration properties. You can
define a property file, such as resources/META-INF/microprofile-
config.properties, with the following contents:

 file.location=/tmp

Putting It All Together with Payara Chapter 7

[174]

Then, in the code, you can inject the property using the @ConfigProperty, which
is provided by the microprofile-config-api library dependency:

 @Inject @ConfigProperty(name = "file.location")
 String fileProperty;

Maven plugin: Payara also has Maven plugin support which can be used for
generating the Uber JAR, as shown here:

 <plugin>
 <groupId>fish.payara.maven.plugins</groupId>
 <artifactId>payara-micro-maven-plugin</artifactId>
 <version>1.0.0</version>
 <executions>
 <execution>
 <goals>
 <goal>bundle</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <payaraVersion>5.0.0.173-SNAPSHOT</payaraVersion>
 <useUberJar>true</useUberJar>
 </configuration>
 </plugin>

When running the maven build command, this will generate a WAR and an Uber JAR.
The JAR name will have a suffix of -microbundle.jar and will be an executable JAR.

The Maven goals, such as payara-micro:bundle, payara-micro:start, and payara-
micro:stop, can then be used as part of the Maven commands.

CDI event bus
We have looked at the CDI Event bus. Payara takes this a step further by introducing
a Clustered CDI Event Bus. This makes it possible to use lightweight distributed messaging
using CDI, rather than a heavy weight JMS solution. It allows code to send data from one
instance of Payara to another. Since this is non-standard feature, we depend on payara-
api for it.

Putting It All Together with Payara Chapter 7

[175]

This allows for using the annotation fish.payara.micro.cdi.Outbound on
the Event<T> instance. We can then send the Java object as the payload, which
is serializable. On the receiving side, the code will have an observer which uses the
annotation fish.payara.micro.cdi.Inbound in combination with @Observes. This
makes it possible to send events to other instances that are part of the Payara cluster.

Tips and tricks
Docker: When running the Docker containers, we use the --rm flag which
removes the container on exit. This is helpful for repeat builds, so consider using
it. To check the logs of a running container, you can issue the docker logs
nameofcontainer command.

You can use the docker-compose command to have the Docker containers spin
up quickly rather than having to individually use docker run with various
commands. Here's a sample docker-compose.yml file for the IMS backend:

 version: "2"
 services:
 ims-users:
 image: org.jee8ng/ims-users
 ports:
 - "8081:8080"
 ims-issues:
 image: org.jee8ng/ims-issues
 ports:
 - "8082:8080"
 ims-comments:
 image: org.jee8ng/ims-comments
 ports:
 - "8083:8080"
 links:
 - ims-users
 ims-chat:
 image: org.jee8ng/ims-chat
 ports:
 - "8084:8080"

Run docker-compose up -d to start the containers and docker-compose
down to shut them down.

Putting It All Together with Payara Chapter 7

[176]

JSON support: Consider using JsonObject or JsonArray as the resource
method input or output. You don't always need a Java class to represent data. If
JSON is what you want, then use JSON types provided out of the box by Java EE
8.
Postman: While unit tests are essential, you can consider using a tool such
as Postman, which offers the saving of requests, creating a consolidated group,
and even having a mock server for the APIs. This can be a quick and handy way
of testing your APIs during development.
Shared library: When building microservices, there are times when you need to
reuse some code such as a generic base resource class or a base class for your
service code. You can create a library with the essentials and add that as a maven
dependency to the projects.

Summary
Our APIs are developed with standard Java EE 8 features using modern day solutions such
as Docker and Payara Micro. The solution built is flexible in terms of the deployment
strategy, as it can be distributed as a standard web application archive (WAR), as an Uber
JAR, or as a Docker image. We learned how Payara features such as Payara API, Clustered
CDI Events, and maven plugins can ease development when working with Payara Micro.

Our REST API endpoints use a standard JSON format for data exchange and conform to
HTTP standards. By using standards, we improve our code portability. Also, the web
services approach allows other developers to consume our API without having to know the
implementation details. JSON is an industry leader when it comes to data exchange and
provides a very simple structure, which we have utilized in this IMS backend project. The
project was built using microservices, with each having its own database for the entities
used. The WebSockets API allowed for building bidirectional communication support,
while SSE allowed us to push issue updates to the client's browser. With these capabilities,
we now know how a functional backend for the Issue Management System.

In the chapters to follow, we will learn how to use TypeScript and Angular for building a
real-world application connected to these microservices.

8
Basic TypeScript

Developers who love the comfort of strongly typed languages such as Java are rarely
impressed with JavaScript. But nonetheless, it's a language that almost every developer
comes across sooner or later. The goal of writing cleaner and concise code seems like a
distant dream in the scripting world. But JavaScript is not to be ignored, as modern day
browsers are providing very capable JavaScript engines, making it possible to deliver
complex client-side applications. As client-side code grows, so does the need for better
programming features for writing code that scales. Browser vendors have implemented
JavaScript engines which are compliant to different ECMAScript standards. Thus, when
running JavaScript code on different engines or browsers, there are differences to deal with,
as code that works in one browser may fail in another. TypeScript, developed by Microsoft,
seems to solve some of these challenges by strengthening JavaScript with features that are
missing from it. It serves as a bridge for developers to cross to reach their goal of writing
better code for the frontend.

Here's what we will cover in this chapter:

Getting Started with TypeScript:
Why use it?
Features
Visual Studio code
Hello World example

Using variables, types and functions
Working with classes and interfaces
Working with arrays

Basic TypeScript Chapter 8

[178]

Getting started with TypeScript
TypeScript is an open source solution which has entered the spotlight in recent times. With
frameworks such as Angular promoting its use, it has gained popularity among web
developers. But before we explore TypeScript, let's get familiar with some of the terms you
may often come across:

ES5
ES6/ES2015
TypeScript

ECMAScript (ES) is a standard specification that JavaScript implements, similar to Java EE
standards that vendors implement. ES5, being older, is what most browsers support, and
then there's the newer ES6/ES2015, the sixth edition. The good old JavaScript that most
developers have learnt is most likely the ES5 standard, which was never intended for
writing large complex applications. ES6 tries to transform JavaScript into a mature language
by addressing its predecessors' shortcomings. It brings some much needed features that
developers coming from a Java or other high-level language should be familiar with. This
helps by reducing the learning curve for ES6. But since these features may not be fully
supported by all browsers, developers cannot use it today without risking browser
compatibility.

TypeScript (TS) is a language that helps write JavaScript (JS) that scales. As defined on its
website (https:/ ​/​www. ​typescriptlang. ​org/​):

"TypeScript is a typed superset of JavaScript that compiles to plain JavaScript."

It uses a transpiler to transform the TS code into a target JS version or standard such as ES5
or ES6/ES2015. A transpiler is a source to source compiler used to convert code from one
language to another. The TypeScript transpiler uses the source code written in TypeScript to
transform it into JS. Since TypeScript is a superset of JavaScript, plus adds more features to
it, any JavaScript code is valid in TypeScript code and any TypeScript code can be
transpiled to valid JavaScript.

https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/

Basic TypeScript Chapter 8

[179]

Why use it?
TypeScript is supported by Microsoft and even promoted by Google for Angular. When
considering any large scale JavaScript development, it's recommended to use TypeScript.
Angular, as a framework, has become a popular choice for frontend development and was
itself written using TypeScript. The language syntax has some similarities to Java, which
makes it easy for Java developers to work with.

Developers coming from a strongly typed language such as Java might consider JavaScript
evil for not having any type safety. This is an aspect that TypeScript primarily solves by
providing some much needed, but optional, type safety, along with classes and interfaces.
Developers writing JavaScript get very little help from their IDEs to catch bugs at
development time. Errors, such as passing a Boolean where a number was expected, or
invoking a method with the wrong number of arguments, can all be caught during
development when using TypeScript. Needless to say, it's crucial to catch errors early rather
than finding it fail on production.

When developers pick any language to learn, they would hope to learn the latest standard
or version. ES6 features, such as block scopes and classes, are great to use, but going back to
the previous point, ES6 may not be supported today by all browsers. This puts a dent in this
wish of learning the latest JavaScript standard. TypeScript solves this dilemma, as it offers
the features of future ES versions plus a few extras which can be used today. Think of
TypeScript as a language that allows for using the latest JavaScript standards and produces
code, which is still compatible with today's versions such as ES5.

Features
TypeScript brings type safety to JavaScript, similar to other strongly typed high-level
languages support. JavaScript is known as a weakly typed language, but with TypeScript,
we get the huge benefit of static code analysis, which helps in validating code during
development.

TypeScript code, once compiled, is output as JavaScript, which is what runs on the browser.
The TypeScript compiler can pass flags to signal the target ES version to be used for code
generation. Here's a TypeScript code:

class Person {
 name: string;
 age: number;
 constructor (name: string, age: number) {
 this.name = name;
 this.age = age;

Basic TypeScript Chapter 8

[180]

 }
 show() {
 console.log(`Hello ${this.name} is ${this.age} years old`);
 }
}
let p = new Person('bob',35);
p.show();

The code uses ES6 features along with the optional type safety. Once the transpiler is passed
in this code, it will transpile it to a specified target ECMAScript version. Here's what the
transpiled code looks like for ES6/ES2015:

class Person {
 constructor(name, age) {
 this.name = name;
 this.age = age;
 }
 show() {
 console.log(`Hello ${this.name} is ${this.age} years old`);
 }
}
let p = new Person('bob', 35);
p.show();

Most of the TypeScript code remains unchanged, as ES6 features include classes and
template literals. The static types disappear at runtime and thus don't show in the generated
ES6 code. The template literals used are strings enclosed in back-ticks (` `). Instead of
using quotes, this allows the usage of embedded expressions similar to EL expressions in
Java using the dollar sign and curly braces. It even supports multiline strings which
otherwise could only be written using the plus (+) sign for string concatenation.

Consider this code snippet, which is typically written in ES5 and earlier versions:

var msg = "Hello " + this.name + ", how are you doing " + "today.";

With ES6/ES2015, it is possible to use back-ticks for expression and multi-line support,
allowing the same code to be rewritten, as shown next:

var msg = `Hello ${this.name}, how are you doing today.`;

Basic TypeScript Chapter 8

[181]

While the transpiled code didn't change much when using ES6 as target, it's a different case
for ES5. Given the Person class, here's what the transpiled code in ES5 looks like:

var Person = /** @class */ (function () {
 function Person(name, age) {
 this.name = name;
 this.age = age;
 }
 Person.prototype.show = function () {
 console.log("Hello " + this.name + " is " + this.age + " years
old");
 };
 return Person;
}());
var p = new Person('bob', 35);
p.show();

TypeScript thus makes it possible to use ES6 features, even if the browser doesn't support it
today. The TypeScript compiler transpiles the code into the target ES version, which is
compatible with browsers and does not sacrifice type safety and ES6 features.

Visual Studio Code
Visual Studio Code (VS Code) is a free open source editor which runs on all major
platforms, such as Windows, macOS, and Linux. It may not be as feature rich as Java IDEs,
but it serves the purpose of a lightweight and feature rich editor. Similar to Java IDEs such
as Eclipse and NetBeans, VS Code offers plugins called extensions, which can enhance the
features of the base installation. Writing a large application requires good tooling support
for developers to be productive. If the existing features out of the box aren't enough, then
extensions can be installed to enhance the editor further.

Here's the editor in action, showing TypeScript code next to ES5 transpiled code:

Basic TypeScript Chapter 8

[182]

IntelliSense
The VS Code editor has IntelliSense, which provides code completion support as you type
for JavaScript and TypeScript out of the box. This also provides a quick reference to the
documentation as well, as part of IntelliSense.

Debugging
Another key feature is the built-in debugger, which aids in the debugging of any language
that gets transpiled to JavaScript. An integrated debugging feature, that makes it possible to
inspect a variables value, check the call stack, step through code execution and more.

Basic TypeScript Chapter 8

[183]

SCM support
With out of the box Git integration, it's possible to stage changes and commit code as part of
the workflow from within the editor itself. The changes made can also be compared to
previous versions side by side. Using extensions, it's possible to add more SCM support as
well.

Terminal
Having an integrated terminal in the comfort of the editor helps in providing a complete
environment for development. This allows for the executing of shell commands quickly and
comes in handy when working with CLI tools, such as Angular CLI.

Hello World example
To see TypeScript in action, the first thing you want to do is install Node.js.

The installation of Node.js is fairly simple and can be done in multiple ways:

Using the official website (http:/ ​/ ​nodejs. ​org), to get the binaries, and following
the instructions
On Linux, you can install node and npm from Debian/Ubuntu packages
On Mac, you can use Homebrew, a package manager for macOS, which can be
used to install the node with the one command, brew install node

Whichever approach you pick, at the end you should have node and npm installed. To
verify the installation you can run the following commands (your versions may vary, just
ensure you use the latest available version):

node -v
v8.7.0
npm -v
5.5.1

http://nodejs.org
http://nodejs.org
http://nodejs.org
http://nodejs.org
http://nodejs.org
http://nodejs.org
http://nodejs.org

Basic TypeScript Chapter 8

[184]

You can think of npm as a tool to install software and dependencies for your project, similar
to Maven. Now we need TypeScript to be installed, and to do that, we can issue the
following command on macOS or Linux:

Installing TypeScript: npm install -g typescript

After using the install command, you have TypeScript globally installed
and ready to compile TypeScript code. Let's take a look at our hello-
world.ts file, which has the following code:

 let priority: string = "high";
 priority = "low";
 console.log(priority);

Compiling TypeScript to JavaScript: tsc hello-world.ts --target ES5

This results in the creation of a JavaScript file, hello-world.js, placed in
the same directory. That's it for getting up and running with TypeScript. The
JS file can now be executed using node as follows:

Run JS: node hello-world.js

Additionally, we can use tsconfig.json, a configuration file, for various
configuration options when running tsc. This file can be created by using
tsc --init, which generates the tsconfig.json file in the same
directory.

Using variables, types, and functions
Declaring a variable can be done using the traditional var keyword, which has some
gotchas. A variable declared using var becomes available not only inside the block in which
it's defined, but also outside the block scope in the containing module, namespace, or global
scope. This can lead to programming errors that are hard to catch. A better way to declare
variable types is by using the two relatively new keywords like let and const. These are
used similar to the var keyword, but the outcome is very different. Using let is the same
as using block-scope, and unlike var these variables aren't leaked outside their containing
blocks. The keyword const just augments let and prevents any reassignment to its
variables.

Basic TypeScript Chapter 8

[185]

When declaring a variable, the variable name is followed by a colon and then its type. It
may also contain an optional initial value that can be assigned during the variable
initialization. The types are annotated by using the :Type syntax, such as :boolean or
:number, and so on. You can also use :any to specify any type in the type system. But the
type itself is optional, so you can declare a variable without any :Type added to it and the
type would be inferred by TypeScript.

Type inference
Consider this example:

var percent = 100;

Here, since the variable name percent is declared using the var keyword and set to an
initial value of 100, TypeScript will determine that percent is going to be of number type
and will do the type checking for it. Later in the code, we can assign percent a type other
than number, such as the following:

percent = 'test';

The compiler will throw an error, since the inferred percent type is of number type.

Java developers are used to declaring the types for variables, while
TypeScript makes it a relaxed choice. So, in Java, int percent = 100;
can be var percent = 100; in TypeScript.

Using const
Let's consider this example:

const flag: boolean = false;
flag = true;

Basic TypeScript Chapter 8

[186]

The preceding reassignment won't be allowed if we try to compile the code. TypeScript
Compiler (TSC) would complain with the following message: [ts] Cannot assign to
'flag' because it is a constant or a read-only property.

Using let
Let's consider the following example:

for (var i = 0; i <= 9; i++) {
 console.log(i);
}
console.log(i); //prints 10 as 'i' is accessible outside the loop

// Below let ensures x is accessible only within the for loop
for (let x = 0; x <= 9; x++) {
 console.log(x);
}
console.log(x); //TypeScript compiler error: Cannot find name 'x'.

Since let is stricter it helps prevent the programmer from making unknowing mistakes.
TypeScript also introduces enums, which allow for defining set of named constants:

enum Priority { High, Low};
let priorityEnum: Priority = Priority.High;
priorityEnum = Priority.Low;

function show(id: number, priority: Priority): void {
 // ...
}

Here, High will be assigned a value of 0, followed by Low with value of 1. The variable of
an enum type can only be passed named constants belonging to the enum type. So, the show
function, which returns nothing (void), can take the first argument as a number and the
second as either Priority.High or Priority.Low.

Basic TypeScript Chapter 8

[187]

Here's how you can declare variables and their types:

let isDone: boolean = true;
let author: string = "Prashant";
let age: number = 35;
let environments: string[] = ['dev', 'qa','prod'];
let something: any = "any value";
something = 99;

let random; //inferred as type any
let x: number;
let y: number = 2;
let z = 98 + y; //inferred as type number

When declaring variables, consider:

Using the let keyword over var
Specifying the type annotation :Type when the type is known
Combining the :Type with initialization when you want to declare and set a
value

Using functions
In JavaScript, when you declare parameters to a function, all are by default considered
optional and users can invoke them as needed. So, you can invoke a function which takes
one or more parameters without any parameters and it will still work. Consider the code
shown here, which works in JavaScript:

function dumb(a,b) {
 console.log('a ' + a + ',b ' +b);
}
dumb();
dumb(1);
dumb(1,2);
dumb(1,null);

//output of the above calls in plain JavaScript
a undefined,b undefined
a 1,b undefined
a 1,b 2
a 1,b null

Basic TypeScript Chapter 8

[188]

All four invocations of the dumb function will work, but with parameters initialized with
passed in values, or undefined if not specified explicitly. Here, null is also considered a
value. This is different in TypeScript, as all parameters declared are by default required and
invocations that do not match the method parameters won't compile. Thus, the first and
second calls of dumb would not compile. It's possible to get similar behavior to JavaScript in
TypeScript code by adding a ? at the end of the parameter name. This would result in the
same output as seen in JavaScript. Here's the function with optional parameters:

function dumb(a?,b?)

Within the function, we could check if a value was passed for the optional parameter by
comparing it with undefined, as shown here:

if(a === undefined) { ... }

A function can also be declared and captured in a variable:

var work = function() { return true; }
var isComplete = work();

Here, the type of work would be of Function type and could be invoked like any normal
function. The variable isComplete would be inferred as Boolean type, based on the
work() functions return value.

We could also declare an object as the parameter type when declaring the function, as
shown here:

function addUp(addition: { x: number, y: number}) {
 return addition.x + addition.y;
}
var result: number = addUp({ x: 2, y: 5});

Here, the call to addUp will pass the value of x as 2 and y as 5, which matches the object
literal argument for addUp, called addition. While literals can be used, a cleaner approach
would be to use interfaces, which we will explore in the next section.

Here's a comparison of a Java method versus a TypeScript function (in TypeScript, the
:number before the opening curly brace for the return type is optional):

Java TypeScript
public int squareIt(int a) {
 return a * a;
}

function squareIt(a: number): number {
 return a * a;
}

Basic TypeScript Chapter 8

[189]

Arrow functions
These are like lambda expressions, which allow us to skip the function keyword when
declaring a function and to omit the return statement. They also allow for creating
anonymous functions which can be easily passed around. So, consider the
squareIt function example in TypeScript, which we can rewrite as follows:

var squareItFunc = (a: number) => a * a;

Working with classes and interfaces
Those familiar with working in object-oriented world, would feel at home with these of
classes and interfaces. TypeScript adds support for both classes and interfaces, the former
being also part of ES6 / 2015. If you think of some structured data with behavior, then you
would typically represent that as a class. A common use of interface is to enforce that a class
conforms to a particular contract. With TypeScript its now possible to use both these
features of classes and interfaces in JavaScript applications that make use of TypeScript.

Interface
TypeScript has the concept of an interface. An interface is an abstract type and does
not contain behavior. It can be used to define a structure containing data members, some of
which can even be marked as optional. Let's look at an Author type defined as an interface:

interface Author {
 name: string;
 age?: number;
}
function showInfo(author: Author):string {
 if(author.age) {
 return 'Author ' + author.name + ' with age ' + author.age;
 }
 return 'Author ' + author.name;
}
showInfo({name: 'bob',age: 35}); // Valid
showInfo({name: 'tom'}); // Valid

The following syntax is an object literal:

{name: 'bob',age: 35}

Basic TypeScript Chapter 8

[190]

The showInfo function will accept an object literal that matches the required interface type.
The second call doesn't pass the age parameter and the code will still work, due to age
being marked as optional.

Classes
This is similar to classes defined in languages such as Java. It's just a container and will
encapsulate functions and variables. ES5 and earlier doesn't support the concept of classes,
but TypeScript has this built in. A class is defined by using the class keyword and
comprises of:

Fields
Constructors
Properties
Functions

Here's a class Project which has a constructor and a function in addition to the fields:

class Project {
 static numberOfTasks: number = 0;
 id: number;
 constructor(id: number) {
 this.id = id;
 }
 add(taskId: number) {
 Project.numberOfTasks++;
 }
}

The numberOfTasks is a static member that is shared by all instances of this class. The id
field is of number type and has the default access of public, and the constructor of the class
takes a number value which is then set as its id. A constructor is optional and can be left
out if not required. Another way a constructor can be used is to declare the fields using a
shorthand:

class Project {
 constructor(private id: number) { }
 show() { console.log(this.id); }
}

Basic TypeScript Chapter 8

[191]

Here, TypeScript would look at the constructor, and on seeing the private (or public)
keyword, create the id field for the class Project. This is a shorthand approach rather than
explicitly declaring the id field as a member. The this keyword, based on the context in
which it's used, gives us access to the current instance fields or members.

TypeScript supports three access modifiers: public, protected, and private. The default
is public when nothing is specified. The access rules are similar to those found in Java,
where public is accessible anywhere, while private is restricted to only within the class.
Similarly, protected is for access restriction to the class and its children classes.

In Java, developers are used to creating getters and setters for the properties of a class. A
similar feature, known as accessors, is available, and here's how it's done in TypeScript:

class Person {
 private _name: string;
 get name() {
 return this._name;
 }
 set name(n: string) {
 this._name = n;
 }
}
let john = new Person();
john.name = 'John';

These accessors can act as filters to restrict or validate the input, before applying it to the
property of the class. The get keyword is used to denote the getter and set for the setter.
The this. is required to reference the _name field, since _name won't be available in the
context of the function. The naming convention of an underscore prefixed to the variable
name is just a popular convention used in the scripting world. It's worth noting that
accessors are only available when targeting ES5 and higher.

Inheritance
While JavaScript (ECMAScript 5 and earlier) doesn't support the traditional inheritance
feature available in other object-oriented languages, we can use TypeScript, which supports
inheritance. This is achieved by using the keyword extends, so if we have a child class
which needs to extend the base class functionality, we can do this as follows:

class Parent {}
class Child extends Parent {}

Basic TypeScript Chapter 8

[192]

The Child class can invoke the Parent class constructor by simply calling
the super() function from the Child class constructor, similar to Java. In TypeScript, an
interface can also extend from another interface.

Working with arrays
There are multiple ways to work with an array and this works similar to how an array
works in JavaScript. You can also declare an array using generics:

let a: number[] = [1,2,3];
let b: Array<number> = [1,2,3];
let c: Array<any> = ['Hello',10];

Here we make use of the for of loop to iterate over the elements in the array, and print
each element. Next, we loop again, but using the forEach function:

var numArray = [1, 2, 3];
for (let item of numArray) {
 console.log(item); //Produces: 1,2,3
}

//Using forEach to get same output as above
numArray.forEach(element => {
 console.log(element);
});

Similar to using a stream() and map() in Java, we can use the map function available to
produce a new result which processes each element within the array:

let priorities = ['low', 'medium', 'high'];
let priorityUpperCase = priorities.map(p => p.toUpperCase());

Each string element of the array is converted to upper case and the entire result is returned
as a new array. The array also provides other methods such as push, pop, sort, and so on,
which makes it a very flexible container to use.

Basic TypeScript Chapter 8

[193]

Summary
For developers with a Java background, picking up TypeScript as an additional language
would be arguably easier than learning Ruby or Python. The ability to use the latest
standards even before they are fully supported, and good tooling support along with type
safety, makes it a compelling choice for development. VS Code is a great tool which has
built-in features and many extensions, making developers very productive. VS Code is not
the only choice as there are other IDEs which also provide good support for using
TypeScript, such as Eclipse, NetBeans, Sublime Text, Webstorm, and so on.

Type inference is a very powerful mechanism, through which TypeScript offers static type
checking. The need to write large scale client-side applications is not easy using traditional
JavaScript, but TypeScript helps bridge this gap by bringing high-level language features to
it. We have covered enough TypeScript concepts to put them into practice when working
with any client-side framework such as Angular.

In the next chapter, we will explore the world of Angular, which uses TypeScript as the
language of choice for building frontend applications.

9
Angular in a Nutshell

Web-based development typically involves creating pages using HTML and CSS. While
HTML describes the page structure and content, CSS is responsible for the looks. If you
want these pages to be interactive, then you will undoubtedly require JavaScript. Needless
to say, once the scripting code grows, effective maintenance becomes an uphill task.
Angular is a JavaScript framework that helps in building non-trivial client side applications.
The road to learning Angular can be taken with an understanding of HTML and some basic
JavaScript. If you know TypeScript fundamentals, which we covered in the previous
chapter, you already have a head start! You may not become an expert on Angular with this
chapter, but it should help cover enough ground for us to start building Angular
applications.

The topics we will cover in this chapter are as follows:

Understanding Angular:
Anatomy of a component
Pipes
Modules
Boostrapping process

Angular 2 and beyond:
Angular CLI
Managing packages
Bootstrap dependency

Angular in a Nutshell Chapter 9

[195]

A better Hello World:
Modules
Components
Handling events

Data binding:
One way
Two way

Services
Routes
Building a project:

Setup and run sample
Introduction to PrimeNG

Understanding Angular
As a JavaScript framework, Angular runs in the browser (client side). It is used to build
Single Page Applications (SPA) that offer an app-like experience as opposed to traditional
web pages. SPAs are web applications that loads a single page at first, and further UI
updates are handled by dynamic DOM/page updates rather than page reloads. Angular is
not a library and should not be compared with jQuery or any other utility library. The
framework consists of core modules and optional ones that are put together to build an
application. Angular comes with great tooling support in the form of Angular CLI, which is
a code generation tool that we will explore further in the CLI section.

