

Spring Security
Third Edition

Secure your web applications, RESTful services, and
microservice architectures

Mick Knutson
Robert Winch
Peter Mularien

BIRMINGHAM - MUMBAI

Spring Security

Third Edition
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2010

Second edition: December 2012

Third edition: November 2017

Production reference: 1241117

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78712-951-1

www.packtpub.com

http://www.packtpub.com

Credits

Authors
Mick Knutson
Robert Winch
Peter Mularien

Copy Editors
Pranjali Chury
Safis Editing

Reviewers
Tejaswini Mandar Jog
Jay Lee

Project Coordinator
Vaidehi Sawant

Commissioning Editor
Aaron Lazar

Proofreader
Safis Editing

Acquisition Editor
Karan Sadawana

Indexer
Francy Puthiry

Content Development Editor
Zeeyan Pinheiro

Graphics
Jason Monteiro

Technical Editor
Vibhuti Gawde

Production Coordinator
Shantanu Zagade

About the Authors
Mick Knutson has over 25 years of experience in the IT industry. As a passionate and
experienced enterprise technology consultant, Java architect, and software developer, he
looks forward to using his unique professional experience to help students learn about
software development in an effective, practical, and convenient manner.

Mick's real-world expertise comes from providing individuals and mid-to-large-size
businesses with advanced software consulting and training. He has collaborated with many
notable clients and partners including VMware, Spring Source, FuseSource, Global
Knowledge, and Knowledge United. His technical expertise includes OOA/OOD/OOP,
Java, Java EE, Spring Security, Oracle, Enterprise Integration, and Message-Oriented
Middleware (MOM).

As a veteran of the IT industry, Mick is determined to help as many people as possible and
show that anyone can become a software developer. He has spoken around the world at
training seminars, luncheons, book publishing engagements, and white paper engagements.
He has authored several technical books and articles on Spring Security, Java EE 6, HTTP,
and VisualVM. He is also a featured blogger at DZone, where he is part of the curated Most
Valuable Blogger (MVB) group.

Having lived and breathed software development for over two decades, Mick enjoys
translating complex technical concepts into plain English for different audiences. Whether
he is helping an experienced software professional or someone who is new to the field, he
can simplify even the most intricate IT concepts.

Mick's mission is to use his seasoned professional experience to help anyone who wants to
learn about software development. As an expert and professional, Mick designs his training
courses to make the learning experience as enriching, seamless, and convenient as possible
so that you can master software development in the shortest amount of time.

Learn from an expert. Mick warmly looks forward to helping you learn software
development in the right way so that you can maximize both your money and your time.

You can also refer to his following books:

Spring Security Third Edition
Distributed Configuration with Spring Cloud Config
Java EE6 Cookbook
HTTP Reference Card (DZone)
VisualVM Reference Card (DZone)

You can also refer to his video on BASELogic available on YouTube.

You can also connect with him on the following social media sites:

LinkedIn (mickknutson)
Twitter (mickknutson)
GitHub (mickknutson)
Bitbucket (mickknutson)
Udemy video series (MickKnutson)
Facebook (BASELogic)
Google+ (BASElogic)

I would like to thank all the randomly assembled molecules that I have collided with on my
journey through the universe.

Robert Winch is currently a senior software engineer at VMware and is the project lead of
the Spring Security framework. In the past, he has worked as a software architect at Cerner,
the largest provider of electronic medical systems in the US, securing healthcare
applications. Throughout his career, he has developed hands-on experience integrating
Spring Security with an array of security standards (that is, LDAP, SAML, CAS, OAuth, and
so on). Before he was employed at Cerner, he worked as an independent web contractor in
proteomics research at Loyola University Chicago and on the Globus Toolkit at Argonne
National Laboratory.

Peter Mularien is an experienced software architect and engineer and the author of the
book Spring Security 3, Packt Publishing. Peter currently works for a large financial services
company and has over 12 years of consulting and product experience in Java, Spring,
Oracle, and many other enterprise technologies. He is also the reviewer of this book.

About the Reviewers
Tejaswini Mandar Jog is a passionate and enthusiastic Java trainer. She has over nine years
of experience in the IT training field, specializing in Java, J2EE, Spring, and relevant
technologies. She has worked with many renowned corporate companies on training and
skill enhancement programs. She is also involved in the development of projects using Java,
Spring, and Hibernate.

She is the author of the books Learning Modular Java Programming, Learning Spring 5.0, and
Reactive Programming With Java9.

Thank you Mandar and Ojas for being with me as my biggest support.