Angular in a Nutshell Chapter 9

[196]

Angular is a component-based model and thus you can break the sections of a page or user
interface into various components. Let's look at the anatomy of a sample page shown here,
with its various sections represented as components:

Anatomy of an sample Angular page

We can break this page into sections such as a top header, bottom footer, and the content
area, which is the middle section. The middle section can be considered as a two-column
layout with the left column as the navigation area and the right as the content area. The
content area is dynamic and keeps getting updated by different components based on the
link or item selected from the left side navigation. If we are to build this page in Angular,
then we would require a root container or root component that represents the entire page,
followed by a hierarchy of components that form the component tree.

Angular in a Nutshell Chapter 9

[197]

Here's a table showing the container or layout components for this sample page:

User interface Components

AppComponent (Root Component) for the
page, having:
• HeaderComponent
• NavComponent
• DashboardComponent
• FooterComponent

These layout components can themselves contain other components that are part of the
page. As an example, the DashboardComponent could consist of a feed component which
shows the latest updates, followed by a list of items below it displaying some statistics. An
item with statistical data could be represented by an ItemComponent.

Rendered ItemComponent UI Description

A child component of DashboardComponent.
Represented by class ItemComponent with a header and
a value.

Anatomy of a component
We have been using the word component for a while now, so let us look at it in more detail.
In Angular, a component is just a class that has an annotation on it, with some additional
metadata, along with the required HTML template for the view. This component would be
responsible for controlling the part of the view that it represents. The component class
interacts with the view with its API consisting of methods and properties. The view in turn
will use the component class's properties to display data and its methods for any event
based interaction.

Ingredients of a component = HTML template + Styling in CSS or SCSS + Class with logic

Angular in a Nutshell Chapter 9

[198]

Components live and die
Components in Angular have a lifecycle that is managed internally by the framework. One
can listen into these phases of the lifecycle by defining methods that get invoked by the
framework, the most basic being when a component gets initialized and when it's about to
be destroyed or removed. You can implement the OnInit and OnDestroy interfaces and
their corresponding ngOnInit and ngOnDestroy methods to hook into these lifecycle
moments:

import { Component, OnInit, OnDestroy } from '@angular/core';

class SomeComponent implements OnInit, OnDestroy {
 constructor() { } // when using, new SomeComponent
 ngOnInit() { } // when component is considered initialised
 ngOnDestroy() { } // when component is about to be destroyed
}

The constructor always runs first before any lifecyle hook. Apart from ngOnInit and
ngOnDestory, there are other lifecycle hooks as well. Here's all the hooks for a component:

ngOnChanges(): Gets called every time any input property of component
changes. Additionally, we get a map containing the change from a previous to a
new value.
ngOnInit(): Called only once and immediately after the first ngOnChanges()
runs. Invocations of ngOnChanges() later does not trigger this hook again.
ngDoCheck(): Invoked as part of the change detection process, it allows us to
write our own change detection logic.
ngAfterContentInit(): Invoked after any external content is projected in the
components view.
ngAfterContentChecked(): Invoked after checking the external content that
got projected in the components view, even if no change has occurred.
ngAfterViewInit(): Invoked after a component's views (including child views)
have been fully initialized.
ngAfterViewChecked(): Invoked after every check of a component's view.
ngOnDestroy(): Invoked just before the component is removed. This allows for
writing cleanup code such as resource release.

Angular in a Nutshell Chapter 9

[199]

Interfaces are part of TypeScript but JavaScript doesn't have them, so the transpiled code
from TypeScript to JavaScript will not have any interface. Technically, this means that the
framework cannot rely upon an interface to invoke lifecycle methods. Thus, Angular simply
checks if any lifecycle hook methods are defined on the component and invokes them based
on the lifecycle phase. While it's alright to leave out the interface, it's still best to use them so
IDEs can catch incorrectly implemented cases early.

Component in code
Here's the ItemComponent class and its corresponding template coded in Angular; this is
saved in a file named item.component.ts, a naming convention from the Angular style
guide:

import { Component, OnInit } from '@angular/core';

@Component({
 selector: 'app-item',
 template: `
 <div>
 <h2>Bookings</h2>
 <h1>1050</h1>
 </div>
 `
})
export class ItemComponent implements OnInit {
 constructor() { }
 ngOnInit() { }
}

Here, the import statement at the top allows the importing of other modules'
components/features into this module. The @Component annotation marks this class as an
Angular component with some metadata:

selector: It is called app-item which can be referenced in other component
templates using the HTML tag—<app-item></app-item>.
template: Within this class back ticks (`) are used to define the template. This
allows it to span over multiple lines and contains the HTML code used to render
this component.

Angular in a Nutshell Chapter 9

[200]

With this way of building, a component can work for smaller templates. The moment the
HTML code grows, you are better off using the templateUrl property, which can point to
an external HTML file, allowing for cleaner separation of view and component code. Similar
to templates, you can also define the CSS within the same class using the styles property or
reference an external style sheet using the styleUrls property. Here's how
the ItemComponent class code would look with external HTML and CSS references:

@Component({
 selector: 'app-item',
 templateUrl: './item.component.html',
 styleUrls: ['./item.component.css']
})
export class ItemComponent implements OnInit { ... }

Needless to say, the external reference approach is cleaner, and it is also the default
approach when using the CLI for generating a component.

Angular supports data binding, which facilitates interaction between the template and
component class. Here's a simple form of data binding syntax that reads a variable title,
defined on the component class, within the HTML template:

{{ title }}

The double curly braces syntax is known as interpolation, which allows for reading and
displaying the title variable data. We will see more details on binding in the sections to
follow.

Pipes
Angular has a concept called pipes, which can be thought of as filters that can transform the
data before displaying. There's a pipe (|) operator that can be used within an interpolation
expression as follows:

{{ title | uppercase }}

Angular in a Nutshell Chapter 9

[201]

Here, the uppercase pipe is a built-in pipe. It's also possible to chain multiple pipes to get
the desired output and its behavior is similar to the Unix pipe in this regard. We can also
create our own pipes by defining a class with the @Pipe decorator and implementing
the PipeTransform interface. Here's a custom pipe that takes a number array and
transforms it into a filtered array of positive numbers:

import { Pipe, PipeTransform } from '@angular/core';

@Pipe({ name: 'positiveNumbers' })
export class PositivePipe implements PipeTransform {
 transform(value: number[]): number[] {
 return value.filter(v => v > 0);
 }
}

A component that uses this pipe in its template would then reference it as shown here,
where numbers is an array of the numbers declared in the Component class:

{{ numbers | positiveNumbers }}

Modules
Most developers understand that writing large applications leads to complexity. Most of the
complexity arises due to the code having been written in one or more large files, without
any separation of concern. Modularity is a strategy that groups together related
functionality and exposes well-defined interfaces for other code to interact with. Angular
applications are built using libraries that are part of Angular itself and third party libraries
that are represented as modules. Similar to how we may use external modules in the
application, we can also build our own modules. Modularity offers a good way to organise
code, especially when structuring large applications.

Every Angular application has one root module, which is conventionally called the
AppModule. As code grows, it's desirable to create feature modules which group together
related code. The Components, Pipes, and so on can all be grouped within a module by
creating a class which has the @NgModule decorator/annotation on it and describing the
module using metadata.

Angular in a Nutshell Chapter 9

[202]

Bootstrapping process
When launching an Angular application, the code within main.ts gets executed, which
bootstraps the root module (AppModule). Here's the excerpt from main.ts:

import { platformBrowserDynamic }
 from '@angular/platform-browser-dynamic';
import { AppModule } from './app/app.module';
...
platformBrowserDynamic().bootstrapModule(AppModule)

The AppModule is a root module with the @NgModule decorator that's used for defining a
module:

@NgModule({
 declarations: [AppComponent, PositivePipe],
 exports: [AppComponent],
 imports: [BrowserModule, AppRoutingModule],
 providers: [DashboardService],
 bootstrap: [AppComponent]
})
export class AppModule { }

Let us discuss the significance of the properties in the earlier code:

declarations[]: This holds components, directives, and pipes belonging to the
module. The declaration of a component here allows the referencing of it in the
template of another component. For example, PositivePipe—if not declared
here, then app.component.html that belongs to this module cannot use it in its
template.
exports[]: A feature module would use this to publish its classes (part of its
declarations) for other modules who import it. The root module need not export
anything, as it's not imported by any other module.
imports[]: Used for importing other modules whose declarations are required
within this module's code.
providers[]: Configure providers for the dependency injection mechanism.
This is used to declare services that are part of the global collection of services.
bootstrap[]: Only used by the root module to reference the root component,
which holds the entire component tree.

Angular in a Nutshell Chapter 9

[203]

While Angular is a popular choice of web framework, it's also positioned as a platform for
building mobile and desktop applications. Check out the resources section for more details.

Reference: https:/ ​/ ​angular. ​io/ ​resources.

Angular 2 and beyond
Angular, which is created and maintained by Google, was first released as AngularJS,
which later got rewritten and named Angular. Both of these are different frameworks with
conceptual differences. For Angular, since version 2, it is possible to build cross-platform
applications as well. Here's how the versions differ:

1.x versions: AngularJS (Angular 1.0, 1.1, 1.2, and so on)
2 and above: Angular (Angular 2, 4, 5, and so on)

Version 2 has been written using TypeScript for delivering applications for the web. The
Angular team follows a time-based cycle where they have a release every six months. These
are not necessarily breaking changes and can be considered maintenance updates. A
deprecation policy is used for notifying of API changes, which allows for developers to be
prepared for an upcoming release.

Angular CLI
There are probably many good libraries and frameworks out there that have never gained
much popularity, owing to the friction in getting started with them. Angular CLI is a tool
that makes it incredibly easy to get started and build an Angular application which is ready
for production. It is a command line interface for building Angular (version 2 and above)
applications, but not for AngularJS. When building a project, the tooling can help with
setting up the environment, running tests, the build and deploy cycle, and finally, moving it
to production. Even for a developer who knows Angular inside and out, using the tooling
can greatly boost productivity. The CLI, apart from helping with the initial setup, is also
handy for code generation, which aids in day-to-day development. While the CLI generates
code, it's not to be mistaken for an end to end code generation solution.

https://angular.io/resources
https://angular.io/resources
https://angular.io/resources
https://angular.io/resources
https://angular.io/resources
https://angular.io/resources
https://angular.io/resources
https://angular.io/resources
https://angular.io/resources

Angular in a Nutshell Chapter 9

[204]

Using the CLI requires having Node and NPM installed, the installation of which is best
covered on the https:/ ​/​nodejs. ​org website. The CLI tooling should be installed globally,
so it becomes available throughout the system. This can be done by running the following
command:

npm install -g @angular/cli

The next step would be to create a new project and then try to run it. This can be done by
using the ng new <project name> command, which sets up the basic structure that is
ready to be built upon. The ng command is the CLI tool, which we just installed. Without
writing a single line of code, you can use the ng serve --open command to spin a local
development server, which runs the project locally and launches the web browser. Let's see
how a project can be created using the CLI tool:

ng new hello-angular
cd hello-angular
ng serve --open

After the ng serve command, the application can be accessed via a URL such as
http://localhost:4200 with support for live reloads. Now, that's a fairly fast way to get
started with Angular.

To kill the running server, you can use the keyboard shortcut Ctrl + C.

These are the basic commands that would typically be used when working with the CLI.
The ng command can also be passed in a few parameters to control its behavior:

CLI command Purpose

ng new
Creates a new angular project and puts it under version
control, such as Git. Yes, you get that too.

ng test Run unit tests after the build.

ng build --prod
Compile and build the project. The --prod flag will
optimize the build for production.

ng serve Builds the project and launches a web server.

ng serve --host
0.0.0.0 --port 4300

Builds the project and additionally changes the default host
and port used by web server.

https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/

Angular in a Nutshell Chapter 9

[205]

Project structure
The generated project directory structure has an src folder that contains all the application
code along with the environment configuration files. The root directory also contains a
package.json file, which holds the dependencies of the project. Here's the structure for
the hello-angular project, showing only the important files for reference:

.
├── e2e/ //folder with end-to-end tests
├── karma.conf.js //Config file for unit tests
├── node_modules/ //npm folder of dependencies
├── package.json //package dependencies go here
├── dist/ //Post build generated static content
├── src //source code for application
│ ├── app
│ │ ├── app.component.css //CSS of component
│ │ ├── app.component.html //HTML template of component
│ │ ├── app.component.spec.ts
│ │ ├── app.component.ts //AppComponent a Component
│ │ └── app.module.ts
│ ├── assets //static content holder
│ ├── environments //config file for local, prod env
│ │ ├── environment.prod.ts
│ │ └── environment.ts
│ ├── favicon.ico
│ ├── index.html //first html that user loads
│ ├── main.ts //Like java main method but in JS
│ ├── polyfills.ts
│ ├── styles.css //global stylesheet
│ └── typings.d.ts
└── tsconfig.json //TypeScript config

The structure is generated by the CLI in conformance with the best practices outlined in the
style guide, which includes a recommended app structure.

Reference: https:/ ​/ ​angular. ​io/ ​guide/ ​styleguide.

https://angular.io/guide/styleguide
https://angular.io/guide/styleguide
https://angular.io/guide/styleguide
https://angular.io/guide/styleguide
https://angular.io/guide/styleguide
https://angular.io/guide/styleguide
https://angular.io/guide/styleguide
https://angular.io/guide/styleguide
https://angular.io/guide/styleguide
https://angular.io/guide/styleguide
https://angular.io/guide/styleguide

Angular in a Nutshell Chapter 9

[206]

Rapid development
CLI makes it easy to create an application that already works, right out of the box. When
working with an application, we need to create the components that make up the UI along
with any supporting classes. There are certain guidelines or suggested rules that should be
followed when defining components, modules, and the other pieces that make up the app.
These can become cumbersome to remember and even code by hand. CLI not only
generates components, but also registers them as part of a module, which if missed can
leave you wondering about the issue. Generating code using CLI is mostly done by running
the ng command and passing it some arguments, as shown here, for some code:

Class: ng generate class class-name
Components: ng generate component component-name
Directives: ng generate directive directive-name
Pipes: ng generate pipe pipe-name
Services: ng generate service service-name

It's also possible to use shortcuts for commands—ng g c component-name has the same
effect as generating a component. Similar shortcuts can be used for others, as referenced
here:

Reference: https:/ ​/ ​github. ​com/ ​angular/ ​angular- ​cli.

The CLI tool uses a configuration file .angular-cli.json, which is present in the root
directory of the project. You would usually not edit this file, unless you wish to change
some defaults.

Managing packages
NPM makes it possible for JavaScript developers to bundle or package reusable code. The
users of this package would then be able to check for updates and download it as it's made
available. A package is defined by having an directory that contains the needed scripts or
code along with a package.json file. The package.json file contains metadata about the
package, which leads to a module-like approach. This can be considered similar to a library
which gets distributed and shipped as part of a larger application that depends on it. A
package.json file allows for:

Defining the dependencies required by the project1.

https://github.com/angular/angular-cli
https://github.com/angular/angular-cli
https://github.com/angular/angular-cli
https://github.com/angular/angular-cli
https://github.com/angular/angular-cli
https://github.com/angular/angular-cli
https://github.com/angular/angular-cli
https://github.com/angular/angular-cli
https://github.com/angular/angular-cli
https://github.com/angular/angular-cli
https://github.com/angular/angular-cli
https://github.com/angular/angular-cli
https://github.com/angular/angular-cli

Angular in a Nutshell Chapter 9

[207]

Declaring the version information for the project as well as its dependencies2.
The build becomes reproducible given that the dependencies are documented3.
and thus easy to download (via npm) by other developers

This file gets generated as part of using the CLI to create a project, but we could very well
create it from scratch or by using the npm init command. The npm init command acts as
a utility that provides an interactive prompt for creating the package.json file.

Most Java developers are familiar with build tools such as Maven that capture the
dependencies in a POM.xml file. The package.json can be considered to serve a similar
purpose for JavaScript developers.

Dependencies
These can be specified using dependencies or devDependencies. Both allow for listing
the packages the project depends on.

dependencies: Runtime packages required in production code1.
devDependencies: Required packages during development and testing only2.

Here's an excerpt from our generated package.json showing angular core and forms as
dependencies (runtime), while typescript and cli are under devDependencies:

 "name": "hello-angular",
 "version": "1.0.0",
 ...
 "dependencies": {
 "@angular/core": "^4.2.4",
 "@angular/forms": "^4.2.4",
 ...
 },
 "devDependencies": {
 "@angular/cli": "1.4.9",
 "typescript": "~2.3.3",
 ...
 }
}

node_modules is a folder that holds all the packages or modules that are downloaded
locally to the project folder as result of running the npm install command.

Angular in a Nutshell Chapter 9

[208]

Bootstrap dependency
Bootstrap is a popular choice among web developers for designing websites. One of its core
feature is the grid system, which is used for building responsive layouts. Angular
applications can add bootstrap by specifying it as a dependency for the project. While
dependencies can be added manually, by editing the package.json file, an easier option is
to use the npm command. Since there are two sections, dependencies and
devDependencies, we need to pass a flag to the npm install command to specify which
section to update.

Adding any dependency to the dependencies section:

npm install <package_name> --save

Adding any dependency to the devDependencies section:

npm install <package_name> --save-dev

For installing bootstrap, we can use the install command and specify the version we want to
save as a dependency. When you run the npm install command, it will inspect
the package.json file for dependencies and accordingly download the versions specified:

Latest bootstrap version (Such as version 3.x)
npm install bootstrap@3 --save
Or
Upcoming bootstrap version (Such as version 4.x)
npm install bootstrap@next --save

Once bootstrap is installed, we need to configure the Angular project to use this framework.

Open the .angular-cli.json file that is present in the projects root directory.1.
Find the styles array, which holds the external CSS that gets applied to the app.2.
Add the bootstrap.min.css file to this array as an entry. The result should3.
look like this:

"styles": [
 "../node_modules/bootstrap/dist/css/bootstrap.min.css",
 "styles.css"
],

If you don't like the idea of touching the .angular-cli.json file, then you can import the
bootstrap CSS by referencing it in the styles.css file as well, as shown here:

@import '~bootstrap/dist/css/bootstrap.min.css';

Angular in a Nutshell Chapter 9

[209]

Start or restart the application by using the ng serve command. This will get the hello-
angular project up and running with bootstrap support added.

A better Hello World
With an understanding of Angular basics and the CLI, let us go through an app building
experience. We will build a basic project and then see how it gets enhanced as we add more
components and some routing to the application. The completed code for this project is
available for download under Chapter 9, Angular in a Nutshell. Here's the set of commands
that will set up a hello-ng-dashboard project with our components:

ng new hello-ng-dashboard --routing
cd hello-ng-dashboard
ng generate component header
ng generate component footer
ng generate component nav
ng g c dashboard

Here, the g c argument used for dashboard component creation is the same as generate
component as used for others. For each component, the CLI will create a folder by the name
of the component, containing the TypeScript file along with HTML and CSS files. These
components will need to be declared as part of a module. This is done for us by the CLI,
which updates the AppModule (app.module.ts) with declarations for these.

The app.component.html can then reference our newly created components to form the
page:

<header>
 <app-header></app-header>
</header>
<main>
 <nav>
 <app-nav></app-nav>
 </nav>
 <article>
 <app-dashboard></app-dashboard>
 </article>
</main>
<footer>
 <app-footer></app-footer>
</footer>

Angular in a Nutshell Chapter 9

[210]

The header and footer components can serve as plain HTML for display purposes. We can
now work on the DashboardComponent class for displaying feed and statistical data for
bookings, cancellations, and sales, as we saw in figure of sample angular page. To hold
the statistics data, we can use a domain class by creating the file statistics.ts under
the src/app/domain folder:

export class Statistics {
 bookings: number;
 cancellations: number;
 sales: number;
}

The DashboardComponent class will then reference an instance of this class and use it to
display data. The feed can be string[] holding our feeds. Here's
the dashboard.component.ts class file written in TypeScript, shown with the relevant
bits that initialise the feed and stats data:

...
export class DashboardComponent {
 feeds: string[];
 stats: Statistics;

 constructor() {
 this.feeds = [
 'Product ABC sold to customer Bob M',
 'New booking in Electronics category for product AAA'
];
 this.stats = {
 bookings: 100,
 cancellations: 11,
 sales: 5000
 }
 }
 show(feed: string) {...}
}

The dashboard.component.html references properties and events using bindings, as
follows:

...

 <li *ngFor="let feed of feeds; let index = index"
 (click)="show(feed)"
 [class.even]="index % 2 !== 0"
 [class.odd]="index % 2 === 0">
 {{ feed }}

Angular in a Nutshell Chapter 9

[211]

 <div class="row">
 <div class="item">
 <h2>Bookings</h2>
 <h1>{{stats.bookings}}</h1>
 </div>
 ...
 </div>
...

The template uses the directive *ngFor, which will repeat the element to which it is
applied. Here, we use it to loop over the feeds array and display each using the string
interpolation {{ feed }}. We can also bind to the DOM click event which triggers the
show function defined on the component class. We have made use of class bindings here,
which we will check out shortly, along with other forms of bindings.

Modules
Angular style guide suggests the following rules when creating a module:

Do append the symbol name with the suffix Module
Do give the file name the .module.ts extension
Do name the module after the feature and folder it resides in

The CLI already incorporates these rules when generating a module, thus promoting a
consistent convention across the application. So far, we have created our project with just
one root module AppModule and multiple components. Now, we will create a feature
module called dash-feature by using the ng g module dash-feature command. We
can then move the dashboard component folder along with its files (HTML, CSS, TS) under
this newly generated module. Additionally, we need to update our app.module.ts file by
removing all references to DashboardComponent from it. The DashboardFeatureModule
will look as follows:

...
import {DashboardComponent} from './dashboard/dashboard.component';

@NgModule({
 imports: [CommonModule],
 declarations: [DashboardComponent],
 exports: [DashboardComponent]
})
export class DashFeatureModule { }

Angular in a Nutshell Chapter 9

[212]

Our folder structure for the dash-feature module should look as follows:

src/app/dash-feature
├── dash-feature.module.ts
├── dashboard
 ├── dashboard.component.css
 ├── dashboard.component.html
 └── dashboard.component.ts

The AppModule will now need to import this feature module in its import[]. Since the
feature module exports the DashboardComponent class, it can be referenced in the
app.component.html file as <app-dashboard>.

Components
Our hello world project so far has the App, Header, Footer, and Nav components, along
with a feature module that contains the dashboard component. The items shown within the
dashboard for statistical data are another candidate for a component. So, let us do that by
creating an item component. From the hello-ng-dashboard folder, run the following
commands:

$ ng g c dash-feature/item
create src/app/dash-feature/item/item.component.css (0 bytes)
create src/app/dash-feature/item/item.component.html (23 bytes)
create src/app/dash-feature/item/item.component.ts (261 bytes)
update src/app/dash-feature/dash-feature.module.ts (475 bytes)

This creates a ItemComponent class and also updates the feature module with its
declaration. This child component would take two inputs of header and value, which it
displays as shown:

import { Component, OnInit, Input } from '@angular/core';
...
export class ItemComponent implements OnInit {
 @Input() header: string;
 @Input() value: string;
...

/* Data is passed to these from dashboard.component.html */
<app-item [header]="'Sales'" [value]="stats.sales"></app-item>

We used property bindings here, of [header] and [value], to pass data to the child
component. This allows us to use multiple app-item or ItemComponent instances within
the dashboard component.

Angular in a Nutshell Chapter 9

[213]

Handling events
In this application, we will need to capture the click event when the user clicks on a feed.
We can use this to intercept the click and perform some processing on the selected feed. The
example here is a simplistic one that displays the chosen feed on the dashboard. Here's the
event binding in action:

<li *ngFor="let feed of feeds" (click)="show(feed)">
 <button (click)="remove(feed)">X</button> {{ feed }}

The click event, captured in parenthesis on the li element, is used to show the selected
feed, while the button Click is used to remove the chosen feed. Here's what it's done in the
component code:

show(feed: string) {
 this.selected = feed;
}
remove(feed: string) {
 this.feeds = this.feeds.filter(f => f !== feed);
}

The filter method used above is for updating the feeds array with all feeds other than the
chosen one, in effect removing the chosen feed. With these features, we now have a fully
working dashboard page, which displays and updates information.

Data binding
The simplest form of binding is string interpolation, which uses double curly braces {{
expression }}. This template expression is evaluated and then converted to string by
Angular. It can take expressions such as {{ 'Hell' + 'o' }} which outputs Hello, or
{{ 100 === 100 }} which returns a Boolean of true. It can even contain functions such as
{{ 1 + getAge() }}.

Here's another case where we use a template expression that references a template input
variable {{ feed }}:

<li *ngFor="let feed of feeds" (click)="show(feed)">{{ feed }}

Angular in a Nutshell Chapter 9

[214]

When the user interacts with a view, it's often required to intercept these events and
perform some activity. The events such as click can be intercepted by surrounding the
event name in parentheses and assigning it to a handler of the event, such as show(...).
You can have other types of binding, such as property binding, which is used for binding to
the property of an element or component. The syntax is of the form [property]="...":

Property binding: Data is sent from component to the view
Event binding: View sends an event to the component

Components can react to the events that are raised in its view. Events can be default events,
such as those found in DOM events, and also custom events that a component may
publish.

One way
Binding of data can be done from component to view or from view to component. We saw
how event binding can take the DOM event from the view to the component using the (...)
syntax. Similarly, we can also use the square brackets [...] property binding to get and set
the value from our component to the view. Both cases are still unidirectional, where data
flows in one direction. This doesn't imply a one time update, as the change from the
component would reflect on the view as and when it keeps occurring. Here's an example,
where the userName is read from the component and output in view:

/* Somewhere in the view template */
<input [value]="userName" [class.red]="1 === 1">
...

/* Below is in a corresponding Component */
class MyComponent {
 userName: string = 'John';
}

While event binding has just one form (event)="...", the component to view bindings
include:

Interpolation: {{ expression here }}
Property binding: [...]="expression here"
Class binding: [class.red]="1 === 1"
Style binding: [style.color]="isError ? 'red': 'black'"

Angular in a Nutshell Chapter 9

[215]

Both the class and style bindings follow a form of attribute binding that can toggle the
class or inline style of a element using the binding. The syntax starts with the prefix of class
followed by a period and then the name of the CSS class. The same syntax rules apply for
the style binding, but instead of class, it uses the prefix of style.

Two way
To keep bi-directional binding where the data is synced in both directions, we can use two-
way binding. This is achieved by combining the property binding [...] and event binding
(...) syntax like this—[(...)]. Another way to think of this is, (...) allowed us to push
events from view -> component, while [...] allowed for binding data from component ->
view. So, both are combined with the special syntax of [(...)]. Here's an example:

/* Somewhere in the view template */
<input [(ngModel)]="userName">
...
/* Below is in a corresponding Component */
class MyComponent {
 userName: string = 'John';
}

We have used the ngModel here, which is Angular-provided feature that enables two-way
binding. It can be considered a combination of event and property binding. This is useful
for binding to form elements. To use ngModel the FormsModule will be required, so that
needs to be imported into the root module or a feature module.

Services
Another fundamental aspect of Angular is a service. These can be thought of as a class that
is responsible for some processing or data fetching logic. A component uses a service class
to delegate the responsibility of fetching data over HTTP or other processing, which keeps
the component code clean. Components can be injected with the services they need using
dependency injection. The injection is done using the components constructor which
references the service class. Angular obtains the service from an injector, which maintains
the already created service instances and returns a new one if it doesn't exist. Here's the
constructor of DashboardComponent class, which can be rewritten to use
DashboardService:

constructor(private service: DashboardService) { }

Angular in a Nutshell Chapter 9

[216]

//Use lifecyle-hook ngOnInit to perform complex fetch operation
ngOnInit(): void {
 this.stats = this.service.getStats();
}

The service needs to be registered in a module or component for it to be available. This is
typically done by adding it to the providers[] within the app.module.ts file or a feature
module such as our dash-feature module. It can also be placed in
the @Component decorators providers[]. When declared within @Component, a new
instance of the service is obtained for each newly created component. But when declared in
the root module, such as app.module.ts, the service instance is shared. The service itself
would simply contain a method for fetching a Statistics instance:

...
@Injectable()
export class DashboardService {
 private dummy: Statistics;
 constructor() {
 this.dummy = {bookings: 10, cancellations: 2, sales: 500 }
 }
 /* This in real world would be fetched over HTTP service */
 getStats(): Statistics {
 return this.dummy;
 }
}

Services are the workers that components heavily use. Given that a service instance can be
shared globally, it's also possible to use it to share data between components.

Routes
Routing from one view to another is facilitated in Angular by use of a router. The links of a
view component can be bound to the router, which will then trigger the configured routes.
Route configuration is done by creating and exporting routes. For our sample application,
we can create a routing module and then import this module into the root module
(AppModule). Here's how a routing module app-routing.module.ts for the dashboard
sample looks:

import { NgModule } from '@angular/core';
import { Routes, RouterModule } from '@angular/router';

const routes: Routes = [];

Angular in a Nutshell Chapter 9

[217]

@NgModule({
 imports: [RouterModule.forRoot(routes)],
 exports: [RouterModule]
})
export class AppRoutingModule { }

In order to start defining routes, we need to populate the routes with mappings. When the
route or URL changes, a component mapped to the route can be rendered on the page. We
will make use of a <router-outlet> HTML tag that acts as the placeholder for displaying
dynamic components based on the selected route. Since we don't want the <app-
dashboard> to be hard coded but instead displayed based on the /dashboard route, we
need to make two changes:

Update the app.component.html file, replacing <app-dashboard> with1.
<router-outlet>.
Update the app-routing.module.ts file, which contains the routes as shown in2.
the following code:

const routes: Routes = [
 { path: '', pathMatch: 'full', redirectTo: '/dashboard' },
 { path: 'dashboard', component: DashboardComponent }
];

The empty path: '' is used to redirect the user to /dashboard, thereby triggering
the DashboardComponent to load at the <router-outlet></router-outlet>
placeholder.

The nav.component.html file will contain links that map to these routes. When a route
such as /about or /dashboard is selected, then the corresponding component is rendered
dynamically at the <router-outlet> placeholder. Here's a route in
the nav.component.html file:

<a routerLink="/dashboard"
 routerLinkActive="active-link">Dashboard

Angular in a Nutshell Chapter 9

[218]

routerLinkActive
This simply references a CSS class that will be applied dynamically by updating the DOM
when the link is active. The router module also provides us with ways to programmatically
change routes. These URL routes can even take parameters, which can then be used for any
additional checks for displaying or hiding components. Angular routes have a mechanism
called guards that protect the routes that can be blocked based on certain business logic. We
will see how to protect routes in later chapters, when putting together the Angular frontend
for our project.

Building a project
When doing local development, we can use the ng serve command for quick build and
deploy cycles on a local development server. But for creating a development build that
needs to be deployed somewhere else, we can simply create it using the ng build command.
Here, the build will output the generated files to a /dist folder whose content can be
copied to a web server for deployment. While this is the simplest way to create a build, the
output is not production optimized. To create a production quality output, we must create
the build with few additional parameters. Here's how you can create a better quality build:

ng build --prod

The --prod option is actually a meta flag, which encapsulates a few other flags that get
activated when creating the build. The overall effect is we get a lean and optimized output
that can then be copied to our web server as static content. When creating a build with --
prod, you may also want to include the source maps, which are useful to debug if things
fail on production environment. Here's the command to add source maps:

ng build --prod --sourcemaps

The Angular CLI reference ahead has more details on the available build options at https:/
/​github.​com/​angular/ ​angular- ​cli/ ​wiki/ ​build

https://github.com/angular/angular-cli/wiki/build
https://github.com/angular/angular-cli/wiki/build
https://github.com/angular/angular-cli/wiki/build
https://github.com/angular/angular-cli/wiki/build
https://github.com/angular/angular-cli/wiki/build
https://github.com/angular/angular-cli/wiki/build
https://github.com/angular/angular-cli/wiki/build
https://github.com/angular/angular-cli/wiki/build
https://github.com/angular/angular-cli/wiki/build
https://github.com/angular/angular-cli/wiki/build
https://github.com/angular/angular-cli/wiki/build
https://github.com/angular/angular-cli/wiki/build
https://github.com/angular/angular-cli/wiki/build
https://github.com/angular/angular-cli/wiki/build
https://github.com/angular/angular-cli/wiki/build
https://github.com/angular/angular-cli/wiki/build

Angular in a Nutshell Chapter 9

[219]

Setup and run sample
Here's a Docker file setup that can be placed at the root of the project:

FROM nginx
EXPOSE 80

COPY ./dist /usr/share/nginx/html

If we run the ng build command, it will generate the static content in the dist folder, and
then we can issue the docker build command:

docker build -t hello-ng-dashboard

This generates a Docker image that we can then execute:

docker run --rm -p 80:80 --name hello-ng hello-ng-dashboard:latest

Finally, the URL to access the application would be http://localhost, which points to an
NGINX web server that is running our application.

Introduction to PrimeNG
PrimeNG serves as a UI library for Angular, similar to what PrimeFaces does for Java
Server Faces (JSF). PrimeNG comes with a large collection of UI components - 70+ at the
time of this writing - that can meet most UI requirements. All the widgets are open source
and free to use, which makes it a compelling choice to boost productivity. Similar to how
JSF is complemented by RichFaces, PrimeFaces, and other component libraries, Angular
developers can leverage PrimeNG, a third party library for their component needs.

For an existing project, adding PrimeNG can be done using npm, as follows:

npm install primeng --save

Some of the components offered do have third party dependencies which would also be
required for setup. You may want to refer the PrimeNG website for details on the setup and
dependencies, as these may change over time.

Reference: https:/ ​/ ​www. ​primefaces. ​org/ ​primeng/ ​#/​setup.

https://www.primefaces.org/primeng/#/setup
https://www.primefaces.org/primeng/#/setup
https://www.primefaces.org/primeng/#/setup
https://www.primefaces.org/primeng/#/setup
https://www.primefaces.org/primeng/#/setup
https://www.primefaces.org/primeng/#/setup
https://www.primefaces.org/primeng/#/setup
https://www.primefaces.org/primeng/#/setup
https://www.primefaces.org/primeng/#/setup
https://www.primefaces.org/primeng/#/setup
https://www.primefaces.org/primeng/#/setup
https://www.primefaces.org/primeng/#/setup
https://www.primefaces.org/primeng/#/setup
https://www.primefaces.org/primeng/#/setup
https://www.primefaces.org/primeng/#/setup

Angular in a Nutshell Chapter 9

[220]

PrimeNG components are represented as modules, thus before using it, you need to import
the relevant module and then refer the component in code. Here's how we can use a
PrimeNG component called InputText in the application.

First, we will add InputTextModule to the app by importing it in the app.module.ts file:

import { InputTextModule } from 'primeng/primeng';
@NgModule({
 declarations: [...],
 imports: [
 InputTextModule,
 ...
]...
})
export class AppModule { }

It's now possible to reference the InputText component from components linked to the
AppModule:

<input type="text" pInputText />

While PrimeNG is a good option to evaluate, there's also Angular Material, which offers
components that conform to Google's Material Design. Angular Material has been built by
the Angular team to integrate seamlessly with Angular. While this library doesn't offer a
large number of components like PrimeNG does today, it certainly shouldn't be ignored as
it is bound to grow in time. As a developer, these choices allow you to evaluate both
libraries and pick the one that meets your needs. It is also possible to use both in the same
application, if you really need to.

Reference: https:/ ​/ ​material. ​angular. ​io/​.

Summary
We have covered some good ground in the Angular world. The fundamental pieces include
modules, components with views, services, and routes. The template syntax offers event
and property bindings along with two-way bindings, making it easy to create interactive
components. Angular's dependency injection makes it easy to tie together the various parts
of the application. The component and its template focus on view logic, while the heavy
lifting of processing logic is moved to services. The modularity features that use NgModule
make it possible to organize a large application to separate feature modules along with the
root AppModule.

https://material.angular.io/
https://material.angular.io/
https://material.angular.io/
https://material.angular.io/
https://material.angular.io/
https://material.angular.io/
https://material.angular.io/
https://material.angular.io/
https://material.angular.io/
https://material.angular.io/

Angular in a Nutshell Chapter 9

[221]

Angular CLI offers a powerful tool for project setup and code generation that makes it easy
to get started with Angular quickly. When working with modules and their components,
it's helpful to use the CLI for generating these components, services, and so on. The CLI not
only makes it easy to generate code, but it also helps in having a consistent convention and
ensures relevant configurations for the generated code is updated. The Maven, such as
package.json, makes it possible to declare third party dependencies along with the
dependency on Angular core framework and its supporting libraries.

With an understanding of these parts, it's time to take our knowledge to the next level by
diving into Angular Forms, and more.

10
Angular Forms

Here we dive further into Angular, and especially how forms are used in single page
applications. There comes a time when you must submit your form data to some backend
server, and Angular offers two approaches to meet this need. You will be learning the
Angular way of dealing with data submission, validation, capturing submitted values, and
some powerful features of Angular forms over the course of this chapter. We will cover:

Two approaches to forms:
Template-driven forms
Reactive forms

Understanding forms with an example
Building custom forms with validations
Checking the state of a form
Forms with NgModel
Reactive forms:

Setting up forms with FormBuilder
Adding validations
Creating a custom validator
Grouping controls
Setting and patching values

Handling forms in Angular
Gaining more control with Reactive Forms

Angular Forms Chapter 10

[223]

Two approaches to forms
Angular offers developers the ability to build feature-rich forms. Form capabilities alone
can make using Angular a compelling choice. In the HTML world, a form is represented by
the <form> tag placed somewhere in the HTML code of a page. Here's a simple form, which
uses bootstrap CSS for styling and captures the user input, such as email and phone:

<form class="form-inline">
 <div class="form-group">
 <input type="text" class="form-control" id="email"
 name="email" placeholder="Email">
 </div>
 <div class="form-group">
 <input type="text" class="form-control" id="phone"
 name="phone" placeholder="Phone">
 </div>
 <button type="submit" class="btn btn-primary">Save</button>
</form>

The form doesn't have the action attribute defined, since it won't directly POST to a
server. The two form inputs, email and phone, are submitted by clicking the Save button.
We could ignore the form and work with each input directly by binding to
the click button and keyboard-based events for the fields, but that would get ugly as our
form grows. We now define a User model that our form will bind to:

export class User {
 constructor(public email: string, public phone: number) {}
}

Let's look at the transition of this form to template-driven and later to the model-driven
approach. But before we begin, we need to import the two modules that enable the form
capabilities:

...
imports: [BrowserModule, FormsModule, ReactiveFormsModule]
...
export class AppModule { }

Angular Forms Chapter 10

[224]

Template-driven forms
To handle form submission, we need to bind to the ngSubmit event, which is placed on the
form tag. Here, the onSave method gets triggered upon form submission. Additionally, we
export the ngForm directive into a local variable, #userForm, which gives us the aggregate
value and validation status of the form. The ngForm directive gets activated on all form tags
because of the FormsModule import. Just think of #userForm as your reference to the form
data and validation state:

<form (ngSubmit)="onSave(userForm)" #userForm="ngForm">...</form>

All children from controls (read inputs) can use ngModel along with the name attribute to
register themselves with the form. We have used the [(ngModel)] syntax, which allows
for two-way data binding. This allows for the changes to be read from and written to our
User model:

<input type="text" class="form-control" id="email"
 name="email" placeholder="Email" [(ngModel)]="user.email">
<input type="text" class="form-control" id="phone"
 name="phone" placeholder="Phone" [(ngModel)]="user.phone">

 The model is defined as a user property in the component code. The onSave method takes
the details submitted and populates the users array represented by Array<User>:

export class BasicFormComponent {
 users: Array<User>;
 user: User;
 constructor() {
 this.users = new Array<User>();
 this.user = new User(null, null); //Initialise the model
 }

 onSave(userForm: NgForm) {
 console.log(userForm.valid);
 let newUser = new User(this.user.email, this.user.phone);
 this.users.push(newUser);
 }
}

Angular Forms Chapter 10

[225]

We are printing the form's validation state by referencing the passed-in form instance. This
would return true even if you just clicked the Submit button, since we haven't added any
validations to the form so far. We will learn about validations in the sections ahead. In
terms of the updated array, it's possible to display the users in our template as shown in
the following code:

<li *ngFor="let u of users">
 Email: {{u.email}}, Phone: {{u.phone}}

Reactive forms
While the template-driven approach makes it easy to set up a form and submit data, it isn't
the most flexible approach. The ReactiveFormsModule has more options, bringing in
more flexibility to our form-based applications. Unlike template-driven forms, reactive
forms don't use the ngModel directive on form elements, but instead use a programmatic
approach. There are three classes that you will come across while using reactive style forms:
FormControl, FormGroup, and FormArray, all of which extend from AbstractControl.

Form input is represented by a FormControl class, while FormGroup and FormArray act
as containers for FormControl instances:

FormGroup: Map that holds the control name as the key and the control itself as a
value
FormArray: It is an aggregator of the FormControl instances that are kept in an
array

Before we cover the theory any further, let's see what the code looks like for a reactive form:

import { FormGroup, FormControl } from '@angular/forms';
...
export class ReactiveFormComponent {
 public userForm: FormGroup;
 constructor() {
 this.userForm = new FormGroup({
 email: new FormControl(),
 phone: new FormControl()
 });
 }
 onSave() { console.log(this.userForm.value); }
}

Angular Forms Chapter 10

[226]

With that, we have our userForm, which is a FormGroup with email and phone values in
FormControl instances. The template then uses [formGroup] property binding on the
<form> tag to map the component's userForm instance. Additionally, each field is mapped
with the formControlName directive, which takes the name of the key used within the
FormGroup:

<form [formGroup]="userForm" (ngSubmit)="onSave()">
 <input type="text" class="form-control" id="email"
 formControlName="email">
 <input type="text" class="form-control" id="phone"
 formControlName="phone">

 <button type="submit">Save</button>
</form>

Unlike our template approach, we don't need to pass the form to the onSave() function, as
the component already holds the userForm reference and can save details as needed. We
will learn more about reactive forms in the upcoming sections.

Understanding forms with an example
Let us explore the world of angular forms by creating one. We will create a page that lists
the tasks in a table and allows for adding new ones. While we can do all of this in a single
component, it's best to strive for the separation of concern. Thus, we split the logic between
two components, one for listing the tasks and another for adding tasks by means of a form:

The task page for the form

Angular Forms Chapter 10

[227]

We use a template-driven approach here, so we rely on FormsModule, which needs to be
imported. Here's how we can build our project:

ng new forms-demo
cd forms-demo
npm install bootstrap@3 --save
ng serve

We added a bootstrap dependency to our project. Bootstrap, though not really required,
does help with building good form layouts.

Update the AppModule import array with a reference to the FormsModule added:

imports: [BrowserModule, FormsModule]

Let's add the two components to our project, one for listing tasks and the other for adding
them. We require TaskListComponent and TaskAddComponent, along with a domain
class for holding the Task detail:

ng g c task-list
ng g c task-add
ng g class task

The task.ts file contains the Task details such as title, created and the name of the
employee to whom the task is assigned. The ? after the variable name is used to indicate it's
an optional argument:

export class Task {
 constructor(public title: string,
 public created: Date, public assigned?: string) { }
}

The task-list.component.ts file (TaskListComponent) holds an array of tasks that it
will render on the UI. Its template also has a child component, TaskAddComponent, which
it uses for adding new tasks to the listing. The parent TaskListComponent listens to the
(created) event, that is, the event emitted from the child component, when a new task is
added:

<div class="action-bar">
 <app-task-add (created)="addTask($event)"></app-task-add>
</div>
<table class="table table-hover table-striped">
 <thead>...</thead>
 <tbody>
 <tr *ngFor="let task of tasks">
 <td>{{task.title}}</td>

Angular Forms Chapter 10

[228]

 <td>{{task.assigned}}</td>
 <td>{{task.created | date: 'dd-MMM-yy'}}</td>
 </tr>
 </tbody>
</table>

We have used the date pipe to format the output of task.created. Our addTask function
on the parent component simply accepts the new task and updates the tasks array:

addTask(task: Task) { this.tasks.push(task); }

Our child component (TaskAddComponent) provides a form for adding the task. The form
takes two inputs, one for the title and another for the assignment. This form has
an Add button that uses an EventEmitter to output the created event, which holds the
new Task instance that the parent is listening for. Here's the task-add.component.html
contents with only the relevant portions:

<form class="form-inline" (ngSubmit)="onSave(taskForm)"
 #taskForm="ngForm">
 ...
 <input type="text" class="form-control" id="title"
 name="title" ngModel>
 <input type="text" class="form-control" id="assigned"
 name="assigned" ngModel>
 ...
 <button type="submit">Add</button>
</form>

We used the ngModel syntax of one-way binding (only write), without the [(...)] syntax.
The corresponding task-add.component.ts contents with the relevant bits is as follows:

export class TaskAddComponent {
 @Output() created: EventEmitter<Task> = new EventEmitter<Task>();
 onSave(taskForm : NgForm) {
 let newTask: Task = taskForm.value;
 newTask.created = new Date();
 /* Fire the event which emits the Task instance */
 this.created.emit(newTask);
 /* Reset clears the form */
 taskForm.reset();
 }
}

Angular Forms Chapter 10

[229]

The child component is responsible for the form and emitting new tasks on submission. It
doesn't know anything about its parent component. In this example, we have achieved the
separation of concerns between the TaskListComponent and TaskAddComponent.
Additionally, we have loosely coupled components, as we use events for parent-child
communication.

Building custom forms with validations
No matter how well you present a form with instructions to users, there's always the need
to check the correctness of the data submitted. In template-driven forms, the ngForm holds
the form's value and state, which can be queried for correctness. Each input that is mapped
to ngModel is part of the form and has its own value and validity status. Angular creates a
FormControl for this mapped input behind the scenes in the template-driven
approach. The form's status and validity is a result of the collective status and validity of its
child form controls. Even if one form control is invalid then the entire form is marked as
invalid:

<form class="form-inline" (ngSubmit)="onSave(userForm)"
 #userForm="ngForm">
 <input type="text" class="form-control" id="email"
 name="email"
 required pattern="[^ @]*@[^ @]*"
 [(ngModel)]="user.email" #email="ngModel">

 <input type="text" class="form-control" id="assigned"
 name="phone" required minlength="9" minlength="9"
 [(ngModel)]="user.phone" #phone="ngModel">

 <button type="submit" [disabled]="!userForm.valid">
 Add
 </button>
</form>

Angular Forms Chapter 10

[230]

We have used standard HTML 5 validations, which Angular detects for us when used on
the inputs. We have also exported the email and phone ngModel references into
#email and #phone local variables. The userForm.valid is checking for the validity of
the form, based on which disabled property of the button is set. Angular dynamically
updates the CSS classes on the form, and its inputs, which can be used to present visual
validation feedback to the user. Here's an example for showing a validation error for
invalid email input, when the input has been touched (focused on) or dirty (modified):

<div class="form-group" [ngClass]="{
 'has-error': email.invalid && (email.dirty || email.touched),
 'has-success': email.valid && (email.dirty || email.touched)
}">

The ngClass directive will dynamically add or remove the CSS class based on the
condition passed.

Checking the state of a form
When debugging angular forms, it's useful to get some diagnostics for the form state. Since
a form can contain multiple form controls, it would be cumbersome to find the state of a
form by going through each of its child form controls. Instead, Angular makes it possible to
get the state of the form from the form group itself. The FormGroup instance tracks the
aggregate form value and validation status. A valid control is one where it passes all
validation checks and thus has its status set as VALID. A control failing one of its validation
checks will be invalid with its status set as INVALID:

{{someForm.valid}}
//Above can return boolean of true or false

{{someForm.status}}
//Above can return string of "VALID" or "INVALID"

The previous snippet shown here will return true or false based on the validity status of
the overall form:

{{someForm.value | json}}
//Above would return JSON representation of the form
// Example: {"email": "test@test.co","phone": 91000 }

Angular Forms Chapter 10

[231]

Forms with NgModel
Understanding what happens behind the scenes when we use ngModel will helps us grasp
the concept of template-driven forms. When an ngModel directive is placed on an element
of the form, such as a text input, Angular creates a form control for us.

NgModel facilitates two-way data binding, which is very useful for reading and writing
data to a model that is linked with the form. We saw an example of this in our user form
when we took the email and phone inputs. The template-driven form uses an ngForm
instance, which we can reference to get the form details; let's look at its internals. If you
print the passed form, the ngForm, you will get the following output:

NgForm {_submitted: true, ngSubmit: EventEmitter, form: FormGroup}

The ngSubmit event is what we were binding to, which is of EventEmitter type. There's a
FormGroup representing the actual form containing a value Object, which can be passed to
a backend. A FormGroup has many properties for holding the form's state and its controls:

controls:{email: FormControl, phone: FormControl}

The FormControl instances are held in the controls property of a FormGroup, which
contains our email and phone inputs that were bound by ngModel. When we use the
ngModel directive on the form elements, Angular creates a FormControl instance from a
domain model and binds them. When ngModel is used without the [(...)] syntax, it
implies one-way binding for writing data back, while the [(ngModel)] syntax implies two-
way data binding. Two-way binding helps with loading an initial value from the domain
model and writing it back as needed.

Reactive forms
We briefly touched on reactive forms earlier; now let's take a deeper look at these. For
complex cases that demand more control over the form, the reactive style comes in handy.

Angular Forms Chapter 10

[232]

In the template-driven example, we explored building forms with validations to capture
email and phone inputs. This was mostly done by using directives such as ngForm and
ngModel in the template. In the reactive style, we take a programmatic approach when
working with forms.

Setting up forms with FormBuilder
In the earlier reactive example seen, we built the FormGroup and FormControl instances
without using a FormBuilder. A more convenient option is to make use of the
FormBuilder which leads to setup code like the following, which is simpler to read:

constructor(fb: FormBuilder) {
 this.formGroup = fb.group({
 email: null,
 phone: null
 });
}

Arguably, the benefits of a builder aren't evident if you have only one or two controls. A
builder adds syntactical convenience, which you do require for readability. There are more
options for setup when adding validations and initial values, as we will see in the next
section.