Jay Lee currently works at Pivotal as a senior platform architect. His job is to help big
enterprise’s Cloud Native Journey with Spring, Spring Boot, Spring Cloud, and Cloud
Foundry. Before joining Pivotal, he spent ten years at Oracle and worked with big
enterprises for their large-scale Java distributed system and Middleware. He is authoring
Microservices book (name should be decided) using Spring Boot, and Spring Cloud at the
moment.

www.Packtpub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

https:/​/​www.​packtpub. ​com/ ​mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https:/​/​www.​amazon. ​in/ ​dp/ ​1787129519.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.in/dp/1787129519
https://www.amazon.in/dp/1787129519
https://www.amazon.in/dp/1787129519
https://www.amazon.in/dp/1787129519
https://www.amazon.in/dp/1787129519
https://www.amazon.in/dp/1787129519
https://www.amazon.in/dp/1787129519
https://www.amazon.in/dp/1787129519
https://www.amazon.in/dp/1787129519
https://www.amazon.in/dp/1787129519
https://www.amazon.in/dp/1787129519
https://www.amazon.in/dp/1787129519
https://www.amazon.in/dp/1787129519
https://www.amazon.com/dp/1787126471

Table of Contents
Preface 1

Chapter 1: Anatomy of an Unsafe Application 8

Security audit 9
About the sample application 9
The JBCP calendar application architecture 11

Application technology 13
Reviewing the audit results 13

Authentication 15
Authorization 18

Database credential security 21
Sensitive information 21
Transport-level protection 21
Using Spring Security 4.2 to address security concerns 22
Why Spring Security? 22

Summary 23

Chapter 2: Getting Started with Spring Security 24

Hello Spring Security 25
Importing the sample application 25
Updating your dependencies 25

Using Spring 4.3 and Spring Security 4.2 26
Implementing a Spring Security XML configuration file 27
Updating your web.xml file 29

The ContextLoaderListener class 29
ContextLoaderListener versus DispatcherServlet 30
The springSecurityFilterChain filter 31
The DelegatingFilterProxy class 32
The FilterChainProxy class 32

Running a secured application 33
Common problems 34

A little bit of polish 34
Customizing login 35

Configuring logout 39
The page isn't redirecting properly 40
Basic role-based authorization 41
Expression-based authorization 45
Conditionally displaying authentication information 46

Table of Contents

[ii]

Customizing behavior after login 48
Summary 51

Chapter 3: Custom Authentication 52

JBCP calendar architecture 53
The CalendarUser object 53
The Event object 53
The CalendarService interface 54
The UserContext interface 54
The SpringSecurityUserContext interface 55

Logging in new users using SecurityContextHolder 58
Managing users in Spring Security 58
Logging in a new user to an application 60
Updating SignupController 62

Creating a custom UserDetailsService object 62
The CalendarUserDetailsService class 63
Configuring UserDetailsService 64
Removing references to UserDetailsManager 65
The CalendarUserDetails object 66
The SpringSecurityUserContext simplifications 67

Displaying custom user attributes 68
Creating a custom AuthenticationProvider object 69

CalendarUserAuthenticationProvider 69
Configuring the CalendarUserAuthenticationProvider object 71
Authenticating with different parameters 72

The DomainUsernamePasswordAuthenticationToken class 72
Updating CalendarUserAuthenticationProvider 73
Adding domain to the login page 74
The DomainUsernamePasswordAuthenticationFilter class 75
Updating our configuration 76

Which authentication method to use? 79
Summary 80

Chapter 4: JDBC-Based Authentication 81

Required dependencies 82
Using the H2 database 82

Provided JDBC scripts 83
Configuring the H2 embedded database 83
Configuring a JDBC UserDetailsManager implementation 84

The default user schema of Spring Security 84
Defining users 85
Defining user authorities 85

Table of Contents

[iii]

The UserDetailsManager interface 86
Group-based access control 87
Configuring group-based access control 89

Configuring JdbcUserDetailsManager to use groups 89
Utilizing GBAC JDBC scripts 90
The group-based schema 90
Group authority mappings 91

Support for a custom schema 92
Determining the correct JDBC SQL queries 92
Updating the SQL scripts that are loaded 93
The CalendarUser authority SQL 94
Inserting custom authorities 94
Configuring JdbcUserDetailsManager to use custom SQL queries 95

Configuring secure passwords 96
The PasswordEncoder method 98

Configuring password encoding 99
Configuring the PasswordEncoder method 100
Making Spring Security aware of the PasswordEncoder method 100

Hashing the stored passwords 101
Hashing the passwords of new users 102
Not quite secure 103

Using salt in Spring Security 105
Updating the Spring Security configuration 106
Migrating existing passwords 106
Updating DefaultCalendarUserService 107

Trying out the salted passwords 107
Summary 109

Chapter 5: Authentication with Spring Data 110

Spring Data JPA 112
Updating our dependencies 112
Updating the JBCP calendar to use Spring Data JPA 113
Reconfiguring the database configuration 114
Initializing the database 114