Adding validations
In reactive style, when using validators we can use either built-in validators or build our
own. The Validators class provides a set of validators for form controls. A validator takes
one or more form controls and returns a map of errors, if any. If no error map is returned,
then the validation has passed. Our form can be updated to validate the fields, like so:

constructor(fb: FormBuilder) {
 this.formGroup = fb.group({
 email: [null,[Validators.required, Validators.minLength(3)]],
 phone: [null, Validators.required]
 });
}

Angular Forms Chapter 10

[233]

Both fields will have null values to begin with and are flagged as required. The phone field
has one more constraint of min length. Even if we mark our input field as required in the
template, Angular will add the validation implicitly. Finally, to display the validation
messages, we can update our template with conditions based on the FormControls state:

<form [formGroup]="userForm">
...
 <input type="number" class="form-control" id="phone"
 formControlName="phone" required>
 <span *ngIf="userForm.get('phone').touched &&
 userForm.get('phone').invalid">
 Invalid Phone

...
</form>

The *ngIf directive is used for checking the form control class's phone validity. By
using the form group's get method, the FormControl instance is retrieved to check
its touched and invalid states. Additionally, Angular also updates the form control
element by dynamically updating the CSS class names on it. So, an Invalid Phone input
state would result in the following CSS class additions on the input element, which we can
then style as needed for feedback:

class="form-control ng-pristine ng-invalid ng-touched"

Creating a custom validator
When creating a custom validator, we need to create a static method accepting
an AbstractControl (our FormControl instance) and return either null for valid input or
an error map for invalid cases. Here's a custom validator that validates if the input phone
number begins with 91:

export class Phonenumber {
 static indiaPhone(control: AbstractControl) {
 const phone = control.value as number;
 if(phone === null || !phone.toString().startsWith("91")) {
 return { india : false};
 }
 return null;
 }
}

Angular Forms Chapter 10

[234]

To use this validator in our reactive user form, which captured email and phone inputs, we
would update the formGroup initialization code as follows:

this.formGroup = fb.group({
 email: [null, Validators.email],
 phone: [null, Phonenumber.indiaPhone]
});

While the Phonenumber.indiaPhone validator didn't have any expensive computation to
be performed, there could be cases where you need to use a service to fetch remote data for
validating the input. Such operations are best handled by async validators. Let's consider
that we need to check for unique emails in the system by validating them against a
database. To do that, we need to return a Promise instance from our static validation
method as shown here:

export class Email {
 static unique(control: AbstractControl) {
 /* USERS could have been loaded from a service call */
 return new Promise(resolve => {
 if (USERS.indexOf(control.value) !== -1) {
 console.log('err', control.value);
 resolve({ unique: 'false' });
 }
 resolve(null);
 });
 }
}

Instead of returning the result, we use the resolve() method to publish the outcome.
During the check, the status of the control and parent becomes PENDING. We need to assign
this async validator as the third argument, which is meant for the async validator array as
shown here:

this.formGroup = fb.group({
 email: [null, Validators.email, Email.unique],
 phone: [null, Phonenumber.indiaPhone]
});

Angular Forms Chapter 10

[235]

Grouping controls
We have learned how to build a form group along with form controls for simpler use cases.
When your form uses a domain model, which has a nested structure, the same can also be
expressed by nesting form groups. Consider we want the user's name, which itself is made
up of first and last names. Here, we would nest the name form group under a parent form
group:

this.userForm = fb.group({
 email: [null, Validators.email, Email.unique],
 phone: [null, Phonenumber.indiaPhone],
 name: fb.group({
 first: '', last: ''
 })
});

In the template code, we need to wrap the form control under a formGroupName directive:

<div class="form-group" formGroupName="name">
 <input ... formControlName="first">
</div>
<div class="form-group" formGroupName="name">
 <input ... formControlName="last">
</div>

The grouped controls can have validators and other settings similar to parent form groups.

Setting and patching values
When using FormControl in reactive style, we often need to update form values as well.
To do this, we can use the FormGroup and refer to its controls property which holds the key
value pair of form control instances:

(property) FormGroup.controls: {
 [key: string]: AbstractControl;
}

To update a particular control, we need to pass its name as a key and then call setValue to
update its value. To update the form model, we can also pass in the object mapped for the
form:

//Single form control update
(<FormControl>this.userForm.controls['phone'])
 .setValue('91');

Angular Forms Chapter 10

[236]

// Update form model
let theUser = new User('a@a.com',919999999);
this.userForm.setValue(theUser);

The setValue is strict and fails if you have any typos or the data doesn't match the
FormGroup structure. This is useful to catch any errors when developing the application.

The patchValue object allows for updating sections or parts of the form data, without
having to set the entire value. Unlike setValue, this is not strict and doesn't provide any
errors upon failure:

this.userForm.patchValue({
 email: 'a@a.com'
})

Handling forms in Angular
Having looked at adding validations to the forms, let us see how we can go about reacting
to specific validation errors. Consider the simple case of the registration of a user using their
email. The form control for the email can have validations for email format and additionally
a validation for checking if the email already exists in the system. The form building can be
similar to what we did in the custom validator section earlier:

email: [null, Validators.email, Email.unique]

In the template code, we could then check for the failure reason by using the hasError
method, which is present on both FormGroup and FormControl. We also used the
touched condition, so the check is made only if input has been touched by the user:

<div *ngIf="userForm.get('email').touched &&
 userForm.get('email').hasError('unique')">
 Email already exists
</div>

The hasError method returns true, if the 'unique' check returns a JSON having {
unique: 'true' } which is provided by our Email.unique validator.

Angular Forms Chapter 10

[237]

Gaining more control with reactive forms
Form handling can become a complex piece of code in any application. Angular's form
model allows us to split the form handling and rendering into independent code. This
separation allows for testing the form processing code without rendering the UI. This
method of building forms is synchronous, giving you better control over the logic and
validation aspects involved in processing a form. You typically come across two kinds of
model with this approach—one is the UI form model and the other is the domain model.
This separation of the data model from the UI also ensures that it isn't written to directly by
the UI, providing for more control to revert changes and preserve the initial state if
required.

After having initialized a form, it's also possible to subscribe to it for any changes:

this.userForm.valueChanges.subscribe(val => {
 console.log('changes', val);
});

We just added an observer to the form, which can then process the data as needed. Now it's
possible to save the form updates as the user makes them, without having to click Submit.

Summary
Since Angular's ReactiveFormsModule makes it possible to build feature-rich forms that
can handle complex dynamic and static forms, it's best to use this module for most large
forms. In the ReactiveFormsModule, we create the model using code, and in the template-
driven approach, it gets created for us by use of NgModel and NgForm directives.
Whichever approach is chosen, a form model does get created consisting of FormGroup,
FormArray, and FormControl.

Angular offers validations that can be processed in a synchronous and asynchronous
manner. At first, the Angular forms can seem daunting given the architectural choices to be
dealt with. But it's this very set of choices offered that makes working with complex forms
possible. In the next chapter, we will begin building a frontend Angular application using
the knowledge gained thus far.

11
Building a Real-World

Application
Armed with the knowledge of Angular, you will learn what it’s like to build an end-to-end
application. You will build an Issue Management System. We earlier developed the
backend services, and now we will expand upon the idea by building a modern single page
application frontend. You will develop the UI with some styling and forms, allowing for the
capturing of the issues and activity done by users of your awesome system. While building
this project, you will work independently from the backend team, and later begin to
integrate with the backend services as we progress. We will cover:

Building an Issue Management System frontend
Setup:

Structuring the project
Working independently of the backend
Data models

Securing the application
Issue list and details:

Rendering data with templates
Injectable service

Issue creation and updates:
Reactive forms
Validation

Issue comments
Chatting on an issue
Production-ready builds

Building a Real-World Application Chapter 11

[239]

Building an Issue Management System
frontend
Before we begin building the Angular frontend app, let's go over the goal of the project once
again.

The system will facilitate a user to access the list of issues and view its details. A user
should also be able to create and update the issue. It would also be helpful to get updates
about various issues in the system. The activities done for an issue can be tracked by means
of comments added to it. It would also be nice to be able to chat with other users.

Part of the goal was addressed when we built the backend microservices. The services,
when put together, provided the needed business logic and persistence of the domain
model. Here's a logical view of a component-based angular app connected to the backend
IMS microservices:

IMS angular app logical view with microservices

Building a Real-World Application Chapter 11

[240]

It is possible and often desirable to have the app development done independently from the
actual microservices. The server-side team could have their own release cycles that may
inadvertently impede the app team's progress. While you do need to connect with the
backend, it's not a must during development, as we can use mock JSON data to simulate the
server's response in some cases. Our aim will be to build the IMS frontend app with all its
components and UI logic. The approach is to focus primarily on the user interface, which
consists of navigation and components with data. The source of our data will be mock JSON
data that the backend services would have sent; this allows us to build the UI
independently wherever possible.

The IMS homepage will show notifications related to issues logged in the system and
additionally display statistics such as the number of issues for the day. The issues page will
be used to display the listing of issues with details, and additionally an option to delete an
existing issue. Here's the issue listing page:

IMS issue listing

Setup
The project can be set up using the CLI and needed packages. For the IMS app, we will
create the ims-ui project and install bootstrap as a dependency. This can be done by
issuing the following commands on the command line:

ng new ims-ui --routing

//Then install bootstrap 3 from within the project folder

npm install bootstrap@3 --save

Building a Real-World Application Chapter 11

[241]

Structuring the project
Let's break the application into screens to be developed, where each screen is represented
by a URL and a corresponding component which is loaded for the same. The application
has two primary views:

Dashboard: Homepage for the user, with a view showing the feed and statistics
Issues: The issues view, which is a listing of the issues in the system

Apart from the primary view, we will also have a chat section on the UI. Within the issues
view, we will have components that support the adding, updating, and deleting of issues.
These can all be grouped under the issues module, which will be a feature module. The
issues edit view will also display the comments regarding an issue. Comments can be
developed as a separate component, but for the simplicity of understanding, we will be
including this within the issue edit component itself. Let's look at the structure of the project
for these features:

src/app
├── app-routing.module.ts
├── app.component.css
├── app.component.html
├── app.component.ts
├── app.module.ts
├── domain
│ ... Entities for our domain model
├── shared
│ ... Shared singleton services
├── home
│ ... Components related to home page
├── issues
│ ... Components related to issue add/edit/listing
├── chat

The code is organised into various folders with each catering to a specific concern within
the application. For our services, we make these singletons, so they are shared between
components. Here's the top-level folders and their purpose:

domain: As the name suggests, this is our TypeScript classes for entities used in
the app, such as Issue, User, Comment, and so on.
shared: This holds the singleton services such as IssuesService,
UsersService, and more, which are shared between components. These services
will be passing and returning the domain classes.

Building a Real-World Application Chapter 11

[242]

home: A logical grouping of components used for a dashboard-based view.
issues: A feature module that is imported in the AppModule and declares the
listing, editing, and adding of components for issues.
chat: Component which uses WebSocket for enabling chat features in the app.

Looking at the home view, we can create two components; one acts as the landing page and
another displays the notifications as feed data. Here's the structure for feed and home
components, which are placed under the home folder. The home folder
has home.component.ts, which is the parent for the feed component. The home folder is
not a module in itself; instead, it is used to group together homepage-related components:

├── home
 ├── home.component.css
 ├── home.component.html
 ├── home.component.ts
 └── feed
 ├── feed.component.css
 ├── feed.component.html
 └── feed.component.ts

Given the Issue module features, we require a view to list issues and to provide the ability
to a user to add new and update existing ones. We use routing to navigate to
IssueAddComponent for presenting the issue creation form and similarly we use another
route to present the IssueEditComponent for updating an issue. Here's the issues-related
module structure:

└── issues
 ├── issue-add
 │ ├── issue-add.component.css
 │ ├── issue-add.component.html
 │ └── issue-add.component.ts
 ├── issue-edit
 │ ├── issue-edit.component.css
 │ ├── issue-edit.component.html
 │ └── issue-edit.component.ts
 ├── issue-listing
 │ ├── issue-listing.component.css
 │ ├── issue-listing.component.html
 │ └── issue-listing.component.ts
 └── issues.module.ts

Building a Real-World Application Chapter 11

[243]

Unlike the homepage-based components, which were only grouped in a logical folder
called home, the issue-based components are represented as a feature module. This is done
by declaring the components as part of the issues.module.ts file and not directly
referencing them in AppModule. Here's the IssuesModule code:

@NgModule({
 imports: [
 CommonModule,
 FormsModule,
 ReactiveFormsModule,
 RouterModule
],
 declarations: [IssueListingComponent,
 IssueAddComponent,
 IssueEditComponent]
})
export class IssuesModule { }

The issues module has three components that deal with issue-related features:

IssueListingComponent: Used to display a tabular list of issues, with the
option to add or edit an issue by navigating to the other component's URL.
IssueAddComponent: This presents a reactive form for adding new issues. It also
displays a dropdown to assign the created issue to a user within the system.
IssueEditComponent: This component will load issue details based on the issue
ID passed to it in the URL. It also queries and displays the comments associated
with an issue.

We import the IssuesModule into our AppModule, along with registering the required
services:

@NgModule({
 declarations: [
 AppComponent,
 HomeComponent,
 FeedComponent,
 ChatComponent
],
 imports: [
 BrowserModule,
 AppRoutingModule,
 HttpClientModule,
 FormsModule,
 IssuesModule
],

Building a Real-World Application Chapter 11

[244]

 providers: [IssuesService, UsersService,
 WebSocketService, AuthService],
 bootstrap: [AppComponent]
})
export class AppModule { }

The providers [...] declares the three services that are used by various components to
interact with the backend.

To work with these views, we need to map the URLs to our components, which is done in
the app-routing.module.ts file, as shown here:

const routes: Routes = [
 { path: '', redirectTo: 'home', pathMatch: 'full' },
 { path: 'home', component: HomeComponent },
 { path: 'issues', component: IssueListingComponent },
 { path: 'issues/create', component: IssueAddComponent },
 { path: 'issue/:id', component: IssueEditComponent }
];
@NgModule({
 imports: [RouterModule.forRoot(routes)],
 exports: [RouterModule]
})
export class AppRoutingModule { }

Thus, for loading the homepage, a user would hit the /home URL, which would in turn
load the HomeComponent. The empty path (' '), used in our routes, facilitates users
landing on the root URL / to be taken to /home. We will cover the homepage in more detail
in the next chapter, when we subscribe to updates from the backend.

Working independently of the backend
When working on the frontend, it is helpful to have dummy data during development. As
we already know the expected JSON structure that our app will be getting, we can create
the needed TypeScript classes and consume the JSON without hitting the microservices for
now.

Here's a site which helps with generating TypeScript code from
JSON http:/ ​/ ​json2ts. ​com/ ​.

http://json2ts.com/
http://json2ts.com/
http://json2ts.com/
http://json2ts.com/
http://json2ts.com/
http://json2ts.com/
http://json2ts.com/
http://json2ts.com/

Building a Real-World Application Chapter 11

[245]

Similarly, you could explore other options such as Swagger for code generation.

So, here's what a single issue JSON object looks like. We map it to our
TypeScript Issue class. The JSON shown is an array containing a single Issue object, for
reference:

[{
 "assignedTo":{
 "id":23,
 "name":"marcus"
 },
 "created":"2017-12-04T14:38:47.654Z",
 "description":"Bug A is critical for product",
 "id":7564,
 "label":"Fix Bug A"
}]

In this project, we maintain various JSON files under the src/assets folder, which will act
as the mock data. The same will be returned by the service class, such as
IssuesService, when queried by a component class. While this isn't really required as
part of our project since we do have the backend microservices available, it's good practice
to keep mocks handy for testing cases, without having to start up the fleet of services, which
can grow over a period of time.

In Angular, we can look up the relative path of this JSON file using HttpClient. We will
explore more details about the HttpClient and its options in the next chapter, but for now,
here's the quick basics of it. A service class would first obtain the HttpClient via injection:

constructor(private http: HttpClient) { }

public get(id: number): Observable<any> {
 return this.http.get('/assets/issue.json');
}

The HttpClient is available, as we imported the HttpClientModule into the AppModule.
The get method on the HttpClient is used to request the contents of
issue.json, holding our dummy issue. The response is an Observable we can use to get
to the underlying data.

Observable isn't an angular specific feature, but is popularized by libraries such as RxJS,
which promote reactive-style programming. While RxJS and Observables have a lot to offer,
it's enough to understand a few basics to get started with it.

Building a Real-World Application Chapter 11

[246]

Think of an observable as a stream of data that one can subscribe to. When new data arrives
on this stream, it will be pushed (not pulled) to the subscribers of this observable. Another
point to remember here is that data will be pushed only if you subscribe to the observable.
So, the call to get(..) won't do anything unless some component code subscribes to it. We
will look at more details on this when we get into the next chapter for integrating with
microservices.

Data models
Here's the applications model in the Angular project, which is based on the backend
services that are consumed. The domain classes are placed under the src/app/domain
folder:

TypeScript classes: Issue and Comment TypeScript classes: User and Chat
export class Issue {
 id: number;
 label: string;
 description: string;
 assignedTo: User;
 created: Date;
comments?:CommentInfo[];
}

export class User {
 id: number;
 name: string;
 email?: string;
 credential?:Credential;
}

export class CommentInfo {
 byUserName: string;
 comment: Comment;
}

export class Comment {
 byUser: number;
 forIssue: number;
 id: number;
 text: string;
}

export class Credential {
 username:string;
 password:string;
}

export class Chat {
 message: string;
 sender: string;
 created: Date;
}

The ? used for some data members is used to signify that these are optional properties.

Building a Real-World Application Chapter 11

[247]

Securing the application
Security concepts go beyond frameworks and applications in general. There are various
strategies employed to secure both the frontend and backend. Solutions can range from
OAuth to JSON Web Tokens (JWT) and more. As of now, our backend service doesn't
have a security mechanism in place. We will look at security, which is better covered in the
chapter aptly titled Securing the application.

There are identity platforms that can be leveraged to build security for our application. One
such platform is Auth0, which solves identity use cases. The single-page application can
follow an OAuth based-flow or use JWT token-based authentication for its authentication
and authorization needs.

For our backend project, we will be using JWT for backend/API validation and for the
frontend app we will store the issued token and pass it during each HTTP call. In this
chapter, we will not be using any login/authentication features as that will only complicate
the setup to begin with. Once we have a working model, we will expand and add the
security layers for completeness. Nevertheless, in our case we do need a user to simulate the
flow, which we can add by having it defined as a dummy data.

We define an AuthService in the application, which will return the current user. This, for
this chapter's purpose, will be a dummy account that is returned. The sample service is
shown here, and will later get replaced by an actual implementation:

const DUMMY: User = {
 id: 1,
 name: 'bob'
}

@Injectable()
export class AuthService {
 public get currentUser() {
 return DUMMY;
 }
}

Building a Real-World Application Chapter 11

[248]

Issue lists and details
The listing component, during its initialization, fetches the issue list by using the
IssuesService class. It holds an Observable declared as issues$ which is initialized in
the component's ngOnInit() life cycle hook. The listing component needs a reference to
the router for navigating to different routes. It also makes use of IssuesService and
UsersService for retrieving issues and getting additional information about the user to
whom the issue is assigned.

Here's our IssueListingComponent code, present in the issue-
listing.component.ts file:

export class IssueListingComponent implements OnInit {
 issues$: Observable<Array<Issue>>;

 constructor(private router: Router,
 private issuesService: IssuesService,
 private usersService: UsersService) { }

 ngOnInit() {
 this.issues$ = this.issuesService.getAll();
 }

 createIssue() {
 this.router.navigate(['/issues/create']);
 }

 editIssue(issue: Issue) {
 this.router.navigate(['/issue', issue.id]);
 }

}

The createIssue and editIssue methods are invoked from the component's template
code to navigate to IssueAddComponent and IssueEditComponent respectively. For
editIssue, we also pass the Issue ID in the URL that needs to be edited. The getAll()
method is defined on the IssuesService class, which returns an Observable. The
issues$ is an Observable containing an array of Issue instances, defined by
Array<Issue>. The $ suffix is a naming convention used for variables of type
Observable, which helps differentiate an observable variable from others.

Building a Real-World Application Chapter 11

[249]

Rendering data with templates
Here's the template for the issue-listing.component.html file:

<div class="top-bar">
 <button class="btn btn-primary"
 (click)="createIssue()">New Issue</button>
</div>
<table class="table table-striped">
 <thead>
 ... omitted code for table headers ...
 </thead>
 <tbody>
 <tr *ngFor="let issue of issues$ | async">
 <td>{{issue.id}}</td>
 <td>
 <a (click)="editIssue(issue)">
 {{issue.label}} - {{issue.description}}

 </td>
 <td>
 <a *ngIf="issue.assignedTo
 (click)="showUserInfo(issue.assignedTo)">
 {{issue.assignedTo?.name}}

 <small>{{issue.assignedTo?.email}}</small>
 </td>
 <td>{{issue.created | date}}</td>
 </tr>
 </tbody>
</table>

The *ngFor is used to loop and create dynamic table rows as per the number of issues
found. The async pipe is used additionally here; the Angular framework manages the
subscription for us. This takes care of subscribing and unsubscribing manually to the
observable.

We only display the name of the user to whom the issue is assigned. Upon clicking the
name, we make an additional call to fetch further details, such as the email ID of the user.
Here's the code for showUserInfo, where we are manually subscribing to the observable
returned and using the result to set the email property on the User type:

showUserInfo(user: User) {
 this.usersService.get(user.id).subscribe(res => {
 user.email = res.email;
 });

Building a Real-World Application Chapter 11

[250]

 }

Injectable service
Our services are bound to the components via injection. These are added to the
providers[..] array of the AppModule. Services, as we learned earlier, can also be added
at a component level, but that will not make them singletons. In the IMS application, we
have some services that we can make use of:

IssuesService: Exposes the getAll, get, add, update, and delete operations for
an issue
UsersService: Exposes the getAll and get operations for a user
WebSocketService: Enables the chatting features in the IMS app

Here's the UsersService defined in the users.service.ts file:

import { Injectable } from '@angular/core';
import { User } from '../domain/user';
import { HttpClient } from '@angular/common/http';
import { Observable } from 'rxjs/Observable';

@Injectable()
export class UsersService {

 constructor(private http: HttpClient) { }

 public getAll(): Observable<Array<User>> {
 return this.http.get<Array<User>>('/assets/users.json');
 }

 public get(id: number): Observable<User> {
 return this.http.get<User>('/assets/user.json');
 }

}

The User type is imported from a relative path and the HttpClient is imported from the
@angular/common/http namespace. The getAll() operation makes use of generic types
for type information and returns an array of User, wrapped in an Observable. The default
JSON response and its mapping to the defined type is handled for us here. Similarly, the
get(id) method returns a single User, which is used for getting further details from issue
listing components and the showUserInfo method. We have used JSON files as our mock
data here.

Building a Real-World Application Chapter 11

[251]

Here's the IssuesService defined in the issues.service.ts file:

import { Injectable } from '@angular/core';
import { HttpClient } from '@angular/common/http';
import { Observable } from 'rxjs/Observable';
import { Issue } from '../domain/issue';

@Injectable()
export class IssuesService {

 constructor(private http: HttpClient) { }

 public getAll(): Observable<Array<Issue>> {
 return this.http.get<Array<Issue>>('/assets/issues.json');
 }

 public get(id: number): Observable<any> {
 return this.http.get('/assets/issue.json');
 }
 ... more methods omitted ...
}

The getAll() method is invoked from the IssueListingComponent to get all the issues
within the system. Notice that this method is very similar to the getAll() defined in
UsersService. This enables us to load a list of issues and display them in the UI.

Issue creation and updates
We make use of ReactiveFormsModule to build the form for adding and updating an
issue. The IssueAddComponent is loaded when the route changes to the /issues/create
URL. During the initialization of the component, the list of users is fetched for whom an
issue can be assigned. The form presents a label and description that needs to be filled
mandatorily, along with the selected user from the dropdown for assigning the issue. For
simplicity and understanding, the add and edit forms are kept mostly the same, the only
difference being that the IssueEditComponent form allows for deleting an existing issue
as well:

Building a Real-World Application Chapter 11

[252]

IMS app issue add components reactive form with debug information

Reactive forms
Here's how we construct our reactive form for the issue. The following code snippet is the
same for IssueAddComponent and IssueEditComponent, which is used to build the form
group for an issue:

//Within the class body
users: User[]; // drop down list of users
public issueForm: FormGroup;

constructor(private router: Router,
 private issuesService: IssuesService,
 private usersService: UsersService,

Building a Real-World Application Chapter 11

[253]

 fb: FormBuilder) {

 this.issueForm = fb.group({
 id: null,
 label: [null, // defaultvalue
 [Validators.required, Validators.minLength(2)],
 null], // no async validators
 description: [null, Validators.required],
 assignedTo: [null, Validators.required]
 });
}

reset() {
 this.issueForm.reset();
}

Within the IssueAddComponent, we save the form by referencing the value of the form
group (issueForm) and pass it to the service method:

onSave() {
 this.issuesService.add(this.issueForm.value).subscribe(res => {
 this.reset();
 });
}

To add a method on the service, we simply use the HttpClient post method to save the
issue data. The response is used to reset the form, so a new issue can be added by the user.

In our IssueEditComponent, we need to consider an existing issue; thus, this component
subscribes to the URL param for changes to the issue ID in the URL, and accordingly loads
the issue. Here's the route subscription code that retrieves the ID value from the URL
param:

this.route.params.subscribe((params: Params) => {
 let id = +params['id'];
...
}

Building a Real-World Application Chapter 11

[254]

After getting the issue ID, the next step required is to load the issue details and also the
comments against an issue, if any. Here, we have two choices—either we load them
sequentially, as in the issue detail first and then the comments, or we load them both in
parallel. Since we only need the ID of an issue for making both the calls, a parallel call will
be more efficient to use:

import { forkJoin } from "rxjs/observable/forkJoin";
...
let issueDetail = this.issuesService.get(id);
let issueComments = this.issuesService.getComments(id);

forkJoin([issueDetail, issueComments]).subscribe(results => {
 this.issue = results[0]; //issue JSON without comments
 this.issue.comments = results[1];// comments JSON
 this.updateForm();
});

Our API return values stored in issueDetail and issueComments are Observables, which
we further pass to the forkJoin RxJS operator. The forkJoin is best used for cases in
which we group together Observables and capture the final value for each. Once both the
Observables emit their value, the result is emitted by forkJoin as a single result containing
our list of response values.

Next, within the updateForm method, we update our issueForm FormGroup instance
with the loaded issue details by using the form's patchValue method:

updateForm() {
 this.issueForm.patchValue({
 id: this.issue.id,
 label: this.issue.label,
 description: this.issue.description,
 assignedTo: {
 id: this.issue.assignedTo.id,
 name: this.issue.assignedTo.name
 }
 });
}

The patch value accepts the JSON object, which maps to the FormGroup elements. This, as
we have learnt, can also be used to patch partial values rather than the entire form, if
required.

Building a Real-World Application Chapter 11

[255]

The onSave() operation for both IssueAddComponent and IssueEditComponent uses
the value property of the issueForm FormGroup. While one calls the add method on the
service, the other calls the update method. Post-updating, we can use the router to navigate
to the /issues URL, which takes the user to the IssueListingComponent view.

On the edit form, a user can also delete an issue; this is done by placing the delete button on
the issue edit template, which invokes the delete method on the component. Here, after
confirming the operation, the issue is removed by making the delete call on the
IssuesService:

deleteIssue() {
 if (confirm("Are you sure you wish to delete?")) {
 this.issuesService.delete(this.issue.id).subscribe(res => {
 this.router.navigate(['/issues']);
 });
 }
}

We will check the template and validation aspects next.

Validation
In our issue's reactive form template, we define two input fields for the label and
description of the issue and a dropdown for selecting the user. These three inputs are
marked as required, and thus we also need to display validation errors if the input has been
touched and is invalid:

<form [formGroup]="issueForm" (ngSubmit)="onSave()">
...
 <input type="text" class="form-control" id="label"
 formControlName="label">
 <span *ngIf="issueForm.get('label').touched &&
issueForm.get('label').hasError('required')">
 Label is required

 <input type="text" class="form-control" id="description"
 formControlName="description">
 <span *ngIf="issueForm.get('description').touched &&
issueForm.get('description').hasError('required')">
 Description is required

...
</form>

Building a Real-World Application Chapter 11

[256]

These validations are as defined when we created our issueForm FromGroup using the
FormBuilder. For the assignedTo property of an issue, we fetch the users and then show
them in the dropdown. Since these are objects, we make use of [ngValue] as we want to
save our selection as an object of type User. The initial option with [ngValue]="null" is
used for showing a default selection of Choose Assignee when no user is chosen:

<select formControlName="assignedTo" id="assignedTo">
 <option [ngValue]="null" disabled>Choose Assignee</option>
 <option *ngFor="let assignedTo of users" [ngValue]="assignedTo">
 {{assignedTo.credential.username}}
 </option>
</select>

While this works for the add form, it needs to be tweaked further when using it as part of
an edit form. In the case of an edit, we need to show the current user who is already
assigned the issue. Thus, the dropdown needs to have the assigned user pre-selected. But
since the option values are objects, Angular would by default perform object instance
comparison, as we require it to perform field level comparison. This can be done by
supplying a comparator to the select element that will compare the option values with the
user's ID:

<select [compareWith]="compareUser"

//The method in component file
compareUser(user1, user2): boolean {
 return user1 && user2 ? user1.id === user2.id :
 user1 === user2;
}

Issue comments
The comments for an issue can be loaded in parallel, as we saw earlier, to issue details.
While this is an option, we can also load it independently. Comments may have been put
under their own component class and service class; that's when the logic and code grows,
and we can keep it simple for this example. Here's how the comments can be loaded:

this.issuesService.getComments(this.issue.id).subscribe(result => {
 this.comments = result;
});

Building a Real-World Application Chapter 11

[257]

Similarly, we can create a simple form to capture the text input of the comment and save it.
Given the simplicity of the form, we can use the template-driven form approach here. The
FormsModule will have to be imported into the IssuesModule. Then, the form can be
created with HTML 5 validations, as shown here:

<form #commentForm="ngForm" (ngSubmit)="onComment(commentForm)" >
 <input type="text" class="form-control" id="comment"
 required [(ngModel)]="comment" name="comment"
 minlength="5" maxlength="30">
 <button type="submit" class="btn btn-default"
 [disabled]="!commentForm.form.valid">Submit</button>
</form>

This will ensure a comment for minlength of 5 chars and for maxlength of 30 chars is
allowed, and on submission, it's passed to the service for adding a comment against the
issue. Before saving the comment, we initialize a Comment object with details of the
comment text, for the issue ID and then by user ID, of the current user of the system:

let newComment = new Comment();
newComment.byUser = this.authService.currentUser.id;
newComment.forIssue = this.issue.id;
newComment.text = this.comment;

Chatting on an issue
We enable the chatting feature within the IMS project by providing a group chat that is
available to all users of the app. A WebSocket object can be used to create and manage
WebSocket connections to a server. This object provides attributes that can be used to listen
for events such as onopen, onclose, and onmessage. We make use of these events to build
our chat component. A WebSocketService in the project provides a connect() method
that the chat component calls when it's initialized. Here's the connect() method of
WebSocketService:

private socket: WebSocket;
private listener: EventEmitter<any> = new EventEmitter();

public connect() {
 const path = `ws://localhost:8084/ims-chat/chat`;
 this.socket = new WebSocket(path);

 this.socket.onmessage = event => {
 this.listener.emit({ "type": "message",
 "data": JSON.parse(event.data) });

Building a Real-World Application Chapter 11

[258]

 }
}

public getEventListener() {
 return this.listener;
}

We connect to the ws:// URL of the chat endpoint and listen for new messages. The code
for the onmessage event uses an EventEmitter to emit the event containing the message
body. The ChatComponent class uses this service class's getEventListener() method to
subscribe to events and push new messages represented by a Chat class instance on an
array. Here's the complete code for ChatComponent:

export class ChatComponent implements OnInit {
 messages: Array<Chat>;
 chatBox: any;

 constructor(private socketService: WebsocketService) { }

 ngOnInit() {
 this.messages = [];

 this.socketService.getEventListener().subscribe(event => {
 if (event.type == "message") {
 let chatMessage: Chat = event.data;
 this.messages.push(chatMessage);
 }
 });
 this.socketService.connect();
 }

 public onSubmit(event: Event) {
 let chatMessage: Chat = new Chat();
 chatMessage.sender = this.authService.currentUser.name;
 chatMessage.message = this.chatBox;
 chatMessage.created = new Date();
 if (this.chatBox) {
 this.socketService.send(JSON.stringify(chatMessage));
 this.chatBox = '';
 event.preventDefault();
 }
 }
}

Building a Real-World Application Chapter 11

[259]

The component's ngOnInit method is used to initiate the WebSocket connection by
invoking the service class's connect method. Then, as the this.listener.emit(...) is
fired from the WebSocketService class, the ChatComponent, which has subscribed to the
listener, receives the message for pushing on the messages array. The onSubmit simply
creates a new Chat objectder, creating message data for sending over the WebSocket. The
message is captured from a text input mapped to chatBox property using a simple form.
We render the messages in our template using *ngFor to loop over the array and to display
new messages as they are received.

Production-ready build
Angular applications, when built, are treated as JavaScript, which is hosted on a server.
Typically, during development, we make use of the ng serve command to quickly start up
our development server and work with the application. This is a convenient method, but
doesn't cater to production needs. This development build running locally of the
application can grow big, as can be seen from the page size that gets downloaded to the
user's browser. The numbers can be greater than 10 MB or 16 MB, which is not something
you want to push to the end users accessing the application.

When we are ready to build and distribute the application, we go through a process of build
optimization. Running the ng build command will produce our output in the /dist
folder of the application. This, and other aspects of the build process, can be tweaked using
the angular-cli.json file. We need to pass the meta flag --prod to the ng command
when creating the build, for performing all the optimizations:

ng build --prod

The meta flag will enable many other flags that are used during the build. Here's a table
showing the difference from a --dev versus --prod build as published on the Angular CLI
Wiki:

Flag --dev --prod

--aot false true

--environment dev prod

--output-hasing media all

--sourcemaps true false

--extract-css false true

Building a Real-World Application Chapter 11

[260]

--named-chunks true false

--build-optimizer false true

The --prod flag also triggers the running of UglifyJS on the code.

For more details, you may wish to visit the CLI Wiki link (https:/ ​/ ​github. ​com/ ​angular/
angular-​cli/​wiki/ ​build).

You can now transfer the contents of the dist folder to your web server of choice. For
example, here's the configuration for running the build on Apache:

<VirtualHost *:80>
 ServerAdmin webmaster@localhost
 DocumentRoot /var/www/html
 ServerName www.example.com

 <Directory "/var/www/html">
 AllowOverride All
 RewriteEngine on

 # Don't rewrite files or directories
 RewriteCond %{REQUEST_FILENAME} -f [OR]
 RewriteCond %{REQUEST_FILENAME} -d
 RewriteRule ^ - [L]

 # Rewrite everything else to index.html
 RewriteRule ^ index.html [L]
 </Directory>

 ErrorLog ${APACHE_LOG_DIR}/error.log
 CustomLog ${APACHE_LOG_DIR}/access.log combined

</VirtualHost>

The Rewrite options are used to ensure the page reloads are handled by directing it to the
index.html page, since we have a single HTML file, index.html. Otherwise, you would
run into 404 errors. We need to also ensure the dist folder contents are copied to the
/var/www/html folder for serving the page.

https://github.com/angular/angular-cli/wiki/build
https://github.com/angular/angular-cli/wiki/build
https://github.com/angular/angular-cli/wiki/build
https://github.com/angular/angular-cli/wiki/build
https://github.com/angular/angular-cli/wiki/build
https://github.com/angular/angular-cli/wiki/build
https://github.com/angular/angular-cli/wiki/build
https://github.com/angular/angular-cli/wiki/build
https://github.com/angular/angular-cli/wiki/build
https://github.com/angular/angular-cli/wiki/build
https://github.com/angular/angular-cli/wiki/build
https://github.com/angular/angular-cli/wiki/build
https://github.com/angular/angular-cli/wiki/build
https://github.com/angular/angular-cli/wiki/build
https://github.com/angular/angular-cli/wiki/build
https://github.com/angular/angular-cli/wiki/build

Building a Real-World Application Chapter 11

[261]

Summary
We have seen the IMS app frontend project and the general features which cover the
common cases, which needs to be addressed when building angular applications. The
project-introduced feature module has its own set of components. We used reactive and
template-driven forms to display and capture user input. We went over the basic use of
HttpClient to retrieve our mock JSON data, allowing us to work independently of the
backend team.

While this is not an exhaustive application, it does lay the foundations for dealing with
CRUD applications with their own complexities. The separation of domains for entities and
shared services is just the beginning for structuring the project. As the project evolves, more
strategies such as core modules, lazy modules, and shared modules can be employed to
allow for scaling the application. In the next chapter, we will explore integrating this
frontend app with our backend microservices.

12
Connecting Angular to Java EE

Microservices
You will now learn to fit both the pieces together—the frontend Angular application with
the backend Java EE microservices. Having learnt the intricacies of both worlds, you can
now feel confident integrating these solutions. This chapter goes over some of the
necessities and real-world practices when working with UI and backend teams, such as:

Integration with microservices
Cross Origin Resource Sharing (CORS)
JSON communication
Observables in Angular
Going to production:

Deploying on the cloud using AWS
Docker release

Connecting Angular to Java EE Microservices Chapter 12

[263]

Integration with microservices
The IMS App, with its various components, can now be put to the test by integrating it with
the actual backend services. In theory, a single developer could work on the microservice,
as well as the application frontend; in practice it is often not the case. In real-world
development scenarios, you may either have teams collocated and working together or they
could be spread out geographically. Since the system is delivered as a whole, it's often
required to run all the different parts or microservices together. For example, there could be
different teams managing each of our backend microservices. A team focused on UI
development using Angular may need a stable version of all the IMS microservices. A
backend team owning the IMS Comments project may require a certain version of IMS
Users to be available during their own development. Docker provides the much needed
solutions to these burning needs by making it possible to run either the whole suite of
services or parts of it as containers.

The IMS App project team could be given Docker images for each of the IMS backend
microservices, which they can boot up in a few seconds without having to worry about the
environment and necessary tooling for each. The whole gamut of IMS, shown in the logical
view, can be run on a single machine for convenience for the developer:

IMS Angular app logical view with microservices

Connecting Angular to Java EE Microservices Chapter 12

[264]

Docker – focusing made easy
While working on local machines it is preferable to have things running locally rather than
having remote machine dependencies. In microservice architecture, the number of services
will always be one plus, making it desirable, if not a necessity, to automate the running of
these processes. Irrespective of developers contributing to a project, you don't want to go
about typing mundane commands just to get your services running, especially when this
needs to be repeated often. Docker not only makes it easy to bundle and ship our
microservices as images, but it also helps with running them locally.

A developer on a team could focus on Angular application aspects, while running multiple
microservices as Docker containers. With the images present locally or pulled from the
Docker registry, a single command such as docker-compose up will have all the needed
processes running on the local machine. A Docker image is not limited to the bundling of
just application servers; one could very well bundle the Angular application as an image
too.

Let's recap our image building steps for the backend. Each of the IMS backend projects is
first built as a WAR file, which is then used to create a Docker image. Here's the example
commands for the IMS Users microservices, which are run from within the /ims-users
directory:

mvn clean package
docker build -t org.jee8ng/ims-users

The docker build command will use the Payara Micro base image and add the ims-
users.war as a layer to it. While it's possible to run the individual projects by using the
docker run .. command, we will make use of the docker-compose command to boot
up all the services. The Users, Issues, Comments, and Chat-based backend projects are defined
in a docker-compose.yml file which makes it possible to issue a single command to have
all of these up and running locally. From within the /putting-together-ims directory,
which is the parent for each of the IMS backend projects, issue the following command:

docker-compose up

This should use the images built earlier and spawn container instances for our IMS
microservices. Pressing Ctrl + C would shutdown the running containers.

When running the docker-compose command, the default path for the configuration file is
./docker-compose.yml . This file is handy for tweaking the runtime environment for the
services, such as limiting the hardware resource usage or having multiple copies of a
service running together. These settings are beyond the scope of this book and better
explained on https:/ ​/ ​docs. ​docker. ​com/ ​.

https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/

Connecting Angular to Java EE Microservices Chapter 12

[265]

Verifying the running services
When you do get the backend dependencies up and running, you want to try invoking
some of them. The postman or curl commands can be your friends too; these come in
handy when trying to perform the typical CRUD operations:

postman: It offers a graphical interface with many useful features, making it
arguably the most widely used REST client.
curl: It is used commonly on Linux, is a command to transfer data to and from a
server. It is meant to be run without user interaction and supports a variety of
protocols.

Postman is a quick and easy way to build a collection of requests for IMS, which can be
done by using this tool. You define a collection in the tool and add multiple requests to it.
These can be saved and run with the click of a button. Using an account, you get the benefit
of syncing, which allows you to get the data across devices:

Postman in action, shows the IMS request for adding a user

The curl command-line utility can be used as a client for URLs, and is available on almost
every Linux system out of the box. Those not fond of graphical interfaces will appreciate the
versatility this tool has to offer. To fetch all users of the project, a simple GET-based HTTP
request can be made by running the curl command as follows:

curl -v -H 'Accept: application/json'
http://localhost:8081/ims-users/resources/users

Similarly, a user can be added via a POST-based request to the IMS Users web resource, like
so:

curl -v -H 'Content-Type: application/json'
http://localhost:8081/ims-users/resources/users -d
'{
 "name": "sam",
 "email": "sam123@ims.org",

Connecting Angular to Java EE Microservices Chapter 12

[266]

 "credential": {"username":"prashant","password":"testing"}
}'

There are multiple flags that can be passed to the command for tweaking its behavior. If
you wanted to test the Service Level Agreement (SLA) of your REST APIs, you could pass
the --connect-timeout and --max-time flags for specifying the maximum time to wait
for a connection to the server and for the whole operation respectively. One could bundle
such calls in a shell script for setting up the needed dataset and tests.

Our choices are not limited to only the curl and postman commands, as there are other
capable REST clients as well. The simplicity of RESTful APIs opens up possibilities for
easily testing it with a variety of tools. We will explore some of these in the next chapter
when we look at the unit testing of IMS microservices.

Cross Origin Resource Sharing (CORS)
In the Angular service code, when you replace the dummy JSON data references with an
actual REST endpoint URL, you would run into CORS errors.

No Access-Control-Allow-Origin header is present on the requested resource.

This is a commonly faced error when invoking resources hosted on a different domain than
the currently hosted site. This requires your endpoints to say that they will allow calls from
certain origins, which is done by passing additional HTTP headers.

CORS is a mechanism that uses additional HTTP headers to let a user
agent gain permission to access selected resources from a server on a
different origin (domain) than the site currently in use. For reference, visit
https:/ ​/​developer. ​mozilla. ​org/​en- ​US/ ​docs/ ​Web/​HTTP/ ​CORS.

Apart from allowing the requests from an origin, browsers will restrict certain HTTP
methods as well. These too would be required to be flagged as allowed by the endpoints of
IMS.

Given, this would be applicable across REST endpoints as a cross-cutting concern, it can be
modified in a ContainerResponseFilter implementation as a provider. Here's the filter
class which is common for IMS backend projects:

@Provider
public class CorsFilter implements ContainerResponseFilter {

 @Override

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Connecting Angular to Java EE Microservices Chapter 12

[267]

 public void filter(ContainerRequestContext requestContext,
 ContainerResponseContext responseContext)
 throws IOException {
 MultivaluedMap<String, Object> headers
 = responseContext.getHeaders();
 headers.add("Access-Control-Allow-Origin", "*");
 headers.add("Access-Control-Allow-Headers",
 "Origin, Content-Type, Accept");
 //More headers can be configured here
 }

}

These headers on a resource enable us to inform the browser of which origins are allowed
and what request headers the client can pass to the server. Using the curl command, we
could examine the response headers for the IMS Users REST endpoint:

$ curl -v -H 'Accept: application/json'
http://localhost:8081/ims-users/resources/users

* Trying ::1...
* TCP_NODELAY set
* Connected to localhost (::1) port 8081 (#0)
> GET /ims-users/resources/users HTTP/1.1
> Host: localhost:8081
> User-Agent: curl/7.54.0
> Accept: application/json
>
< HTTP/1.1 200 OK
< Server: Payara Micro #badassfish
< Access-Control-Allow-Origin: *

Similar to allowing headers and an origin, we can also control the HTTP methods that are
allowed on a resource by using the Access-Control-Allow-Methods HTTP header. This
header will take a comma-separated list of HTTP Methods that will be allowed by the
endpoint.

Connecting Angular to Java EE Microservices Chapter 12

[268]

JSON communication
From a web browser, you could use an XMLHttpRequest object to make HTTP calls, but
this is cumbersome to use and considered low-level API. Angular's HttpClientModule
provides an HttpClient class that we can import and use for invoking the REST
endpoints. This is a convenient class that provides methods equivalent to HTTP methods
found for the web such as GET, POST, PUT, DELETE, and more. The methods provided are
not only simpler to work with but also provide strong typing support. To use this class, we
first import it into the Service classes:

import { HttpClient } from '@angular/common/http';

For the import to work we do need the HttpClientModule to be imported into our
AppModule, as shown here:

@NgModule({
 declarations: [...],
 imports: [
 BrowserModule,
 HttpClientModule,
 ...
],
...
})
export class AppModule { }

Each of the service classes would then declare the HttpClient as a member, which is used
to make the HTTP calls to backend microservices. From within our Service class methods,
we reference the injected HttpClient instance and invoke its methods.

The this.http.get call doesn't trigger an HTTP call, instead it constructs an Observable
for the request which, when subscribed (we do this from the component class), fires the
request through the chain of interceptors defined, if any.

Here's a snippet of the code for invoking a GET request and printing the response to the
console:

this.http.get('http://localhost:8081/ims-users/resources/users/1')
 .subscribe(data => console.log(data));

Connecting Angular to Java EE Microservices Chapter 12

[269]

The subscribe method call is what triggers the HTTP invocation. The data variable holds
our response returned by the REST endpoint URL passed, which would be User JSON, as
shown in the following code:

{
 "credential":{
 "password":"test123",
 "username":"bobby"
 },
 "email":"bob@ims.org",
 "id":1,
 "name":"bob"
}

Typing data.name would give you an error in the editor as there is no type information
associated with the variable. We need to specify the response type to be able to access the
members of the User class. Here's how we can change the invocation code for that:

this.http.get<User>(
'http://localhost:8081/ims-users/resources/users/1')
 .subscribe(data => console.log(data.name));

For a User or Issue list, we would specify the response as an Array of the needed type. So
our Issue list can be fetched by using the following snippet, which is part of the
IssuesService class:

public getAll(): Observable<Array<Issue>> {
 return this.http.get<Array<Issue>>(
 'http://localhost:8082/ims-issues/resources/issues');
}

The getAll method within the IssuesService fetches all the issues from the IMS Issues
microservice, and the response has a type parameter Array<Issue> for holding the Issue
list returned by the REST endpoint. Unlike before, we did not subscribe to the method from
within the service code, as that's something our Component code would do. Angular takes
care of mapping the response JSON to Array<Issue> for us, without writing any extra
lines of code.

Subscribing to any HTTP call can result in either a success response or a failure, which we
should handle. For failure, we get back an HttpErrorResponse object, which has more
details about the response. The code used for subscribing to the Observable returned can
define the handlers, as shown here:

this.issuesService.getAll().subscribe(
 data => {

Connecting Angular to Java EE Microservices Chapter 12

[270]

 console.log(data);
 },
 (err: HttpErrorResponse) => {
 console.log("Error occurred with STATUS CODE", err.status)
 }
);

Similar to the GET method, we can use the other methods for operations such as POST,
PUT, and so on. While in the GET-based call, we did not pass a request body, so we use the
POST and PUT methods to pass JSON types such as Comment or Issue for adding and
updating. Here's how you would invoke the POST operation for adding a new Issue
object:

public add(issue: Issue): Observable<any> {
 return this.http.post(
 'http://localhost:8082/ims-issues/resources/issues', issue);
}

While the operation would succeed, the HttpClient code returns an
HttpErrorResponse; this is because there is no JSON response returned but the client
expects one. Thus, we can specify the responseType explicitly as text to resolve this error:

return this.http.post(
'http://localhost:8082/ims-issues/resources/issues', issue,
 { responseType: 'text' }
);

Here are a few other operations that are performed from the IMS App service code for
adding a Comment against an Issue entry and for updating and deleting Issues in the
system:

public addComment(id: number, comment: Comment) : Observable<any> {
 return this.http.post(
`http://localhost:8083/ims-comments/resources/comments/${id}`,
 comment ,
 { responseType: 'text' }
);
}

public update(issue: Issue): Observable<any> {
 return this.http.put(
`http://localhost:8082/ims-issues/resources/issues/${issue.id}`,
issue);
}

public delete(id: number): Observable<any> {

Connecting Angular to Java EE Microservices Chapter 12

[271]

 return this.http.delete(
`http://localhost:8082/ims-issues/resources/issues/${id}`,
 { responseType: 'text' }
);
}

In practice, we could define the endpoint base URLs as part of our environment
configuration and not hard code it within each method. For more details on the
HttpClient and its methods, you can refer to the Angular doc's website: https:/ ​/
angular.​io/​api/​common/ ​http/ ​HttpClient.

Observables in Angular
You may already know that JavaScript is implemented as a single-threaded event loop,
making it synchronous. Thus, no two script codes can run in parallel. Angular applications
can make use of a Promise, which is part of ECMAScript 6, or Observables from RxJS, for
handling asynchronous data. In the near future, Observables may also be made part of
standard JavaScript.

A Promise allows you to define handlers for an asynchronous event's eventual completion.
We used a Promise in Chapter 10, Angular Forms, too, for performing asynchronous
validation. Here's a sample snippet for using a Promise:

return new Promise((resolve, reject) => {
 if (/* some condition */) {
 resolve("success");
 }
 reject("failed");
});

The function passed to a promise is an executor function that would perform some
asynchronous operations and, on completion, call resolve or reject based on success or
failure respectively.

https://angular.io/api/common/http/HttpClient
https://angular.io/api/common/http/HttpClient
https://angular.io/api/common/http/HttpClient
https://angular.io/api/common/http/HttpClient
https://angular.io/api/common/http/HttpClient
https://angular.io/api/common/http/HttpClient
https://angular.io/api/common/http/HttpClient
https://angular.io/api/common/http/HttpClient
https://angular.io/api/common/http/HttpClient
https://angular.io/api/common/http/HttpClient
https://angular.io/api/common/http/HttpClient
https://angular.io/api/common/http/HttpClient
https://angular.io/api/common/http/HttpClient
https://angular.io/api/common/http/HttpClient

Connecting Angular to Java EE Microservices Chapter 12

[272]

Observables are another option for asynchronous data handling in the form of an
Observable from the RxJS library. An Observable argument is used when you can get
multiple values emitted over time. Only subscribers to Observable are pushed to the data
rather than a pull. If there are no subscribers then there won't be any actual execution. We
can relate this to an observer pattern, where the subject keeps a list of observers that have
subscribed to it and in turn notifies them when its state changes. There are two ways to get
data from the HttpClient methods within Angular applications:

//Approach 1
user: User;
public getUser(id: number) {
 this.http.get(url).subscribe(result => {
 this.user = result;
 });
}

//Approach 2
user$: Observable<User>;
public getUser(id: number) {
 this.user$ = this.http.get(url);
}

// Somewhere in template code use async pipe
{{ (user$ | async) }}

Let's have a look at the two approaches mentioned in the preceding code:

Approach 1: We manually subscribe to Observable, as shown, and get the
resulting value. When using this approach, it's also required to manually
unsubscribe in order to avoid memory leaks.
Approach 2: Angular's HttpClient returns Observable which can be stored as
a reference within the component without subscribing to it. This would then be
used in the template with the async pipe. The advantage of using the pipe is that
the subscription is managed by Angular for us, so there are no memory leaks.
The output of (user$ | async) is the emitted value whenever it's available.

We need to import an Observable for referencing in the code, using the following code:

import { Observable } from 'rxjs/Observable';

Observables are a powerful concept and used heavily in the HttpClient code of Angular.

Connecting Angular to Java EE Microservices Chapter 12

[273]

Dynamic updates using Observables
Let us look at the feed component, which displays the issue updates on the landing page
(home component).

Here's the directory structure for home and feed components within the src/app folder:

├── home
 ├── home.component.css
 ├── home.component.html
 ├── home.component.ts
 └── feed
 ├── feed.component.css
 ├── feed.component.html
 └── feed.component.ts

The home.component.html file simply references the feed component in its template:

<app-feed></app-feed>

The feed.component.html file displays the feed or updates of the newly added Issues
in the system. The ngFor directive is used to loop over an Array of Issue objects:

<table class="table">
 <thead>
 <tr>
 <th>#Id</th>
 <th>Label</th>
 <th>Assigned To</th>
 <th>Created</th>
 </tr>
 </thead>
 <tbody>
 <tr *ngFor="let issue of issues">
 <td>{{issue.id}}</td>
 <td>{{issue.label}}</td>
 <td>{{issue.assignedTo.name}}</td>
 <td>{{issue.created | date}}</td>
 </tr>
 </tbody>
</table>

Connecting Angular to Java EE Microservices Chapter 12

[274]

The code for FeedComponent in the feed.component.ts file connects with the Server-
Sent Event (SSE) endpoint published within the IMS Issues project. The SSE endpoint is an
Event Source which can be consumed within our component.

MDN docs
The EventSource interface is used to receive server-sent events. It
connects to a server over HTTP and receives events in text/event-stream
format without closing the connection. For reference, visit https:/ ​/
developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/ ​API/ ​EventSource.