Refactoring from SQL to ORM 117
Mapping domain objects using JPA 117
Spring Data repositories 119
Data access objects 120

Application services 125
The UserDetailsService object 126

Refactoring from an RDBMS to a document database 127

Table of Contents

[iv]

Document database implementation with MongoDB 127
Updating our dependencies 128
Reconfiguring the database configuration in MongoDB 128
Initializing the MongoDB database 129
Mapping domain objects with MongoDB 131

Spring Data repositories of MongoDB 134
Data access objects in MongoDB 134

Summary 135

Chapter 6: LDAP Directory Services 136

Understanding LDAP 137
LDAP 137

Common LDAP attribute names 138
Updating our dependencies 140
Configuring an LDAP server reference 141
Enabling the LDAP AuthenticationProviderNext interface 142

Troubleshooting embedded LDAP 143
Understanding how Spring LDAP authentication works 144

Authenticating user credentials 145
Demonstrating authentication with Apache Directory Studio 146

Binding anonymously to LDAP 146
Searching for the user 147
Binding as a user to LDAP 148
Determining user role membership 149

Determining roles with Apache Directory Studio 150
Mapping additional attributes of UserDetails 151
Advanced LDAP configuration 153

Sample JBCP LDAP users 153
Password comparison versus bind authentication 153
Configuring basic password comparison 155

LDAP password encoding and storage 156
The drawbacks of a password comparison authenticator 157

Configuring the UserDetailsContextMapper object 158
Implicit configuration of UserDetailsContextMapper 158
Viewing additional user details 159

Using an alternate password attribute 162
Using LDAP as UserDetailsService 163

Configuring LdapUserDetailsService 163
Updating AccountController to use LdapUserDetailsService 164

Integrating Spring Security with an external LDAP server 165
Explicit LDAP bean configuration 167

Configuring an external LDAP server reference 167

Table of Contents

[v]

Configuring the LdapAuthenticationProvider interface 168
Delegating role discovery to UserDetailsService 170

Integrating with Microsoft Active Directory via LDAP 172
Built-in AD support in Spring Security 4.2 174

Summary 176

Chapter 7: Remember-Me Services 177

What is remember-me? 177
Dependencies 178
The token-based remember-me feature 179

Configuring the token-based remember-me feature 179
How the token-based remember-me feature works 181

MD5 181
Remember-me signature 182

Token-based remember-me configuration directives 184
Is remember-me secure? 185

Authorization rules for remember-me 186
Persistent remember-me 187

Using the persistent-based remember-me feature 188
Adding SQL to create the remember-me schema 188
Initializing the data source with the remember-me schema 188

Configuring the persistent-based remember-me feature 189
How does the persistent-based remember-me feature work? 190
JPA-based PersistentTokenRepository 191
Custom RememberMeServices 194
Cleaning up the expired remember-me sessions 195

The remember-me architecture 197
Remember-me and the user life cycle 199
Restricting the remember-me feature to an IP address 200

Custom cookie and HTTP parameter names 203
Summary 204

Chapter 8: Client Certificate Authentication with TLS 205

How does client certificate authentication work? 206
Setting up the client certificate authentication infrastructure 207

Understanding the purpose of a public key infrastructure 208
Creating a client certificate key pair 208
Configuring the Tomcat trust store 209
Configuring Tomcat in Spring Boot 212

Importing the certificate key pair into a browser 213
Using Firefox 213
Using Chrome 213
Using Internet Explorer 214

Table of Contents

[vi]

Wrapping up testing 214
Troubleshooting client certificate authentication 216
Configuring client certificate authentication in Spring Security 217
Configuring client certificate authentication using the security
namespace 217

How does Spring Security use certificate information? 218
How Spring Security certificate authentication works 219
Handling unauthenticated requests with AuthenticationEntryPoint 222
Supporting dual-mode authentication 223

Configuring client certificate authentication using Spring beans 225
Additional capabilities of bean-based configuration 226
Considerations when implementing client certificate authentication 228

Summary 229

Chapter 9: Opening up to OAuth 2 230

The promising world of OAuth 2 231
Signing up for an OAuth 2 application 233
Enabling OAuth authentication with Spring Security 233
Additional required dependencies 234

Configuring OAuth 2 support in Spring Security 236
Local UserConnectionRepository 236
Creating local database entries for provider details 237
The custom UserConnectionRepository interface 238
The ConnectionSignup flow 239

Executing the OAuth 2 provider connection workflow 239
Adding OAuth 2 users 240
OAuth 2 controller sign-in flow 241

Automatic user authentication 242
Additional OAuth 2 providers 246

The OAuth 2 user registration problem 249
Registering non-standard OAuth 2 providers 250

Is OAuth 2 secure? 253
Summary 254

Chapter 10: Single Sign-On with the Central Authentication Service 256

Introducing the Central Authentication Service 257
High-level CAS authentication flow 258
Spring Security and CAS 260

Required dependencies 261
Installing and configuring CAS 261

Configuring basic CAS integration 262

Table of Contents

[vii]

Creating the CAS ServiceProperties object 264
Adding the CasAuthenticationEntryPoint object 265
Enabling CAS ticket verification 267
Proving authenticity with the CasAuthenticationProvider object 269

Single logout 272
Configuring single logout 273

Clustered environments 276
Proxy ticket authentication for stateless services 277
Configuring proxy ticket authentication 278

Using proxy tickets 280
Authenticating proxy tickets 281

Customizing the CAS server 284
CAS WAR overlay 284
How does the CAS internal authentication work? 285
Configuring CAS to connect to our embedded LDAP server 286

Getting the UserDetails object from a CAS assertion 289
Returning LDAP attributes in the CAS response 290
Mapping LDAP attributes to CAS attributes 290
Authorizing CAS services to access custom attributes 292
Acquiring a UserDetails from CAS 292
The GrantedAuthorityFromAssertionAttributesUser object 293
Alternative ticket authentication using SAML 1.1 293
How is attribute retrieval useful? 294

Additional CAS capabilities 295
Summary 296

Chapter 11: Fine-Grained Access Control 297

Gradle dependencies 298
Integrating Spring Expression Language (SpEL) 298

The WebSecurityExpressionRoot class 300
Using the request attribute 300
Using the hasIpAddress method 300
The MethodSecurityExpressionRoot class 302

Page-level authorization 302
Conditional rendering with the Thymeleaf Spring Security tag library 303

Conditional rendering based on URL access rules 303
Conditional rendering using SpEL 305
Using controller logic to conditionally render content 305
The WebInvocationPrivilegeEvaluator class 307
What is the best way to configure in-page authorization? 308
Method-level security 309

Table of Contents

[viii]

Why we secure in layers? 310
Securing the business tier 310
Adding the @PreAuthorize method annotation 312
Instructing Spring Security to use method annotations 312
Validating method security 312

Interface-based proxies 313
JSR-250 compliant standardized rules 314

Method security using Spring's @Secured annotation 316
Method security rules incorporating method parameters 317
Method security rules incorporating returned values 319
Securing method data using role-based filtering 319
Prefiltering collections with @PreFilter 321
Comparing method authorization types 322
Practical considerations for annotation-based security 322

Summary 323

Chapter 12: Access Control Lists 324

The conceptual module of ACL 325
Access control lists in Spring Security 326
Basic configuration of Spring Security ACL support 328

Gradle dependencies 329
Defining a simple target scenario 329
Adding ACL tables to the H2 database 330
Configuring SecurityExpressionHandler 332
The AclPermissionCacheOptimizer object 334

Optimizing AclPermission Cache 334
The JdbcMutableAclService object 334
The BasicLookupStrategy class 335

Querying with the lowest common denominator 336
EhCacheBasedAclCache 336
The ConsoleAuditLogger class 338
The AclAuthorizationStrategyImpl interface 338

Creating a simple ACL entry 339
Advanced ACL topics 342

How permissions work 342
The custom ACL permission declaration 346
Enabling ACL permission evaluation 348
Mutable ACLs and authorization 351

Adding ACLs to newly created events 352
Considerations for a typical ACL deployment 354

ACL scalability and performance modeling 354
Do not discount custom development costs 356

Table of Contents

[ix]

Should I use Spring Security ACL? 358
Summary 359

Chapter 13: Custom Authorization 360

Authorizing the requests 360
Configuration of access decision aggregation 364
Configuring a UnanimousBased access decision manager 364
Expression-based request authorization 366

Customizing request authorization 367
Dynamically defining access control to URLs 367

Configuring the RequestConfigMappingService 367
Custom SecurityMetadataSource implementation 371
Registering a custom SecurityMetadataSource 372
Removing our antMatchers() method 373

Creating a custom expression 374
Configuring a custom SecurityExpressionRoot 374
Configuring a custom SecurityExpressionHandler 375
Configuring and using CustomWebSecurityExpressionHandler 376
Alternative to a CustomWebSecurityExpressionHandler 377

How does method security work? 378
Creating a custom PermissionEvaluator 381
CalendarPermissionEvaluator 381
Configuring CalendarPermissionEvaluator 383
Securing our CalendarService 384
Benefits of a custom PermissionEvaluator 384

Summary 385

Chapter 14: Session Management 386

Configuring session fixation protection 386
Understanding session fixation attacks 387
Preventing session fixation attacks with Spring Security 388
Simulating a session fixation attack 390
Comparing the session-fixation-protection options 393

Restricting the number of concurrent sessions per user 393
Configuring concurrent session control 394

Understanding concurrent session control 394
Testing concurrent session control 396