Let's look at the following code:

import * as EventSource from 'eventsource';
...
export class FeedComponent implements OnInit {
 issues: Array<Issue>;
 url = 'http://localhost:8082/ims-issues/resources/feed';

 constructor() {
 this.issues = [];
 }

 ngOnInit() {
 this.getFeedData(this.url).subscribe(data => {
 this.issues.unshift(data.instance);
 }, err => console.error('Error occurred: ' + err));
 }

 getFeedData(url): Observable<any> {
 let observable = Observable.create(observer => {
 const eventSource = new EventSource(url);

 eventSource.onmessage = x =>
 observer.next(JSON.parse(x.data));
 eventSource.onerror = x =>
 observer.error(console.log('EventSource failed'));

 return () => {
 eventSource.close();
 };
 });
 return observable;
 }

https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/API/EventSource

Connecting Angular to Java EE Microservices Chapter 12

[275]

Think of the getFeedData method as a source for our events, which we subscribe to in the
ngOnInit method of the component. As we receive an Issue instance, we add it to the
beginning of the issues Array using the unshift method. This code has been kept simple,
but it can leverage a shared data approach using a service so the Array data is not lost
during component initialization.

Within the getFeedData, we created Observable by using its create method. The code
within Observable will emit new data by using the observer.next method call and
passing the JSON parsed data. An observer can also return an error which is emitted using
the observer.error method.

For example, we have looked at how to work with Observables which are returned by
HttpClient as well as how to create one ourselves. These concepts are commonly found in
the Angular world especially in the reactive style of programming. For more detailed
coverage on the topic, here is a reference from the reactive docs http:/ ​/​reactivex. ​io/
documentation/​observable. ​html.

Going to production
A trending choice for production infrastructure is to make use of cloud-based services such
as those offered by Google, Amazon, and others. Once we build our shippable code, we
need a place to host and serve the application in a secure and scalable way. These
infrastructure needs, which most DevOps engineers have to deal with, are easier to achieve
with cloud-based offerings. We get fully automated solutions using which you need not
manage the application server or database server. If you desire to have some control and
keep things simpler, then you can use Infrastructure as a Service (IaaS) solutions.

We already covered how to run Docker containers; let's look at the steps for building an
image and hosting it on a cloud environment.

Deploying on the cloud using AWS
AWS provides an on-demand cloud computing solution that many companies and
individuals leverage for their needs. With an account, you can create EC2 machines, a
service that is offered to developers for making it easy to set up computing machines with
minimum upfront cost and effort.

http://reactivex.io/documentation/observable.html
http://reactivex.io/documentation/observable.html
http://reactivex.io/documentation/observable.html
http://reactivex.io/documentation/observable.html
http://reactivex.io/documentation/observable.html
http://reactivex.io/documentation/observable.html
http://reactivex.io/documentation/observable.html
http://reactivex.io/documentation/observable.html
http://reactivex.io/documentation/observable.html
http://reactivex.io/documentation/observable.html
http://reactivex.io/documentation/observable.html
http://reactivex.io/documentation/observable.html

Connecting Angular to Java EE Microservices Chapter 12

[276]

The advantages of moving to the cloud are already documented in various references
published online, thus, without duplicating the information, here are some benefits:

Upfront cost becomes operational cost with pay-as-you-use models
Capacity planning to scale up or down can be met as per business needs
More control over the computing environment in AWS

Here's a logical view of our deployment that utilizes two EC2 instances, one for the web
server and another for the backend services:

Deployment view of IMS App and backend services

Launching the Amazon EC2 instance
The Amazon console provides a step-by-step wizard to launch new EC2 instances. The
typical steps are:

Choose an Amazon Machine Image (AMI), which is like choosing an OS.1.
Select the EC2 instance type, which will define the hardware needs such as2.
memory and processing power.
Configure instance details, which allows for specifying the number of instances3.
and network selection.
Add Storage, which is a choice regarding disk space needed. More storage can be4.
associated with the instance as desired later.

Connecting Angular to Java EE Microservices Chapter 12

[277]

Add tags and define the security group for the instance. A security group is a set5.
of firewall rules that you define for securing access to the instance being
launched.
Review and launch.6.

These steps are enough to start your EC2 instance. In an application such as IMS, we want
to have two EC2 instances, one for the web server and another for the microservices. You
should look at the Amazon docs for the specifics about the setup instructions.

Assuming you have got the instances and the connectivity details, you can connect or SSH
into the box from a terminal of your choice. A clean installation would require you to set up
the needed application services. We have two choices here—we can either opt for setting up
the application server and web server software manually or use Docker images to run
containers.

Installing Docker on Amazon EC2
The installation process of Docker is well documented here https:/ ​/​docs. ​docker. ​com/
engine/​installation/ ​.

Let's install Docker on a 64-bit machine with Ubuntu 16.04, which is the LTS version.
Docker recommends using its repositories for installation, so let's do that by running the
commands here, listed after the ($) prompt:

$ sudo apt-get update

$ sudo apt-get install \
 apt-transport-https \
 ca-certificates \
 curl \
 software-properties-common

With the repository in place, we should now install Docker's official GPG key:

$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key
add -

https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/

Connecting Angular to Java EE Microservices Chapter 12

[278]

Next, we install the repository and then Docker CE, which is the Community Edition:

$ sudo add-apt-repository \
 "deb [arch=amd64] https://download.docker.com/linux/ubuntu \
 $(lsb_release -cs) \
 stable"

$ sudo apt-get update
$ sudo apt-get install docker-ce

That's it, you should now have Docker installed and ready to use.

If you want to avoid the use of sudo when running docker commands,
you need to add your username to the docker group, which is created as
part of the installation. You do need to log out and log back in for the
changes to reflect.

With Docker images, it's easy to pull and run the shipped image that would typically be
uploaded to a registry accessible from the server. While we touched on the basics of setup,
this is by no means a production-grade installation, which is beyond the scope of this book.
Let's look at the steps needed for the creation of a Docker release.

Docker release
The Docker CLI can be used to push an image to a remote registry. The registry itself can be
private-company hosted or a cloud-provided one. Docker Hub, from https:/ ​/​hub. ​docker.
com/​, allows one to pull and push images. We need to create a repository on the website,
before pushing any image of our projects. Think of repository, as a collection of images
which are versioned using tags.

Create an account on the site and then use that to log in with your Docker ID to push and
pull images from Docker Hub. On the site click the "Create repository" option and fill the
repository name, such as ims-comments. This repository would get created as <your-hub-
username>/<repo-name>, you can now pull and push images from and to it. Similar
repositories can be created for the rest of the projects.

On your machine which has the local images, open a terminal and log in to Docker Hub by
typing docker login and entering your credentials when prompted. Here's the command
sample, along with a successful output:

$ sudo docker login --username prashantpro
Password:
Login Succeeded

https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/

Connecting Angular to Java EE Microservices Chapter 12

[279]

You need to replace the username with your own for accessing your account.

Before pushing any image, we should tag it by using the docker tag command, which has
the given syntax docker tag SOURCE_IMAGE[:TAG] TARGET_IMAGE[:TAG].

The SOURCE_IMAGE can be the local IMAGE ID or REPOSITORY_NAME[:TAG]; all these
details will show up as part of running the docker images command. Here's the tag
command which tags our local image to <your-hub-username>/<repo-name>[:<tag>],
which is the repository we created on the Docker Hub site.

$ docker tag org.jee8ng/ims-comments prashantpro/ims-comments:1.0

To see the tagged image, you can run the docker images command.

After tagging the image, we can push the same to our repository on Docker Hub by running
docker push, as shown in the following command:

$ docker push prashantpro/ims-comments:1.0

Your image is now available for everyone to use. The access to the image can be restricted
by using a private repository or having your own Docker registry.

To get the image on a Docker supported machine, such as our new EC2 instance, you would
simply pull and run the image. For example, run the following command:

$ docker pull prashantpro/ims-comments:1.0

This is used for getting our pushed image downloaded to a machine. We can similarly pull
all the project images as needed. If the image is pushed to a public repository, anyone could
pull it, but for a private repository the user needs to first log in to the account using the
docker login command as shown earlier.

To run the pulled images, we first create a user-defined network and then use docker run
command to create our containers using this network, as shown here:

$ docker network create backend

$ docker run --rm -d -p 8081:8080 --name ims-users --network backend
prashantpro/ims-users:1.0

$ docker run --rm -d -p 8083:8080 --name ims-comments --network backend
prashantpro/ims-comments:1.0

Connecting Angular to Java EE Microservices Chapter 12

[280]

This allows us to pull an image and run it as a Docker container. You may recall that ims-
comments project required connecting with ims-users project's service, to fetch the
username for a comment. For this communication to be possible, we make use of our
backend user-defined network, to connect containers. Containers part of the same network
can communicate using another containers name, thus ims-comments can lookup ims-
users by name.

Summary
We have understood the gist of using Angular's HttpClientModule and its HttpClient
class. It's a simple class that offers various HTTP method equivalents and returns
Observable that can be used to perform operations on REST endpoints. REST clients, such
as the postman and curl command, are very handy in a developer's kitty to quickly set up
test data and verify services when required. We learned that JSON communication is made
easy, both by Java EE 8 APIs and Angular's own HttpClient which adds strong type
support.

Amazon's IaaS offers great choice for developers looking to quickly set up instances and
tinker around with their choice of OS and hardware needs. EC2 instances are not only easy
to set up by using online wizards, but can also be made robust and scalable when needed.

Docker has made fast-paced progress in the industry and is becoming a compelling choice
for modern-day deployment needs. We learned that it can be leveraged by teams and
individuals for sharing deployable software code as well as releasing it to a Docker Hub
such as a registry.

In the next chapter, we will cover unit testing for our Java EE services in more detail.

13
Testing Java EE Services

Most developers do understand that writing tests is important, but more often than not,
they are the most neglected of all. Those venturing into the testing arena can easily get
overwhelmed with the jargon and tools that are doing rounds on the internet. It helps if you
re-establish the gains that you have set out to achieve before picking up the tools. We will
go over the testing strategies and how you can build and run the tests for a microservice-
based architecture.

In this chapter, we will cover the following topics:

Testing strategies for microservices:
Understanding the testing pyramid
Microservice testing challenges
Contract testing
Balancing act of tests

Testing in practice:
Integration testing with Arquillian
Acceptance testing with Cucumber

Testing Java EE Services Chapter 13

[282]

Testing strategies for microservices
With the need for agility, development practices exhort the developer to write tests as part
of the day-to-day development. Modern day development advocates testing from the start,
as it isn't something you ignore till the very end. Test-driven Development (TDD) and
Behavior-driven Development (BDD) are ways of ensuring that you write code the way
your tests expect them to behave. Following these approaches arms us with a battery of
tests that shields us from bugs that are hard to find in the tangled web of code.

Now that you have learned most of the basics for building microservices, let's go over it
from a testing perspective. Testing typically revolves around two approaches:

Manual Testing: Humans armed with a browser or other forms of tooling, which
are typically GUI based, perform the tests. These tests tend to be more about
business cases than the internals of a system.
Automated Testing: We have reached the thing that programmers
do—automate. Programmers and, sometimes, test engineers write test scripts
using frameworks and tooling. This facilitates testing of both internal and
external interfaces of a system.

While we will not cover the gamut of the testing universe, we will definitely build enough
knowledge of the essentials for testing. Testing could mean unit, integration, performance,
penetration, acceptance, and more. Rather than focusing on these terminologies, which can
arguably become confusing, let's focus on understanding the basics of automation testing.

Understanding the testing pyramid
Testing a microservice architecture, which can be composed of multiple services, is different
from how we test a monolith. But that doesn't mean that the knowledge and tooling used
traditionally are no longer applicable. When you get into automated testing, you may come
across the term testing pyramid.

The term test automation pyramid was introduced by Mike Cohn in his book, Succeeding
with Agile. It is also commonly referred to as just a test pyramid.

This idea can be used to build a common understanding about the three kinds of tests we
should write and the cost associated with each. Here's the pyramid with some hints about
the number of tests and the cost for the layers shown:

Testing Java EE Services Chapter 13

[283]

Test pyramid: Unit, integration and end to end

At the bottom of this pyramid or triangle, you will notice that Unit tests are given more
weightage, followed by Integration tests, and finally End-End tests. Apart from these three,
there are some more layers that get added for microservices. But before we talk about those
additions, let's look at each of these three a little closer.

Unit testing
This is the simplest form of tests one would write to verify the finer details within the code.
The subject of the test is usually a class or a couple of classes that collaborate with each
other. The code can be tested without starting up a Java EE container, making it extremely
fast to run. The pyramid's layer for unit tests shows that we should invest in building a
larger number of unit tests than others, as these are easier to maintain, and it helps with
faster feedback. Some popular frameworks for unit testing include JUnit and TestNG.

Since most of the Java EE components such as EJBs are just classes with annotations, it is
easy to unit test them without a container. However, doing so does not aid in testing the
component code in it's true Java EE container environment.

Integration testing
To verify that the modules within a microservice are working as expected, we need to
perform coarser grained tests. These help in verifying the components' behavior in the
desired manner in the target environment. We can use mocks for external dependencies,
such as persistence and other external system calls, allowing the target code to be tested,
rather than its external dependencies.

Testing Java EE Services Chapter 13

[284]

Integration testing is often performed by spawning a container, which is either embedded
within the application during tests or referenced remotely. You can think of this as an in-
container testing of components, which includes service layer components and REST
endpoints of the microservice.

Arquillian is a popular framework that can be used to test code against a target application
server.

End-End testing
Once the individual services are tested, it's time to test the whole solution that is delivered
to the end users. Here, you are testing outside-in also termed as black-box testing, where
end-end behavior is tested. These can also be called acceptance testing, as the system is
tested against its external interface. In terms of microservice, this means testing scenarios in
which multiple microservices could be participating to meet the desired goal.

The external dependencies such as a database could be an in-memory database for testing
purposes, which can be disposed at the end of the tests. Another approach is to use
dedicated environments to verify the systems put together, such as a staging environment,
which replicates production to an acceptable level.

This strategy can benefit from BDD where the business scenarios are written as tests.
Cucumber is a widely adopted choice for performing BDD.

In summary, each kind discussed is used to test some facet of code, but you need all three to
test every facet of the application code. If you prefer simpler unit tests, then that's great but
you do need integrated and end-end tests, as the unit tests aren't suited to verify larger
modules and the system as a whole.

Testing Java EE Services Chapter 13

[285]

Microservice testing challenges
Most of the things we know about testing that exist in the Java EE world are still applicable,
but we do need to consider a few new ones for microservices. While unit and integration
testing should mostly be the same in the microservices world, the same can't be said for
End-End testing. We no longer deploy one monolith; instead, we have multiple applications
that can be deployed individually and they all need to work together. Let's assume that we
have three microservices, A, B, and C, with some interaction between them. The
dependencies between services would mean that testing service A might require service B
to be running and if B depends on C, then C needs to be running as well.

Multiple teams could be involved in delivering the end solution, with each team owning
either a single or couple of microservices. Putting together a release can be a challenge, as
one team's failures could block another dependent team's testing. To reduce such cases,
teams not only need to be the owner for development of a service, but also for testing the
service independent of others. Another layer that gets added to the pyramid is contract
testing.

Contract testing
In contract testing, the perspective changes from code within the service to the end
consumer of a service. Looking at any microservice, the first thing that a client or user
would see is that at the surface lies a web resource or REST endpoint that is published to the
outside world. This could be a single REST endpoint or multiple, depending on the size of
the microservice. Here, we focus on the service contract that is published as the interface to
the outside world. This form of testing verifies that the external boundary of a service meets
the consumer's expectations.

A contract test could be provided by the consumer who consumes the service to validate the
expected response for given inputs to a service. These tests by each consumer could then be
made part of the service maintainers test suite. It can help test both service response
structure and time taken for a response.

Microservice delivers an API that serves a business feature, such as find all Issues in the
IMS system. This would be consumed by a client such as our Angular frontend. A test is
meant to give you feedback when you make changes, it can also act as a documentation of
how to use a service.

Testing Java EE Services Chapter 13

[286]

Balancing act of tests
The test pyramid serves as a good reference and helps with getting the right balance of
tests. Writing too many end-end tests may lead to slower build-test-release cycles as these
are brittle and slow to run, while writing too few unit tests can leave unexpected bugs
lurking in the code. In the rush to complete a feature, a team might not write any tests at all.
These issues need to be addressed by putting checks in the deployment pipeline, as well as
the development process. A team must decide for itself the goals and rules it plans to
comply with, rather than following arbitrary ones that don't fit their needs. You do not want
to get caught fighting with slow, meandering, and messy processes that hinder progress.

Building effective tests with good code coverage takes time. You need to be patient and not
get disheartened if it doesn't finish quickly. The writing of tests isn't meant to finish, as
these will grow along with your application code. As the number of tests grows, so does the
confidence to make changes, knowing your tests have got you covered.

A failing acceptance test could indicate missing unit tests, so these can be used to add or
improve the unit testing of code. The goal should be to harden the test suite based on failing
tests, thereby promoting stability of the code. Continuous testing could be your bridge to
take to reach the goal of continuous deployment.

Having discussed the techniques of testing all facets of code, let's look at some of these in
action, starting with unit tests.

Testing in practice
With so many moving parts, it becomes necessary to maintain the quality of the application
at hand. Tests not only ensure correctness of the currently running code but they also help
to ensure that adding new code doesn't break earlier code. Tests should be written not only
for the happy path of what you expect to happen, but also for the negative cases. When
writing tests, you would set up a case and then verify how the code behaves in an expected
manner.

Unit testing would usually be done at a class level or for one or more related classes. This is
often the subject for TDD, which influences the implementation of code to be more testable.
When testing a single class having other dependencies, it is desirable to isolate it from its
dependencies.

Testing Java EE Services Chapter 13

[287]

A common need is to test part of a code without having to worry about its dependencies.
But the code should not be changed directly, instead you hand it its dependencies, which
could be fake or dummy objects that simulate an expected behavior. These kinds of objects
are called mock objects, which help with isolating code under the test. The de facto tool to
use for mocking is arguably Mockito.

Looking back at our IMS Comments project, we had code in the CommentsService EJB
bean class to update the username for a given CommentInfo instance:

public CommentInfo updateName(CommentInfo info) {
 String name = getUserName(info.getComment().getByUser());
 info.setByUserName(name);
 return info;
}

The getUserName method used within the same class was making an external call to the
IMS Users microservice. When testing the updateName method, we want to avoid such
calls, thus we will use a mock here. To make the code more testable, we will move the
getUserName method to its own class. This does two things:

The responsibility of an external call to connect with another service is to push
out as separate code, which becomes a dependency that can be swapped in future
as needed
This code separation makes the code more testable as we can mock the
dependency during tests

The updated code would look like the one shown in the following code block:

@Stateless
public class CommentsService {
 @Inject
 public FindUserName findUserName;
 public CommentInfo updateName(CommentInfo info) {
 String name = findUserName.getUserName(
 info.getComment().getByUser());
 info.setByUserName(name);
 return info;
 }
 ...
}

Testing Java EE Services Chapter 13

[288]

The FindUserName instance is injected using CDI at runtime. The CommentsService class
now doesn't care how the user name is fetched as that logic is encapsulated within another
class. To write a unit test for this class, we need to add certain dependencies in our IMS
Comments, the pom.xml file:

<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.12</version>
 <scope>test</scope>
</dependency>

<dependency>
 <groupId>org.mockito</groupId>
 <artifactId>mockito-all</artifactId>
 <version>1.10.19</version>
 <scope>test</scope>
</dependency>

Now, we define our Test class within the src/test/java folder, under a package such as
org.jee8ng.comments.boundary, which is similar to the package of CommentsService:

//Testing imports required here
import static org.junit.Assert.*;
import static org.mockito.Matchers.*;
import static org.mockito.Mockito.*;
import org.junit.*;

public class CommentsUnitTest {
 CommentsService service;
 @Before
 public void setup() {
 this.service = new CommentsService();
 this.service.findUserName = mock(FindUserName.class);
 when(this.service.findUserName.getUserName(anyLong()))
 .thenReturn("prashant");
 }
 @Test
 public void testCommentInfoUpdatedByName() throws Exception {
 Comment comment = new Comment();
 comment.setByUser(11L);
 CommentInfo updatedInfo = service.updateName(
 new CommentInfo(comment));
 assertNotNull(updatedInfo);
 assertThat(updatedInfo.getByUserName(),
 equalTo("prashant"));
 }

Testing Java EE Services Chapter 13

[289]

}

The setup method annotated with @Before creates a mock for the FindUserName class,
which is done using the mock method from Mockito. We then set this mock as the
dependency for the service class. Additionally, we make use of the when... then construct to
make our mock return a dummy name when its getUserName method is called.

The @Test annotation is the unit test that will run and invoke the updateName method,
post which we use assertions to validate that the method returns the expected values.

This serves as an example of how testing influences writing more flexible code that is both
testable and maintainable.

Integration testing with Arquillian
Arquillian is not a library like JUnit or TestNG, but it integrates with these for running the
tests. You can use it for running tests in an IDE or as part of your builds, using tools like
Maven. It provides a framework for running tests against an application server using a
supported container. Let's write our tests using JUnit and Arquillian put together,
considering that we want to test our service code running under a container.

We will need to update IMS Comments pom.xml to add the additional support for
Arquillian:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.arquillian</groupId>
 <artifactId>arquillian-bom</artifactId>
 <version>1.1.15.Final</version>
 <scope>import</scope>
 <type>pom</type>
 </dependency>
 </dependencies>
</dependencyManagement>

<dependencies>

<dependency>
 <groupId>fish.payara.extras</groupId>
 <artifactId>payara-embedded-all</artifactId>
 <version>5.0.0.Alpha3</version>
 <scope>test</scope>
</dependency>

Testing Java EE Services Chapter 13

[290]

<dependency>
 <groupId>org.jboss.arquillian.junit</groupId>
 <artifactId>arquillian-junit-container</artifactId>
 <scope>test</scope>
</dependency>

<dependency>
 <groupId>fish.payara.arquillian</groupId>
 <artifactId>arquillian-payara-server-4-embedded</artifactId>
 <version>1.0.Beta2</version>
 <scope>test</scope>
</dependency>

... More dependencies of project omitted...
</dependencies>

As our service is run in Arquillian with embedded Payara server as a container, we need
these dependencies of payara-embedded-all, arquillian-payara-server-4-
embedded, and arquillian-junit-container. The versions would be updated by the
time you use these, so always check for the latest stable version to use.

We now need to use an Arquillian JUnit runner, which is done by annotating our Test class
with the @RunWith annotation:

@RunWith(Arquillian.class)
public class CommentsIntegrationTest { .. }

Arquillian requires specifying the deployment details of the code that we want to test using
the @Deployment annotation. This is for creating the needed artifact that gets run against
our embedded container. This strategy allows us to focus on the classes we want to test:

@Deployment
public static WebArchive createDeployment() {
 return ShrinkWrap.create(WebArchive.class,
 "ims-comments.war")
 .addClasses(CommentsService.class,
 Comment.class,
 CommentInfo.class,
 FindUserName.class)
 .addAsWebInfResource(EmptyAsset.INSTANCE,
 "beans.xml")
 .addAsWebInfResource("web.xml")
 .addAsResource("persistence.xml",
 "META-INF/persistence.xml");
}

Testing Java EE Services Chapter 13

[291]

This code runs the ShrinkWrap library to create the archive, which is created by specifying
all our dependencies, including the classes and resources required. The library can also
create Java archives apart from web archives. The arquillian.xml, web.xml, and
persistence.xml are placed under src/test/resources. The arquillian.xml file is
used to configure arquillian and, for our purpose, it just contains the container reference
specifying the use of glassfish-embedded, which is the same for the Payara server as it's
based on Glassfish:

<arquillian....>
 <container qualifier="glassfish-embedded" default="true">
 </container>
</arquillian>

Given this code is part of in-container testing, we can actually use @Inject to get our EJB
component and other resources. The invoked code would run within the container, making
it more real. The setupMock() method is similar to our unit test code, where we mock the
dependency of FindUserName to return a dummy value:

//Code within our test class
@Inject
private CommentsService service;

@Before
public void setupMock() {
 this.service.findUserName = mock(FindUserName.class);
 when(this.service.findUserName.getUserName(anyLong()))
 .thenReturn("prashant");
}

@Test
public void testAddComment() throws Exception {
 Comment comment = new Comment();
 comment.setByUser(11L);
 comment.setForIssue(200L);
 comment.setText("Test");
 comment.setCreated(LocalDateTime.now());

 service.add(comment);
 Optional<Comment> dbComment = service.get(comment.getId());

 assertTrue(dbComment.isPresent());
 assertThat(dbComment.get().getId(), equalTo(comment.getId()));
}

@Test
public void testCommentInfoUpdatedByName() throws Exception {

Testing Java EE Services Chapter 13

[292]

 Comment comment = new Comment();
 comment.setByUser(11L);
 CommentInfo updatedInfo = service.updateName(
 new CommentInfo(comment));

 assertNotNull(updatedInfo);
 assertThat(updatedInfo.getByUserName(), equalTo("prashant"));
}

These two test methods with the @Test annotation would be using an EJB instance that is
provided by the container. This is different than the Unit test run earlier, which instantiated
the CommentsService class using new, which made it work like any other POJO. The
assertXXX methods are statically imported from the org.junit.Assert package, while
equalTo is used from the hamcrest library. Given that it's an integration test running
under a container, these are more expensive to run than our unit tests.