Configuring expired session redirect 397
Common problems with concurrency control 398

Preventing authentication instead of forcing logout 399
Other benefits of concurrent session control 400
Displaying active sessions for a user 401

Table of Contents

[x]

How Spring Security uses the HttpSession method? 403
The HttpSessionSecurityContextRepository interface 404
Configuring how Spring Security uses HttpSession 405
Debugging with Spring Security's DebugFilter 405

Summary 407

Chapter 15: Additional Spring Security Features 408

Security vulnerabilities 409
Cross-Site Scripting 409
Cross-Site Request Forgery 410

Synchronizer tokens 411
Synchronizer token support in Spring Security 412

When to use CSRF protection 413
CSRF protection and JSON 413
CSRF and stateless browser applications 414
Using Spring Security CSRF protection 414

Using proper HTTP verbs 415
Configuring CSRF protection 415

Default CSRF support 415
Including the CSRF token in the <Form> submissions 416
Including the CSRF token using the Spring Security JSP tag library 416
Default CSRF token support 417
Ajax and JSON requests 417
The csrfMetaTags tag 418
jQuery usage 418
Using the cujoJS's rest.js module 419

CSRF caveats 419
Timeouts 419
Logging in 421
Logging out 421

Security HTTP response headers 422
Default security headers 422

Cache-Control 423
Content-Type Options 425
HTTP Strict Transport Security 426
X-Frame-Options 427

Custom Headers 428
Static headers 428
The HeadersWriter instance 429
The DelegatingRequestMatcherHeaderWriter class 430

Summary 430

Chapter 16: Migration to Spring Security 4.2 431

Introduction 432

Table of Contents

[xi]

Sample migration 432
Enhancements in Spring Security 4.2 433

Web improvements: 433
Spring Security Configuration improvements: 433

Miscellaneous changes in Spring Security 4.x 434
Changes to configuration in Spring Security 4 434

Deprecations 435
The spring-security-core deprecations 435

org.springframework.security.access.SecurityConfig 435
UserDetailsServiceWrapper 435
UserDetailsWrapper 437
AbstractAccessDecisionManager 437
AuthenticationException 437
AnonymousAuthenticationProvider 438
AuthenticationDetailsSourceImpl 438
ProviderManager 439
RememberMeAuthenticationProvider 439
GrantedAuthorityImpl 440
InMemoryDaoImpl 440

The spring-security-web deprecations 440
FilterChainProxy 440
ExceptionTranslationFilter 441
AbstractAuthenticationProcessingFilter 442
AnonymousAuthenticationFilter 442
LoginUrlAuthenticationEntryPoint 443
PreAuthenticatedGrantedAuthoritiesUserDetailsService 443
AbstractRememberMeServices 444
PersistentTokenBasedRememberMeServices 444
RememberMeAuthenticationFilter 445
TokenBasedRememberMeServices 445
ConcurrentSessionControlStrategy 445
SessionFixationProtectionStrategy 446
BasicAuthenticationFilter 447
SecurityContextPersistenceFilter 447
RequestCacheAwareFilter 447
ConcurrentSessionFilter 448
SessionManagementFilter 448
RequestMatcher 448
WebSecurityExpressionHandler 449
@AuthenticationPrincipal 450

Migrating default filter URLs 450
JAAS 451

Summary 451

Chapter 17: Microservice Security with OAuth 2 and JSON Web Tokens 452

What are microservices? 453

Table of Contents

[xii]

Monoliths 453
Microservices 455

Service-oriented architectures 456
Microservice security 457

Service communication 457
Tight coupling 457
Technical complexity 457

The OAuth 2 specification 457
Access tokens 458

Access token 458
Refresh token 459

Grant types 459
Authorization code 459
Implicit 459
Password credentials 460
Client credentials 460

JSON Web Tokens 460
Token structure 461

Encoded JWT 461
Header 461
Payload 462
Signature 462

OAuth 2 support in Spring Security 463
Resource owner 463
Resource server 463
Authorization server 464
RSA JWT access token converter keypair 465
OAuth 2 resource configuration properties 465
OAuth 2 client configuration properties 465
JWT access token converter 466
The UserDetailsService object 467
Running the OAuth 2 server application 467

Server requests 467
Token requests 468

Microservices client 471
Configuring the OAuth 2 client 473

Summary 474

Appendix: Additional Reference Material 475

Getting started with the JBCP calendar sample code 475
Gradle Build Tool 475
Gradle IDE plugins 476

Table of Contents

[xiii]

IntelliJ IDEA 477
Spring Tool Suite or Eclipse 481

Creating a new workspace 481
A sample code structure 482
Importing the samples 483
Running the samples 488

Starting the samples within IDEA 488
Gradle tasks 490
Starting the samples within STS 490
Using HTTPS within STS 491

HTTPS setup in Tomcat 491
Generating a server certificate 491
Configuring Tomcat connector to use SSL 492
Basic Tomcat SSL termination guide 493

Supplementary materials 494

Index 496

Preface
Welcome to the world of Spring Security 4.2! We're certainly pleased that you have
acquired the only published book fully devoted to Spring Security 4.2. Before we get started
with the book, we would like to give you an overview of how the book is organized and
how you can get the most out of it.

Once you have read this book, you should be familiar with key security concepts and
understand how to solve the majority of the real-world problems that you will need to solve
with Spring Security. Through this discovery, you will gain an in-depth understanding of
Spring Security's architecture, which will allow you to handle any unexpected use cases the
book does not cover.

The book is divided into the following four main sections:

The first section (Chapter 1, Anatomy of an Unsafe Application and Chapter 2,
Getting Started with Spring Security) provides an introduction to Spring Security
and allows you to get started with Spring Security quickly
The second section (Chapter 3, Custom Authentication, Chapter 4, JDBC-Based
Authentication, Chapter 5, Authentication with Spring Data, Chapter 6, LDAP
Directory Services, Chapter 7, Remember-Me Services, Chapter 8, Client Certificate
Authentication with TLS, and Chapter 9, Opening up to OAuth 2) provides in-depth
instructions for integrating with a number of different authentication
technologies
The third section (Chapter 10, Single Sign-On with the Central Authentication
Service, Chapter 11, Fine-Grained Access Control, and Chapter 12, Access Control
Lists) explains how Spring Security's authorization support works
Finally, the last section (Chapters 13, Custom Authorization, Chapter 14, Session
Management, Chapter 15, Additional Spring Security Features, and Chapter 16,
Migration to Spring Security 4.2, Chapter 17, Microservice Security with OAuth 2 and
JSON Web Tokens) provides information specialized topics and guides that help
you perform very specific tasks

Security is a very interwoven concept, and so are many of the topics in the book. However,
once you have read through the first three chapters, the rest of the chapters are fairly
independent. This means that you can easily skip chapters and still understand what is
happening. The goal is to provide a cookbook-style guide that when read in its entirety still
helps you develope a clear understanding of Spring Security.

Preface

[2]

The book uses a simple Spring Web MVC-based application to illustrate how to solve real-
world problems. The application is intended to be very simple and straightforward, and
deliberately contains very little functionality—the goal of this application is to encourage
you to focus on Spring Security concepts and not get tied up in the complexities of
application development. You will have a much easier time following the book if you take
the time to review the sample application source code and try to follow along with the
exercises. Some tips on getting started are found in the Getting started with the JBCP calendar
sample code section in Appendix, Additional Reference Material.

What this book covers
Chapter 1, Anatomy of an Unsafe Application, covers a hypothetical security audit of our
calendar application, illustrating common issues that can be resolved through the proper
application of Spring Security. You will learn about some basic security terminology and
review some prerequisites for getting the sample application up and running.

Chapter 2, Getting Started with Spring Security, demonstrates the "Hello World" installation
of Spring Security. After the chapter walks the reader through some of the most common
customizations of Spring Security.

Chapter 3, Custom Authentication, incrementally explains Spring Security's authentication
architecture by customizing key pieces of the authentication infrastructure to address real-
world problems. Through these customizations, you will gain an understanding of how
Spring Security authentication works and how you can integrate with existing and new
authentication mechanisms.

Chapter 4, JDBC-Based Authentication, covers authenticating against a database using
Spring Security's built-in JDBC support. We then discuss how we can secure our passwords
using Spring Security's new cryptography module.

Chapter 5, Authentication with Spring Data, covers authenticating against a database using
Spring Security's integration with Spring Data JPA and Spring Data MongoDB.

Chapter 6, LDAP Directory Services, provides a guide to application integration with an
LDAP directory server.

Chapter 7, Remember-Me Services, demonstrates the use of the remember-me feature in
Spring Security and how to configure it. We also explore additional considerations to bear
in mind when using it.

Preface

[3]

Chapter 8, Client Certificate Authentication with TLS, makes X.509 certificate-based
authentication a clear alternative for certain business scenarios, where managed certificates
can add an additional layer of security to our application.

Chapter 9, Opening up to OAuth 2, covers OAuth 2-enabled login and user attribute
exchange, as well as a high-level overview of the logical flow of the OAuth 2 protocol,
including Spring OAuth 2 and Spring social integration.

Chapter 10, Single Sign-on with Central Authentication Service, shows how integrating with
Central Authentication Service (CAS) can provide Single Sign-On and single logout support
to your Spring Security-enabled applications. It also demonstrates how you can use CAS
proxy ticket support with stateless services.

Chapter 11, Fine-Grained Access Control, covers in-page authorization checking (partial page
rendering) and business-layer security using Spring Security's method security capabilities.