Arquillian serves as a testing platform, which uses supported containers for performing in-
container testing. This helps with verifying components in their expected environment,
which can't be done during unit tests. For example, you can't test an asynchronous behavior
of EJB or verify that a CDI Producer is working as expected without performing container-
based testing. You can look up more about Arquillian and its features using the following
reference website:

http:/​/​arquillian. ​org/ ​features/ ​

http:/​/​arquillian. ​org/ ​guides/ ​shrinkwrap_ ​introduction/ ​

Acceptance testing with Cucumber
We make use of Cucumber for writing our acceptance tests. These tests are written in a
language called Gherkin, which is used by Cucumber for describing the features and
scenarios for our tests. The choice of Gherkin makes reading and writing tests simpler for
both developers and non-developers, for example, testers and business analysts. In BDD, a
term often used is Living Documentation. As developers, we tend to prefer reading and
writing code, thus anything that helps to generate docs based on code is a plus.

http://arquillian.org/features/
http://arquillian.org/features/
http://arquillian.org/features/
http://arquillian.org/features/
http://arquillian.org/features/
http://arquillian.org/features/
http://arquillian.org/features/
http://arquillian.org/features/
http://arquillian.org/features/
http://arquillian.org/features/
http://arquillian.org/guides/shrinkwrap_introduction/
http://arquillian.org/guides/shrinkwrap_introduction/
http://arquillian.org/guides/shrinkwrap_introduction/
http://arquillian.org/guides/shrinkwrap_introduction/
http://arquillian.org/guides/shrinkwrap_introduction/
http://arquillian.org/guides/shrinkwrap_introduction/
http://arquillian.org/guides/shrinkwrap_introduction/
http://arquillian.org/guides/shrinkwrap_introduction/
http://arquillian.org/guides/shrinkwrap_introduction/
http://arquillian.org/guides/shrinkwrap_introduction/
http://arquillian.org/guides/shrinkwrap_introduction/
http://arquillian.org/guides/shrinkwrap_introduction/
http://arquillian.org/guides/shrinkwrap_introduction/
http://arquillian.org/guides/shrinkwrap_introduction/

Testing Java EE Services Chapter 13

[293]

Swagger uses annotation to produce documentation based on the REST API code. We saw
this in Chapter 7, Putting It All Together with Payara, where we bundled the generated
documentation (using the Maven Swagger plugin) within the IMS Users project. The
additional benefit you gain is that the generated UI can also be used by developers for
trying out the API. Here's the Swagger UI for IMS Users, with some of the supported web
resource methods:

Swagger doc generated from IMS Users with UI showing POST action

Similar to Swagger, we can make use of Serenity BDD, which helps in writing acceptance
tests that can later be used as documentation. We don't need to use Serenity for our tests
and can stick to using just Cucumber.

There are two aspects to maintain with Cucumber: the feature files and the step definitions.

Testing Java EE Services Chapter 13

[294]

Feature file
Here's a sample feature file written in Gherkin, that is free from any Java code resulting in a
friendlier syntax for all. This is written as statements describing a feature containing one or
more scenarios that we want to test. This basically contains the Given..When..Then construct,
which describes a condition and action followed by an expected outcome.

A feature file called issues.feature, present under
src/test/resources/feature directory:

Feature: IMS Issues API - Test Env
 Scenario: Issues API Listing
 Given issues api is up and running
 When a request to the Issue listing is made
 Then a list of issues should be returned with 200 status code

The first line starts with a keyword, Feature, which is a feature description. Our sample
feature file has a Scenario keyword called Issues API Listing, which is verified by
executing the Given..When..Then steps.

Step definitions
We can set up a new project dedicated to running the tests against a microservice. Our
microservices could run as standalone Payara Micro instances or as part of Docker
containers.

Here's the Maven POM for our standalone Java project, which defines the cucumber
dependencies along with some additional ones for working with JAXRS APIs.

<dependencies>
 <!-- JAXRS support -->
 <dependency>
 <groupId>org.glassfish.jersey.core</groupId>
 <artifactId>jersey-client</artifactId>
 <version>2.25.1</version>
 </dependency>
 <dependency>
 <groupId>org.glassfish.jersey.media</groupId>
 <artifactId>jersey-media-json-processing</artifactId>
 <version>2.25.1</version>
 </dependency>
 <dependency>
 <groupId>org.glassfish</groupId>
 <artifactId>javax.json</artifactId>
 <version>1.1</version>

Testing Java EE Services Chapter 13

[295]

 </dependency>

 <!-- Cucumber support -->
 <dependency>
 <groupId>info.cukes</groupId>
 <artifactId>cucumber-java</artifactId>
 <version>1.2.5</version>
 <scope>test</scope>
 </dependency>

 <dependency>
 <groupId>info.cukes</groupId>
 <artifactId>cucumber-junit</artifactId>
 <version>1.2.5</version>
 <scope>test</scope>
 </dependency>

 <!-- JUnit -->
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.12</version>
 <scope>test</scope>
 </dependency>

 <!-- To ease our REST API testing and validation -->
 <dependency>
 <groupId>io.rest-assured</groupId>
 <artifactId>rest-assured</artifactId>
 <version>3.0.6</version>
 <scope>test</scope>
 </dependency>

 <!-- Easily parse JSON documents -->
 <dependency>
 <groupId>io.rest-assured</groupId>
 <artifactId>json-path</artifactId>
 <version>3.0.6</version>
 </dependency>

</dependencies>

Testing Java EE Services Chapter 13

[296]

Cucumber also provides a support for Java 8 Lambdas. If you wish to use lambda
expressions when writing the step definitions, then you could use cucumber-java8
dependency instead of cucumber-java.

<dependency>
 <groupId>io.cucumber</groupId>
 <artifactId>cucumber-java8</artifactId>
 <version>1.2.5</version>
 <scope>test</scope>
</dependency>

We define a test class containing the steps described for our feature. We need to translate
the feature file statements into the Java code that gets executed. The test file uses
annotations with similar names to map these statements, as shown in the following code:

//Cucumber imports for Given, When, Then
import cucumber.api.java.en.*;

//Client API for JAXRS
import javax.ws.rs.client.*;
import javax.ws.rs.core.*;

//Assertions
import static org.hamcrest.CoreMatchers.is;
import static org.junit.Assert.assertThat;

public class IssuesSteps {
 private WebTarget targetAPI;
 private Response resp;

 @Given("^issues api is up and running$")
 public void given() throws Throwable {
 Client client = ClientBuilder.newClient();
 this.targetAPI = client.target(
 "http://localhost:8082/ims-issues/resources/issues");
 }

 @When("^a request to the Issue listing is made$")
 public void when() throws Throwable {
 this.resp = this.targetAPI
 .request(MediaType.APPLICATION_JSON)
 .get();
 }

 @Then("^a list of issues should be returned with (\\d+) status code$")
 public void then(int status) throws Throwable {
 assertThat(this.resp.getStatus(), is(status));

Testing Java EE Services Chapter 13

[297]

 }

}

Assuming that we have our IMS Issues microservice running, we can try out the test.
Running a Cucumber test can be done similar to JUnit tests from an IDE or as part of build
steps. If we run the test from an IDE like Eclipse, here's how the test results may appear:

RunCucumberTest file results, shown when run from within Eclipse IDE.

Here, you may have noticed that we used a regex-like syntax to capture the dynamic
parameters described in the feature file:

@Then("^a list of issues should be returned with (\\d+) status code$")

When Cucumber runs, it will parse the (\\d+) value, which was defined as 200 in the
issues.feature file. To be able to run these tests, we do need to add a Cucumber test
runner by using the @RunWith annotation:

@RunWith(Cucumber.class)
@CucumberOptions(
 plugin = {"pretty", "html:target/cucumber"},
 features = {"classpath:feature"}
)
public class RunCucumberTest { }

A report for the tests gets generated under the target/cucumber folder, since we passed
the plugin option to Cucumber.

Testing a REST API is not that complex; you can make use of tools such as Cucumber that
can make your tests readable and more fluid.

Reference: https:/ ​/ ​cucumber. ​io/ ​docs

https://cucumber.io/docs
https://cucumber.io/docs
https://cucumber.io/docs
https://cucumber.io/docs
https://cucumber.io/docs
https://cucumber.io/docs
https://cucumber.io/docs
https://cucumber.io/docs
https://cucumber.io/docs

Testing Java EE Services Chapter 13

[298]

Summary
Testing facilitates change. If you are using unit testing, integration testing, and acceptance
testing, then you are doing the right thing.

Unit tests run fast and are used to test the smallest unit of code such as a method or
class. You could test a unit in a solitary environment by mocking all its other dependencies,
which could be in the form of other classes that it may require. We could also test a unit
along with its collaborating dependencies making it more real. Some components such as
EJBs or Persistence code require a container-like environment to function, thus these are
candidates for integration tests.

Microservice testing is challenging and brings with it new ways of testing code. Contract
testing changes the perspective to be more consumer driven. It's possible to perform
integration and acceptance testing using Arquillian and Cucumber.

In the next chapter, we will build the security layer for IMS frontend and backend.

14
Securing the Application

Building any application without security is a potential risk not only to the consumers of
the application but also to the business owners. Web-based applications not only need to
store data but also transmit it over the wire. Most of these applications would contain
valuable information for a business, thus requiring them to be secured. Whether an
application is for internal use or publicly available, securing it cannot be ignored. Even for
internal applications within a network, security cannot be taken for granted. With the
growing number of security threats, it would only take one of these to seep through the
security holes and cause damage.

In the sections to follow, we will walk through the steps required to secure our backend and
frontend using token-based security. You will learn to secure your applications and
understand the basics of securing an Angular Single Page Application. We will also see how
a JSON Web Token (JWT) can be used as a tool to secure your frontend and backend
communication. You will be able to utilize JWT to implement security in REST APIs and
exchange these with Angular frontend.

In this chapter, we will cover these topics:

Securing the application
JSON Web Tokens (JWT)

Token structure
Generating the token
Verifying the token
Consuming the token in Angular

Route Guards
Exchanging tokens

Injecting an authorization header

Securing the Application Chapter 14

[300]

Neither in Java EE nor MicroProfile
General tips

Securing the application
To secure web-based applications, we would need to first establish the user's identity and
then maintain this authenticated state in some kind of session. Here's a simplified view of
the steps for establishing authentication with the session-based or cookie-based approach:

The client sends a request to a server-side application along with user credentials.1.
The server validates the credentials against a database and creates a session ID,2.
which is persisted on the server and sent as part of the response.
A cookie is set in the user's browser having the session ID.3.
The series of requests that follow would contain the same ID that gets validated4.
by the server against its own database of active session IDs. The server then
remembers who the user is.

This allows for a stateful conversation between client and server, which is typical of
traditional web applications. But with the separation of frontend and backend applications,
this approach needs a revisit. Since microservice backend with RESTful APIs are stateless,
we will not be maintaining any state on the server, such as a user's session ID. This does not
mean that the client needs to keep passing user credentials with each REST API call. The
server needs to somehow authenticate and authorize each request in a stateless way. This is
where token-based authentication shines for securing APIs. JWT is a popular choice for
working with tokens and has gained momentum owing to the rise of Single Page
Applications.

JSON Web Tokens
We employ token-based security for the IMS App, which is a technique for authenticating
users with a server-provided token. JWT is an open standard, defined in RFC 7519 as
follows:

"JWT is a compact, URL-safe means of representing claims to be transferred between two
parties."

Securing the Application Chapter 14

[301]

The token allows us to identify who is the user and also what resources the user is allowed
to access. Knowing this information from the token itself helps reduce database lookups.
The idea of a token is often used in OAuth 2.0 specification as access and refresh tokens.
With a token in each request, the server no longer needs to maintain session ID in its
database and deal with session replication across multiple nodes. Not having to replicate
sessions also aids in horizontal scaling. The client would obtain the token for a user and
then use the same in subsequent calls to the backend APIs, thus it's the client who is
responsible for maintaining the logged in state for a user.

Token structure
The token is a string containing three distinct parts separated by a dot. It contains a header,
payload data, and JWT signature. The token itself is signed, but not encrypted.

So what does it mean when we say the token is signed, but not encrypted? A few things to
consider --sensitive information must be kept in the token, as it can be read; but any change
to the values of a token will get rejected by the issuing party (server) as the signature would
not match. This facilitates passing data between parties, without allowing for any
tampering of the data. Let's look at a token's distinct parts:

Header: This contains metadata for the token along with type of algorithm used
for the signature.
Payload: These are claims or any information that you set. It can contain
information regarding authorization or scope of access granted.
Signature: This is the signature generated by using the algorithm specified in the
header, for both header and payload values.

Here's an encoded form of the token, as a sample:

eyJhbGciOiJIUzUxMiJ9.eyJzdWIiOiJwcmFzaGFudC5wcm9AZ21haWwuY29tIiwidXNlcklkIj
oyMywiaXNzIjoiaHR0cDovL2xvY2FsaG9zdDo4MDgwL21pY3JvLXBhcnRpY2lwYW50cy9yZXNvd
XJjZXMvYXV0aGVudGljYXRlIiwiaWF0IjoxNTE0NDkzMDI4LCJleHAiOjE1MTQ0OTMzMjh9.Ci0
ieXZGGAZs4csZoTZu0VgBLsZxfll71LbAmNQ7tALF6Z4gQLx9WYhd0MciKBFeXmHBdet_K1abdY
ohIQd6rQ

Securing the Application Chapter 14

[302]

The format is header.payload.signature without the quotes, if we decode (not decrypt)
this token, we would find the following information from it:

Token
Part Contents

Header
{
 "typ": "JWT",
 "alg": "HS512" // Short version for HMAC SHA-512
 }

Payload

{
 "sub": "prashant.pro@gmail.com",
 "userId": 23,
 "iss":
"http://localhost:8080/micro-participants/resources/authenticate",
 "iat": 1514493028, // Fri Dec 29 2017 02:00:28 GMT+0530 (IST)
 "exp": 1514493328 // Fri Dec 29 2017 02:05:28 GMT+0530 (IST)
 }

Signature This contains the digital signature created using a secret key, which is the last
part appended to the token.

The header indicates that HS512 is the algorithm that was used to generate the signature,
while the payload contains information about when the token was issued (iat) and its
expiry time (exp) along with other metadata. All of these distinct parts of a token are URL
encoded for transmitting over the network. A secret key would be used to calculate and
verify the signature; the key itself would not be transmitted over the network and is to be
kept secured.

Generating the token
There are many libraries that can be made use of for working with JWT. The following are
two such open source libraries to consider:

JJWT: As per the site, this library aims to be the easiest to use and understand for
creating and verifying JWTs on the JVM. It is available at https:/ ​/​github. ​com/
jwtk/​jjwt.
Java JWT: This is a Java implementation of JWT. It is available at https:/ ​/
github.​com/ ​auth0/ ​java- ​jwt.

https://github.com/jwtk/jjwt
https://github.com/jwtk/jjwt
https://github.com/jwtk/jjwt
https://github.com/jwtk/jjwt
https://github.com/jwtk/jjwt
https://github.com/jwtk/jjwt
https://github.com/jwtk/jjwt
https://github.com/jwtk/jjwt
https://github.com/jwtk/jjwt
https://github.com/jwtk/jjwt
https://github.com/auth0/java-jwt
https://github.com/auth0/java-jwt
https://github.com/auth0/java-jwt
https://github.com/auth0/java-jwt
https://github.com/auth0/java-jwt
https://github.com/auth0/java-jwt
https://github.com/auth0/java-jwt
https://github.com/auth0/java-jwt
https://github.com/auth0/java-jwt
https://github.com/auth0/java-jwt
https://github.com/auth0/java-jwt
https://github.com/auth0/java-jwt

Securing the Application Chapter 14

[303]

Both of these libraries allow for creating and verifying tokens. In IMS backend, we need to
perform two actions—one is to issue a token when a login request is made and another to
verify the token in subsequent requests. Both of these functionalities are added to a library
project, namely IMS Security.

IMS Security
We set up this Java library project with artifactId as ims-security, which will be
added as a dependency to each of our microservice projects. The IMS Security library itself
depends upon the JJWT Maven dependency, as shown here:

<dependency>
 <groupId>io.jsonwebtoken</groupId>
 <artifactId>jjwt</artifactId>
 <version>0.9.0</version>
</dependency>

IMS Security project would contain a TokenIssuer class, which is used to issue JWTs. The
issued JWT would have an expiration date time set on it along with the subject name, which
is part of the token payload data. The token is also signed with a "secret" key before
returning to the caller. We have used HS256, which stands for HMAC-SHA256, a hashing
algorithm that uses a secret key to calculate the signature:

import io.jsonwebtoken.*;
import java.security.Key;
import java.time.LocalDateTime;
import java.time.ZoneId;
import java.util.Date;

public class TokenIssuer {
 //Expiration time of token would be 60 mins
 public static final long EXPIRY_MINS = 60L;

 public String issueToken(String username) {
 LocalDateTime expiryPeriod = LocalDateTime.now()
 .plusMinutes(EXPIRY_MINS);
 Date expirationDateTime = Date.from(
 expiryPeriod.atZone(ZoneId.systemDefault())
 .toInstant());

 Key key = new SecretKeySpec("secret".getBytes(), "DES");
 String compactJws = Jwts.builder()
 .setSubject(username)
 .signWith(SignatureAlgorithm.HS256, key)
 .setIssuedAt(new Date())

Securing the Application Chapter 14

[304]

 .setExpiration(expirationDateTime)
 .compact();
 return compactJws;
 }
}

In the code, the Jwts builder also provides methods for adding multiple claims to the
token. While we could add many claims, it's best to keep in mind that this leads to larger
tokens, which could be a concern when transmitting them often.

The IMS Security library would then get imported into a microservice such as IMS Users,
which would be responsible for authenticating the user and issuing the JWT in its response.
We will publish a URI such as /users/authenticate for authenticating the user. Here's
the method added to the UsersResource class within the IMS Users project:

//Class from IMS Security library
@Inject private TokenIssuer issuer;

@Inject
private UsersService service;

@Path("/authenticate")
@POST
public Response authenticate(Credential creds) {
 boolean valid = service.isValid(creds.getUsername(),
 creds.getPassword());
 if (valid) {
 String token = issuer.issueToken(creds.getUsername());
 return Response.ok(token).build();
 }
 return Response.status(Response.Status.UNAUTHORIZED)
 .build();
}
...

This code simply uses the username and password to verify the user record and
accordingly uses TokenIssuer to issue the JWT as part of a success response.

Securing the Application Chapter 14

[305]

Here's a sample curl command for calling and getting the token from this service:

curl -v -H 'Content-Type: application/json'
http://localhost:8081/ims-users/resources/users/authenticate -d
'{"username": "random@jee8ng.org", "password":"random@jee8ng.org"}'

eyJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJqYW1lc29uQHNzLmNvbSIsImlhdCI6MTUxNDU1MzExMC
wiZXhwIjoxNTE0NTU2NzEwfQ.1vQVF-T4-I1u6RPz2CR9V0iWZywgehoQrCAPnBOPtGQ

With a valid account, we would get back the token, and a 401 response would be returned
for an invalid account by the service. Now that we have issued a token to the caller/client,
we would also need some way to verify the token when the same client passes the token in
its request.

Verifying the token
We need to ensure that each request to our protected resource has a valid token present in
the Authorization request header. There are other ways of passing the token, but it's
fairly standard to use the Authorization request header. Since our backend is represented
by multiple microservice applications, we don't want to duplicate the verification logic in
each of them. A possible choice is to make use of an API Gateway, which acts as a filter or
facade for the backend services. The API Gateway would intercept every request and
validate the JWT before passing the request further to the target microservice. For the
Issue Management System, a simpler strategy would be to use a request filter in the form of
JAXRS ContainerRequestFilter, which would validate the JWT. But we won't be
copying this filter code in each microservice; instead, we code it as part of our IMS Security
library.

The IMS Security library with the JWT filter for dealing with a token is shared by the
backend services. The filter is registered as a Provider and gets activated by merely
making it part of the microservice. Since we want to secure our RESTful APIs, we would
require a marker annotation that can be placed on resource methods, needing to be secured.
Here's the code for the JWTRequired annotation under the IMS Security project:

@javax.ws.rs.NameBinding
@Retention(RUNTIME)
@Target({TYPE, METHOD})

public @interface JWTRequired {
}

Securing the Application Chapter 14

[306]

Here's the @JWTRequired annotation placed on a resource method of the Issues REST API:

@GET
@JWTRequired

public Response getAll() { ... }

We then have an authentication filter, which gets invoked before the resource method is
called, so we can perform the required checks. We use
@Priority(Priorities.AUTHENTICATION) on the filter to ensure that it gets triggered
before any other filters:

@Provider
@JWTRequired
@Priority (Priorities.AUTHENTICATION)
public class JWTFilter implements ContainerRequestFilter {

 @Override
 public void filter(ContainerRequestContext requestContext)
 throws IOException {
 String header = requestContext
 .getHeaderString(HttpHeaders.AUTHORIZATION);

 if (header == null || !header.startsWith("Bearer ")) {
 throw new NotAuthorizedException(
 "Authorization header must be provided");
 }
 // Get token from the HTTP Authorization header
 String token = header.substring("Bearer".length()).trim();

 String user = getUserIfValid(token);
 //set user in context if required
 }
}

The filter is primarily responsible for extracting the Authorization request header value,
which is then passed to the getUserIfValid method, where we utilize the JJWT provided
classes to verify the token. The JJWT library is part of IMS Security, thus available to IMS
Issues as well due to transitive dependency.

Securing the Application Chapter 14

[307]

IMS Issues has transitive dependency on JJWT

Here's the library in action within the getUserIfValid method present in the JWTFilter
class:

private String getUserIfValid(String token) {
 Key key = new SecretKeySpec("secret".getBytes(), "DES");
 try {
 return Jwts.parser().setSigningKey(key)
 .parseClaimsJws(token)
 .getBody()
 .getSubject();
 } catch (Exception e) {
 //don't trust the JWT!
 throw new NotAuthorizedException("Invalid JWT");
 }
}

It's important that the code uses the same "secret" key that was used to generate the
token. Since we had set the username, in the payload of the generated token, we can now
get back the same by reading the payload/claims. Here, that would mean that the
getSubject() method returns our username. On finding the username for a valid token,
the method doesn't throw any exception, thus allowing further processing by the actual
resource method.

Securing the Application Chapter 14

[308]

Consuming token in Angular
We need to present the user a login form, which will be used to post the credentials to our
authentication API. A successful login would return a response containing the issued token
that we can store in the client browser's local storage. Let's assume that we have our login
component with the fields of username and password created. On login submission, we
need to send a POST request to the /users/authenticate URI:

/* src/app/domain/credential.ts */
export class Credential {
 constructor(public username?: string, public password?: string) {}
}

/*
 Code on login submit under, login.component.ts
*/
this.authService.login(
 new Credential(
 this.loginForm.value.username,
 this.loginForm.value.password
)
);

The login component code submits the form, then the authService.login method gets
the token and saves in browsers local storage. The code serves as an example login call, but
in the real world, you would have error handling code around this for dealing with failed
logins. We also need to check in our application components whether the user is
authenticated, that is, logged in. To do so, we would need to check for presence of the token
and its validity.

To work with JWT, we can make use of the angular-jwt library by installing it in the IMS
Application. We need to issue the following command from the project directory to add this
library:

npm install --save @auth0/angular-jwt

Next, we need to import the JwtModule library into our AppModule class (app.module.ts
file) and configure it, so it can fetch the saved token when needed:

import { JwtModule } from '@auth0/angular-jwt';

export function tokenGetterFn() {
 return localStorage.getItem('token');
};

@NgModule({

Securing the Application Chapter 14

[309]

 declarations: [...],
 imports: [
 JwtModule.forRoot({
 config: {
 tokenGetter: tokenGetterFn
 }
 })
...
})
export class AppModule { }]

We then update the AuthService code to get the JwtHelperService library and provide
an authenticated() method, which tells us if the user has a valid token that hasn't
expired. This class also has code for the login and logout behavior. Here's the complete class
for AuthService:

...
import { JwtHelperService } from '@auth0/angular-jwt';

@Injectable()
export class AuthService {
 private BASE_URL = 'http://localhost:8081/ims-users/resources';
 private user: User;

 constructor(private jwtHelper: JwtHelperService,
 private http: HttpClient, private router: Router) { }

 public get authenticated(): boolean {
 const token = this.jwtHelper.tokenGetter();
 if(token) {
 // Check if saved token has not expired
 return !this.jwtHelper.isTokenExpired(token);
 }
 return false;
 }

 public login(userCreds: Credential) {
 let url: string = `${this.BASE_URL}/users/authenticate`;
 return this.http.post(url, userCreds,
 { responseType: 'text' }
).subscribe(tokenResult => {
 localStorage.setItem('token', tokenResult);
 this.user = new User();
 this.user.name = userCreds.username;

 this.router.navigate(['issues']);
 });

Securing the Application Chapter 14

[310]

 }

 /* Logout in AuthService simply removes token */
 public logout() {
 localStorage.removeItem('token');
 this.router.navigate(['login']);
 }

 public get currentUser(): User {
 return this.user;
 }
}

On the Angular side, thus far, we have code for login, which will get us the token for a valid
user account and code for validating the token. Next, we need to restrict our user's access to
certain components or views, which the user may navigate to.

Route Guards
The IMS App makes use of routes to navigate to different views within the application.
Angular provides Route Guards, which can be used as interceptors when routing to views.
We will make use of the CanActivate interface, which is an interface that a class
implements to be the guard deciding whether a route can be activated. Here's the
AuthGuard service class located at src/app/shared/auth-guard.service.ts:

import { CanActivate, Router, ActivatedRouteSnapshot }
from '@angular/router';

@Injectable()
export class AuthGuardService implements CanActivate {

 constructor(private router: Router,
 private authService: AuthService) { }

 canActivate(route: ActivatedRouteSnapshot): boolean {
 //logic to check if user is logged In
 if(this.authService.authenticated) {
 return true;
 }
 this.router.navigate(['login']);
 return false;
 }
}

Securing the Application Chapter 14

[311]

This class would also need to be registered in the list of providers within
the app.module.ts file.

With the CanActivate guard defined, we can reference it within our routes, where we
need access control to be enforced. Here's the updated route defined in the app-
routing.module.ts file:

const routes: Routes = [
 { path: '', redirectTo: 'home', pathMatch: 'full' },
 { path: 'home', component: HomeComponent },
 { path: 'issues', component: IssueListingComponent,
 canActivate: [AuthGuardService] },
 { path: 'issues/create', component: IssueAddComponent },
 { path: 'issue/:id', component: IssueEditComponent },
 { path: 'login', component: LoginComponent }
];

Our AuthGuardService would get invoked just before the user navigates to the /issues
route, allowing for the needed login check. We could similarly put the canActivate guard
against other all other routes that need to be secured.