Chapter 12, Access Control Lists, covers the concepts and basic implementation of business
object-level security using the Spring Security ACL module—a powerful module with a
very flexible applicability to challenging business security problems.

Chapter 13, Custom Authorization, explains how Spring Security's authorization works by
writing custom implementations of key parts of Spring Security's authorization
infrastructure.

Chapter 14, Session Management, discusses how Spring Security manages and secures user
sessions. The chapter starts by explaining session fixation attacks and how Spring Security
defends against them. It then discusses how you can manage logged-in users and restrict
the number of concurrent sessions a single user has. Finally, we describe how Spring
Security associates a user to HttpSession and how to customize this behavior.

Chapter 15, Additional Spring Security Features, covers other Spring Security features,
including common security vulnerabilities such as Cross-Site Scripting (XSS), Cross-Site
Request Forgery (CSRF), synchronizer tokens, and Clickjacking, and how to protect against
them.

Chapter 16, Migration to Spring Security 4.2, provides a migration path from Spring Security
3, including notable configuration changes, class and package migrations, and important
new features. It also highlights the new features that can be found in Spring Security 4.2 and
provides references to examples of the features in the book.

Preface

[4]

Chapter 17, Microservice Security with OAuth 2 and JSON Web Tokens, looks at microservice-
based architectures and how OAuth 2 with JWT play a role in securing microservices in a
Spring-based application.

Appendix, Additional Reference Material, contains some reference material that is not directly
related to Spring Security, but is still relevant to the topics covered in this book. Most
importantly, it contains a section that assists in running the sample code included with the
book.

What you need for this book
The following list contains the software required in order to run the sample applications
included with the book. Some chapters have the following additional requirements that are
outlined in the respective chapters:

Java Development Kit 1.8 can be downloaded from Oracle's website at http:/ ​/
www.​oracle. ​com/ ​technetwork/ ​java/ ​javase/ ​downloads/ ​index. ​html

IntelliJ IDEA 2017+ can be downloaded from https:/ ​/​www. ​jetbrains. ​com/ ​idea/ ​

Spring Tool Suite 3.9.1.RELEASE+ can be downloaded from https:/ ​/​spring. ​io/
tools/​sts

Who this book is for
If you are a Java Web and/or RESTful web service developer and have a basic
understanding of creating Java 8, Java Web and/or RESTful web service applications, XML,
and the Spring Framework, this book is for you. You are not expected to have any previous
experience with Spring Security.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The next
steps involve a series of updates to the web.xml file". A block of code is set as follows:

 //build.gradle:
 dependencies {
 compile "org.springframework.security:spring-security-
 config:${springSecurityVersion}"

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://spring.io/tools/sts
https://spring.io/tools/sts
https://spring.io/tools/sts
https://spring.io/tools/sts
https://spring.io/tools/sts
https://spring.io/tools/sts
https://spring.io/tools/sts
https://spring.io/tools/sts
https://spring.io/tools/sts
https://spring.io/tools/sts

Preface

[5]

 compile "org.springframework.security:spring-security-
 core:${springSecurityVersion}"
 compile "org.springframework.security:spring-security-
 web:${springSecurityVersion}"
 ...
 }

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

 [default]
 exten => s,1,Dial(Zap/1|30)
 exten => s,2,Voicemail(u100)
 exten => s,102,Voicemail(b100)
 exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

$./gradlew idea

New terms and important words are shown in bold.

Words that you see on the screen, for example, in menus or dialog boxes, appear in the text
like this: "In Microsoft Windows, you can view some of the ACL capabilities of a file by
right-clicking on a file and examining its security properties (Properties | Security), as
shown in the following screenshot".

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

Preface

[6]

To send us general feedback, simply email feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files emailed directly to you.
You can download the code files by following these steps:

Log in or register to our website using your email address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Spring-Security-Third-Edition. We also have
other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Spring-Security-Third-Edition/
https://github.com/PacktPublishing/

Preface

[7]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

1
Anatomy of an Unsafe

Application
Security is arguably one of the most critical architectural components of any  web-based
application written in the 21st century. In an era where malware, criminals, and rogue
employees are always present and actively testing software  for exploits, smart and
comprehensive use of security is a key element to any project for which you'll be
responsible.

This book is written to follow a pattern of development that, we feel, provides a useful
premise for tackling a complex subject—taking a web-based application with a Spring 4.2
foundation, and understanding the core concepts and strategies for securing it with Spring
Security 4.2. We complement this approach by providing sample code for each chapter in
the form of complete web applications.

Whether you're already using Spring Security or are interested in taking your basic use of
the software to the next level of complexity, you'll find something to help you in this book.
During the course of this chapter, we will cover the following topics:

The results of a fictional security audit
Some common security problems of web-based applications
Several core software security terms and concepts

Anatomy of an Unsafe Application Chapter 1

[9]

If you are already familiar with basic security terminology, you may skip to  Chapter 2,
Getting Started with Spring Security, where we start using the basic functionality of the
framework.