Let's quickly look at what we have achieved here:

We added a URI for authenticating a user and issuing tokens within the IMS
Users microservice. This was done by making use of IMS Security's
TokenIssuer class.
Additionally, we secured our IMS Issues GET all issues URI by using the
@JWTRequired marker annotation.
The JWTFilter code is used to validate the token before the call is forwarded to
the target API.
On the client side, we created a login component that hits the authentication URI
for obtaining the token. The JWT is stored in the local storage of browser.
We utilized angular-jwt to validate the token, which is done in the
AuthService code.
Lastly, we created a Route Guard to control access to certain routes using
the CanActivate interface.

These steps have enabled security for IMS project. We could also make use of the
decodeToken method of JwtHelperService from the angular-jwt library, which can be
useful for reading the claims within the token. What remains is to pass the generated token
as part of the request when making a call to the IMS Issues API, which is secured.

Securing the Application Chapter 14

[312]

Exchanging tokens
The client needs to send the JWT token as part of every request to the server. This is
typically done by setting the token in the Authorization header. Here's a sample request
header:

Authorization: Bearer
eyJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ0ZXN0IiwiaWF0IjoxNTE0NTU3ODA2LCJleHAiOjE1MT
Q1NjE0MDZ9.kA2mP2jZN-zbtzAmD1BZWkz7XPlV0NM3gcv6RLbOuf0

To set this as part of the HTTP call from Angular, we have a couple of choices:

Use an HttpInterceptor so that all outbound HTTP calls can be manipulated
to have our token in them. This way, you need not pollute each call in the service
code with logic to extract the token and set it in the request header.
Use the service class to extract the JWT (token) and set it as part of the HTTP call.
This is useful if the number of such calls are kept low.

For IMS App, we have only secured the Issues API call, thus it's simpler to go with the
second option for our requirements.

Injecting an authorization header
We do have the token, but for us to be able to invoke the IMS Issues resource method of
/issues, we now need to pass the Authorization request header. To do so, we will
update our getAll() method within IssuesService to pass the token as part of the
request:

@Injectable()
export class IssuesService {

 constructor(private http: HttpClient) { }

 public getAll(): Observable<Array<Issue>> {
 return this.http.get<Array<Issue>>(
 'http://localhost:8082/ims-issues/resources/issues',
 {
 headers: new HttpHeaders().set(
 'Authorization', `Bearer ${localStorage.getItem('token')}`
)
 });
 }
//Other methods omitted
}

Securing the Application Chapter 14

[313]

The second argument to the http.get call are the options that we can pass to set the
headers on this request. We use it to retrieve the 'token' that is saved in the browser's
local storage and then set its value as part of the "Authorization header. We have
prefixed the token value with Bearer and the resulting HTTP call would look like this:

GET /ims-issues/resources/issues HTTP/1.1
Host: localhost:8082
Connection: keep-alive
Accept: application/json, text/plain, */*
Origin: http://localhost:4200
Authorization: Bearer
eyJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ0ZXN0IiwiaWF0IjoxNTE0NTU3ODA2LCJleHAiOjE1MT
Q1NjE0MDZ9.kA2mP2jZN-zbtzAmD1BZWkz7XPlV0NM3gcv6RLbOuf0

With this code in place, now we have completed our last step for using the token to make
calls to our services.

Neither in Java EE nor MicroProfile
While JWT is not a part of Java EE or the MicroProfile, it has become a de facto for token-
based authentications. RESTful services, being stateless, require dealing with security with
each request. So, clients typically would be sending some form of a token along with each
request. This allows the API to create the needed security context for the caller and perform
role-based checks as needed. As token-based authentication is widely adopted and
standards such as OpenID Connect and OAuth2.0 are also token-based, it makes sense to
get the approach standardized.

There is also a proposal to include JWT Role Based Access (JWT RBAC) for MicroProfile,
so in the near future, we may see this get adopted as a standard. This would allow for
working with authentication and authorization policies using tokens in a standard manner.
The strategy of passing security tokens is not just limited for frontend clients to services, but
also between service to service communication. JWT's simplicity of using JSON structure to
define the token format along with the needed security signature and compactness adds to
its growing adoption.

Reference: https:/ ​/ ​github. ​com/ ​eclipse/ ​microprofile- ​jwt- ​auth.

https://github.com/eclipse/microprofile-jwt-auth
https://github.com/eclipse/microprofile-jwt-auth
https://github.com/eclipse/microprofile-jwt-auth
https://github.com/eclipse/microprofile-jwt-auth
https://github.com/eclipse/microprofile-jwt-auth
https://github.com/eclipse/microprofile-jwt-auth
https://github.com/eclipse/microprofile-jwt-auth
https://github.com/eclipse/microprofile-jwt-auth
https://github.com/eclipse/microprofile-jwt-auth
https://github.com/eclipse/microprofile-jwt-auth
https://github.com/eclipse/microprofile-jwt-auth
https://github.com/eclipse/microprofile-jwt-auth
https://github.com/eclipse/microprofile-jwt-auth
https://github.com/eclipse/microprofile-jwt-auth
https://github.com/eclipse/microprofile-jwt-auth

Securing the Application Chapter 14

[314]

General tips
While there's nothing that prevents you from setting your tokens within params or headers
or the body of a request, it's best to stick to a standard, such as in the Authorization
header with the Bearer keyword. Given that these tokens are not encrypted, ensure that
you avoid storing sensitive information in them. You'd most likely rely upon a JWT
implementation to validate or generate the tokens, so it pays to look up if it really is the best
one considered for the task.

Consider creating your tokens with scopes that allow for finer-grained security. Scopes
defined within a token are used to tell us the capabilities or access this token has:

/* Generate token with claims containig scope */
String compactJws = Jwts.builder()
 .setSubject(username)
 .claim("scope", "admin approver")
 .signWith(SignatureAlgorithm.HS256, key)
 .setIssuedAt(new Date())
 .setExpiration(expirationDateTime)
 .compact();

/* When verifying check the scopes within the passed token */
Jws<Claims> claims = Jwts.parser().setSigningKey(key)
 .parseClaimsJws(token);
//Get scope here, which would be "admin approver"
String scope = claims.getBody().get("scope", String.class);

We have set the scope to "admin approver" while generating the token and the same can
be verified during the parsing of claims. In our example of TokenIssuer, we had a fixed
secret key, which is far from what you would want in the real-world project. Ideally, you
would have a pair of an API key and a secret key per client or tenant, which is used for
signing the token. The API key is public and shared with the client, but the secret key is not
shared.

Securing the Application Chapter 14

[315]

As the popularity of the application grows among users, so does the probability of it
becoming a victim to attacks from different corners of the internet. Using cookies as an
authentication mechanism works, but these are susceptible to CSRF attacks. CSRF is also
known by other names such as XSRF or session riding. In this form of an attack, a user
who's logged into the application (site) is directed to another malicious website, which then
tries to impersonate requests to the application site on behalf of the user. To mitigate such
threats, both the client and server need to participate in securing the communication.
Angular already has in-built support when using HttpClient to handle the client-part of
CSRF protection. It's also best to secure data transmission by using the HTTPS protocol
instead of plain HTTP.

Cross-site scripting (XSS) is another common attack faced by web applications. In this form
of an attack, the attacker would inject a script within the running application content
(DOM) to gain access to sensitive information. For example, the application input fields can
be used to insert scripting code such as <script>..</script> block to run arbitrary
JavaScript in the code. These vulnerabilities need to be fixed to prevent XSS attacks. The
good news is that Angular offers built-in security, which intercepts inserted values through
the view that makes use of interpolation or any input bindings. These values are, by default,
not trusted and thus sanitized and escaped by Angular before rendering it on the DOM.
This does not safeguard us from server-side generated HTML templates, thus it's best to
avoid such techniques.

While Angular does provide built-in security checks for XSS and CSRF along with XSSI
(cross-site script inclusion), the onus of application level security for authenticating and
authorizing a user belongs to the developer.

Summary
We gained an understanding of how security tokens are exchanged between web-based
Angular applications and backend APIs. JWT is a standard for representing claims securely
between two parties. The simplicity of JWT makes it a compelling choice as the preferred
token format for use in any token-based authentication solution. There's already a proposal
for including it as part of the MicroProfile standard.

Securing the Application Chapter 14

[316]

Angular comes with built-in security for various kinds of attacks, but still the developers
need to pay attention to not break these. We saw how security can be implemented on the
server side using JWT filters for securing RESTful APIs that are at the boundary of a
microservice. We also saw how the client can obtain a token and then pass it in subsequent
requests, using the HttpClient for Angular. Access control to certain views can be defined
using the CanActivate interface for guarding routes. It's also possible to decode the JWT to
perform role-based checks. All of these features have helped us build a layer of security for
the IMS application, not only for the backend, but also for the frontend.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Java EE 8 Application Development
David R. Heffelfinger

ISBN: 978-1-78829-367-9

Develop and deploy Java EE applications
Embrace the latest additions to the Contexts and Dependency Injection (CDI)
specification to develop Java EE applications
Develop web-based applications by utilizing the latest version of JavaServer
Faces, JSF 2.3.
Understand the steps needed to process JSON data with JSON-P and the new
JSON-B Java EE API
Implement RESTful web services using the new JAX-RS 2.1 API, which also
includes support for Server-Sent Events (SSE) and the new reactive client API

https://www.packtpub.com/application-development/java-ee-8-application-development

Other Books You May Enjoy

[318]

ASP.NET Core 2 and Angular 5
Valerio De Sanctis

ISBN: 978-1-78829-360-0

Use ASP.NET Core to its full extent to create a versatile backend layer based on
RESTful APIs
Consume backend APIs with the brand new Angular 5 HttpClient and use RxJS
Observers to feed the frontend UI asynchronously
Implement an authentication and authorization layer using ASP.NET Identity to
support user login with integrated and third-party OAuth 2 providers
Configure a web application in order to accept user-defined data and persist it
into the database using server-side APIs
Secure your application against threats and vulnerabilities in a time efficient way
Connect different aspects of the ASP. NET Core framework ecosystem and make
them interact with each other for a Full-Stack web development experience

https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5

Other Books You May Enjoy

[319]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
acceptance testing 284
acceptance testing, with Cucumber
 about 292
 feature file 294
 step definitions 294
access modifiers 191
accessors 191
Alpine Linux 110
Amazon EC2 instance
 launching 276
Amazon EC2
 Docker, installing on 277
Amazon Machine Image (AMI) 276
Angular 2 203
Angular CLI 204
 about 203
 project structure 205
 rapid development 206
Angular forms
 approaches 223
 reactive forms 225
 template-driven forms 224
Angular
 about 26, 195, 196
 Bootstrap dependency 208
 Bootstrapping process 202
 components 197
 layout components 197
 modules 201
 observables 271
 pipes 200, 201
 project setup 219
 project, building 218
annotation literals 48, 49
API Gateway, microservices

 benefits 80
Arquillian
 about 284
 references 292
 using, in integration testing 289
arrays
 working with 192
arrow functions 189
asynchronous events 45
asynchronous processing, JAXRS
 Client API 148
 Server API 147
Auth0 247
authentication 33
authorization 33
automated testing 282

B
Bean Validation 2.0 30, 31
Behavior-driven Development (BDD) 282
Boundary-Control-Entity (BCE) pattern 92, 158
Bounded Contexts 73

C
CDI 2.0
 about 12
 asynchronous events 45
 ordered events 46
 references 50
CDI programming model
 about 39
 annotation literals 48, 49
 entity listeners 59, 60
 events, enhancing 44
 RequestContext Activation 43
 validation, applying on entity 62

[321]

 validations, applying on entity 60
classes
 working with 190
Client API
 about 142
 reactive clients 143
 targets 142, 143
coding practices, microservices
 build for failure 75
 documentation 74
 domain-driven design, following 73
 infrastructure tooling 75
components, Angular
 anatomy 197
 in code 199, 200
 lifecycle 198
const
 using 186
container
 versus virtual machine 105
Context and Dependency Injection (CDI)
 about 12, 36, 37
 for Java SE 8 40, 41, 42
 services 40
contract testing 285
Conway's law 70
create, read, update, and delete (CRUD) 56
Cross Origin Resource Sharing (CORS)
 about 144, 266
 reference 266
Cross-site scripting (XSS) 315
CRUD operations
 performing, with entities 56, 57
Cucumber
 reference 297
custom forms
 building, with validations 229

D
data binding
 about 213
 one way 214
 two way 215
data model
 defining 158, 159

default methods 11
Dependency Injection (DI) 36
development and operations (DevOps) 64, 69
Docker containers
 about 103
 running 109
Docker Hub
 reference 278
Docker
 about 69, 75, 264
 custom images, building 108
 distributed teams 107
 Fat JAR approach 109
 installing, on Amazon EC2 277
 multiple microservices, running 171
 skinny WAR approach 110
Dockerfile 108
Domain driven design (DDD) 72
DropWizard 87

E
EclipseLink (RI) 50
ECMAScript (ES) 178
ECMAScript 6 271
end-end testing 284
entities
 CRUD operations, performing with 56, 57
entity providers
 about 140
 MessageBodyReader 140
 MessageBodyWriter 141
Entity-Control-Boundary (ECB) pattern 92, 158
event binding 214
Event Source
 reference 274
exception mapping providers 141
extensions 181

F
Fat JAR approach
 about 87
 with Docker 109
filters 144
form controls

[322]

 grouping 235
form state
 checking 230
forms
 about 226
 custom validator, creating 233
 handling, in Angular 236
 setting up, with form builder 232
 validations, adding 232
 values, patching 235
 values, setting 235
 with NgModel 231
functional decomposition 68
functions
 using 185, 187, 188

G
getters 191
Gherkin 292
grid system 208
guards 218

H
Hello World project
 about 209, 210
 components 212
 events, handling 213
 modules 211
Hibernate Envers 60
HMAC-SHA256 303
HTTP/2
 features 24
HttpClient
 reference 271

I
IceFaces 26
Infrastructure as a Service (IaaS) 275
injection 12
integration testing
 about 283
 with Arquillian 289
integration, with microservices
 about 263

 Docker 264
 running services verification 265
IntelliSense 182
interceptors 144, 145
interfaces
 working with 189
Internet Engineering Task Force (IETF) 123
interpolation 200
Inversion of Control (IoC) 12, 38
issue comments 256, 257
issue lists
 about 248
 data, rendering with templates 249
 injectable service 250
Issue Management System (IMS)
 about 89
 application, securing 247
 backend 244
 backend, building 157
 data models 246
 frontend, building 239, 240
 project, structuring 241
 project. structuring 243
 setup 240
issue's reactive form template
 validation 255
issue
 chatting on 257, 259
 creating 251
 reactive forms, constructing for 252
 updating 251

J
Java 7
Java API for XML Processing (JAXP) 14
Java EE 7
Java EE 8 technologies
 using 158
Java EE 8
 improvements 8
Java EE Security API 1.0 33
Java Heap Memory (JHM) 103
Java JWT
 URL 302
Java Persistence API (JPA)

[323]

 about 50, 51, 158
 entities 52, 53, 54, 55
 using, for persistence 167
Java SE 8
 default methods 11
 lambdas 9
 overview 9
 streams 11
JavaScript 178
JavaScript Object Notation (JSON)
 about 114, 115, 116, 117
 in databases 117
 reference 114
JavaServer Faces (JSF) 26, 219
JAXRS 2.1
 about 20, 22, 23
 validation support 146
JAXRS
 context-based information 152
JBoss 96
JJWT
 URL 302
JSF 2.3
 about 26
 enhancements 29
 features 26
JSON Binding 1.0 18, 20
JSON binding
 about 128
 customisation APIs 131
 JAXB, with default mappings 129
 mapping rules 130
 standardizes current solutions 130
JSON Collectors 17, 126, 127
JSON communication 268, 269
JSON documents
 working with 15, 16
JSON merge patch 125, 126
JSON Merge Patch 17
JSON Patch 17, 123
JSON Pointer 17, 122
JSON processing 119, 120
JSON Processing 1.1 14
JSON Processing API 16
JSON Web Tokens (JWT)

 about 247, 299, 300
 consuming, in Angular 308
 generating 302
 IMS Security 303
 structure 301
 verifying 305
JSON-B
 about 119, 128
 references 18
JSON-P 1.1
 about 120, 121
 enhancements 17
JSON-P
 about 119
 references 14
JTA container managed transactions 56
JUnit 283
JWT Role Based Access (JWT RBAC)
 including, in MicroProfile 313

L
lambda operator 9
lambdas 9, 10
let
 using 186, 187
Living Documentation 292

M
manual testing 282
Maven plugin
 reference 74
MicroProfile
 about 95
 Conference Application 96
 JavaEE support 96
 reference 96
 specification 96
 Spring Cloud 100
 WildFly Swarm 96
microservice architecture
 about 67
 benefits 69
microservices
 building, REST used 160, 162

[324]

 don'ts 83
 dos 83
 testing challenges 285
 testing strategies 282
mock objects 287
Mockito 287
modules, Angular 201
monolith approach
 benefits 65
 drawbacks 67
multiple microservices
 running, in Docker 171
multiple small units of work
 about 72
 coding practices 73
 smaller code base 72

O
OAuth 247
object-relational mapping (ORM) 50
observables, in Angular
 about 271
 dynamic updates 273, 275
 reference 275
OmniFaces 26
one way binding 214
Open API Initiative (OAI)
 about 74
 reference 74
OpenAPI Specification (OAS) 152
OpenWebBeans 40
ordered events 46

P
packages
 dependencies 207
 managing 206, 207
Payara Micro server
 download link 94
Payara Micro
 about 88, 172
 capabilities 172, 173
 CDI event bus 174
 Maven plugin support 174

 MicroProfile support 173
 services, building 89, 90, 91, 92
 services, running 94
 supported APIs 88
Payara
 deploying 170
persistence
 Java Persistence API (JPA), using for 167
pipes, Angular 200, 201
Plain Old Java Objects (POJOs) 39
polyglot persistence 68
Postman 176
PrimeFaces
 about 26
 reference 219
PrimeNG
 about 219, 220
 URL 219
production infrastructure
 about 275
 AWS, used for deploying on cloud 275
production-ready build 259
property binding 214
providers
 about 140
 entity providers 140
 exception mapping providers 141
Push builder API 24

R
React 26
reactive forms
 about 225, 231
 constructing, for issue 252
 control, obtaining 237
requests
 matching, to resource methods 139
resource local transactions 57
resource methods
 requests, matching to 139
resources
 about 135, 137
 URI templates 138
REST
 need for 78, 79

[325]

 used, for building microservices 160, 162
RichFaces 26
Route Guards 310
routerLinkActive 218
routes 216

S
scaled monolith 66
scaling 81
Serenity BDD 293
Server-Sent Events (SSE) 148, 149, 274
Service Level Agreement (SLA) 75, 266
Service Provider Interface (SPI) 40
services 215
Servlet 4.0
 about 23
 Push builder API 24
setters 191
Single Page Applications (SPA) 195
single responsibility 76
skinny WAR approach
 about 88
 with Docker 109
Skinny WARs 171
Spring 30
Spring Boot
 reference 100
Spring Cloud 100
Spring Tool Suite (STS) 100
streams 11
Swagger documentation 165, 166
Swagger
 about 152
 API 153
 Maven plugin 154
 reference 74

T
template-driven forms 224
test automation pyramid 282
Test-driven Development (TDD) 282
testing pyramid
 about 282
 end-end testing 284

 integration testing 284
 unit testing 283
testing strategies, microservices 282
testing
 in practice 286, 288
TestNG 283
tests
 balancing act 286
traditional monoliths 65
traditional WAR file, deployment on server
 logical view 86
two binding 215
type inference 185
types
 using 185
TypeScript
 about 178
 features 179, 180
 Hello World example 183, 184
 reasons, for using 179

U
Uber JAR 171
unit testing 283
URI templates 138
users resource 92

V
Vaadin 30
validation support, JAXRS 2.1 146
validations
 custom forms, building with 229
variables
 using 184
virtual machines (VM)
 about 104
 versus container 105
Visual Studio Code (VS Code)
 about 181
 debugging feature 182
 IntelliSense 182
 SCM support 183
 terminal 183

W
web archive (WAR) 65, 86
web-based application
 authorisation header, injecting 312
 best practices 314
 Route Guards 310
 securing 300
 tokens, exchanging 312
WebService Description Language (WSDL) 74
WebSockets 150

Weld 12, 40
WildFly Swarm
 about 96
 reference 97

X
XMLs 118

Y
Yasson project 18

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: What's in Java EE 8?
	Improvements in EE 8
	Overview of Java SE 8
	Lambdas, streams, and default methods

	CDI 2.0
	JSON Processing 1.1
	Working with JSON documents
	JSON Processing API

	JSON Binding 1.0
	JAXRS 2.1
	Servlet 4.0
	Server Push

	JSF 2.3
	Bean Validation 2.0
	Java EE Security API 1.0
	Summary

	Chapter 2: The CDI Advantage Combined with JPA
	Introduction to context and dependency injection
	CDI programming model
	CDI for Java SE 8
	RequestContext Activation
	Enhancing events
	Asynchronous events
	Ordered events

	Annotation literals

	Java Persistence API (JPA)
	Entities
	Performing CRUD operations with entities
	Entity listeners
	Validations the entity

	Summary

	Chapter 3: Understanding Microservices
	Traditional monoliths
	Need for delivering new features quicker
	Team size and dependency

	Multiple small units of work
	Smaller code base
	Coding practices
	Follow domain-driven design
	Document it
	Build for failure
	Infrastructure tooling as part of code

	Single responsibility
	The need for REST
	Scale only what needs to scale
	The bad parts, yes, there are a few
	Summary

	Chapter 4: Building and Deploying Microservices
	Fat JAR
	Fat JAR approach

	Skinny WAR
	Examples using Payara Micro
	Building our services
	Running our services

	MicroProfile
	Java EE already has support
	WildFly Swarm
	Spring Cloud

	Docker containers
	Working with distributed teams
	Building custom images
	Running multiple containers
	Fat JAR or Skinny WAR with Docker
	The choice

	Summary

	Chapter 5: Java EE Becomes JSON Friendly
	REST prefers JSON
	JSON, a first-class citizen
	JSON in databases

	No more third-party libraries
	JSON processing
	JSON-P 1.1
	JSON Pointer and JSON Patch
	JSON merge patch
	JSON Collectors

	JSON binding
	Similar to JAXB with default mappings
	Standardizes current solutions (Jackson, Gson, and so on)
	Mapping between classes and JSON
	Customisation APIs

	Few tips in practice
	Summary

	Chapter 6: Power Your APIs with JAXRS and CDI
	Resources
	URI templates
	Matching requests to resource methods

	Providers
	Entity providers
	Exception mapping

	Client API
	Targets
	Reactive clients

	Filters and interceptors
	Validation
	Asynchronous processing
	Server-Sent Events
	WebSockets
	Context
	Swagger
	API
	Maven plugin

	Summary

	Chapter 7: Putting It All Together with Payara
	Building an Issue Management System (IMS) backend
	Using Java EE 8 technologies
	Defining the data model
	Building microservices using REST
	Swagger documentation
	Using JPA for persistence
	Deploying on Payara
	Uber JAR and Skinny WARs

	Running multiple microservices in Docker
	Learning to use the new features of Payara Micro
	Extras
	CDI event bus
	Tips and tricks

	Summary

	Chapter 8: Basic TypeScript
	Getting started with TypeScript
	Why use it?
	Features
	Visual Studio Code
	IntelliSense
	Debugging
	SCM support
	Terminal

	Hello World example

	Using variables, types, and functions
	Type inference
	Using const
	Using let
	Using functions
	Arrow functions

	Working with classes and interfaces
	Interface
	Classes
	Inheritance

	Working with arrays
	Summary

	Chapter 9: Angular in a Nutshell
	Understanding Angular
	Anatomy of a component
	Components live and die
	Component in code

	Pipes
	Modules
	Bootstrapping process

	Angular 2 and beyond
	Angular CLI
	Project structure
	Rapid development

	Managing packages
	Dependencies

	Bootstrap dependency

	A better Hello World
	Modules
	Components
	Handling events

	Data binding
	One way
	Two way

	Services
	Routes
	routerLinkActive

	Building a project
	Setup and run sample
	Introduction to PrimeNG

	Summary

	Chapter 10: Angular Forms
	Two approaches to forms
	Template-driven forms
	Reactive forms

	Understanding forms with an example
	Building custom forms with validations
	Checking the state of a form
	Forms with NgModel
	Reactive forms
	Setting up forms with FormBuilder
	Adding validations
	Creating a custom validator
	Grouping controls
	Setting and patching values

	Handling forms in Angular
	Gaining more control with reactive forms
	Summary

	Chapter 11: Building a Real-World Application
	Building an Issue Management System frontend
	Setup
	Structuring the project
	Working independently of the backend
	Data models

	Securing the application
	Issue lists and details
	Rendering data with templates
	Injectable service

	Issue creation and updates
	Reactive forms
	Validation

	Issue comments
	Chatting on an issue
	Production-ready build
	Summary

	Chapter 12: Connecting Angular to Java EE Microservices
	Integration with microservices
	Docker – focusing made easy
	Verifying the running services

	Cross Origin Resource Sharing (CORS)
	JSON communication
	Observables in Angular
	Dynamic updates using Observables

	Going to production
	Deploying on the cloud using AWS
	Launching the Amazon EC2 instance
	Installing Docker on Amazon EC2

	Docker release

	Summary

	Chapter 13: Testing Java EE Services
	Testing strategies for microservices
	Understanding the testing pyramid
	Unit testing
	Integration testing
	End-End testing

	Microservice testing challenges
	Contract testing
	Balancing act of tests

	Testing in practice
	Integration testing with Arquillian
	Acceptance testing with Cucumber
	Feature file
	Step definitions

	Summary

	Chapter 14: Securing the Application
	Securing the application
	JSON Web Tokens
	Token structure
	Generating the token
	IMS Security

	Verifying the token
	Consuming token in Angular

	Route Guards
	Exchanging tokens
	Injecting an authorization header

	Neither in Java EE nor MicroProfile
	General tips
	Summary

	Other Books You May Enjoy
	Index