Security audit
It's early in the morning at your job as a software developer for the Jim Bob Circle Pants
Online Calendar (JBCPCalendar.com), and you're halfway through your first cup of coffee
when you get the following email from your supervisor:

What? You didn't think about security when you designed the application? In fact, at this
point, you are not even sure what a security audit is. Sounds like you'll have a lot to learn
from the security auditors! Later in this chapter, we will review what an audit is, along with
the results of an audit. First, let's spend a bit of time examining the application that's under
review.

About the sample application
Although we'll be working through a contrived scenario as we progress through this book,
the design of the application and the changes that we'll make to it are drawn from the real-
world usage of Spring-based applications. The calendar application allows users to create
and view events:

Anatomy of an Unsafe Application Chapter 1

[10]

After entering the details for a new event, you will be presented with the  following
screenshot:

Anatomy of an Unsafe Application Chapter 1

[11]

The application is designed to be simplistic, to allow us to focus on the important aspects of
security and not get tied up in the details of object-relational mapping (ORM) and
complex UI techniques. We expect you to refer to other supplementary materials in the
Appendix, Additional Reference Material (in the Supplementary Materials section of this book) to
cover some of the baseline functionality that is provided as part of the sample code.

The code is written in Spring and Spring Security 4.2, but it would be relatively easy to
adapt many of the examples to other versions of Spring Security. Refer to the discussion
about the detailed changes between Spring Security 3 and 4.2 in Chapter 16, Migration to
Spring Security 4.2, for assistance in translating the examples to the Spring Security 4 syntax.

Please don't use this application as a baseline to build a real online calendar application. It
has been purposely structured to be simple and to focus on the concepts and configuration
that we illustrate in this book.

The JBCP calendar application architecture
The web application follows a standard three-tier architecture consisting of a web, service,
and data access layer, as indicated in the following diagram:

Anatomy of an Unsafe Application Chapter 1

[12]

You can find additional material about MVC architectures in the Supplementary Materials
section of the Appendix, Additional Reference Material.

The web layer encapsulates MVC code and functionality. In this sample application, we will
use the Spring MVC framework, but we could just as easily use Spring Web Flow (SWF),
Apache Struts, or even a Spring-friendly web stack, such as Apache Wicket.

In a typical web application, leveraging Spring Security, the web layer is where much of the
configuration and augmentation of code takes place. For example, the EventsController
class is used to transform an HTTP request into persisting an event into the database. If you
haven't had a lot of experience with web applications and Spring MVC specifically, it would
be wise to review the baseline code closely and make sure you understand it before we
move on to more complex subjects. Again, we've tried to make the website as simple as
possible, and the construct of a calendar application is used just to provide a sensible title
and light structure to the site.

You can find detailed instructions on setting up the sample application
within the Appendix, Additional Reference Material.

The service layer encapsulates the business logic for the application. In our sample
application, we use DefaultCalendarService as a very light facade over the data access
layer, to illustrate particular points about securing application service methods. The service
layer is also used to operate on both Spring Security APIs and our Calendar APIs within a
single method call. We will discuss this in greater detail in Chapter 3, Custom
Authentication.

In a typical web application, this layer would incorporate business rule validation,
composition and decomposition of business objects, and cross-cutting concerns such as
auditing.

The data access layer encapsulates the code responsible for manipulating the contents of
database tables. In many Spring applications, this is where you would see the use of ORM,
such as Hibernate or JPA. It exposes an object-based API to the service layer. In our sample
application, we use basic JDBC functionality to achieve persistence to the in-memory H2
database. For example, JdbcEventDao is used to save event objects to the database.

Anatomy of an Unsafe Application Chapter 1

[13]

In a typical web application, a more comprehensive data access solution would be utilized.
As ORM, and more generally data access, tends to be confusing for some developers, this is
an area we have chosen to simplify as much as possible for the purposes of clarity.

Application technology
We have endeavored to make the application as easy to run as possible by focusing on some
basic tools and technologies that almost every Spring developer would have on their
development machine. Nevertheless, we have provided the Getting started section as
supplementary information in the Append, Getting Started with JBCP Calendar Sample Code.

The primary method for integrating with the sample code is providing Gradle--compatible
projects. Since many IDEs have rich integration with Gradle, users should be able to import
the code into any IDE that supports Gradle. As many developers use Gradle, we felt this
was the most straightforward method of packaging the examples. Whatever development
environment you are familiar with, hopefully, you will find a way to work through the
examples in this book.

Many IDEs provide Gradle tooling that can automatically download the Spring and Spring
Security 4.2 Javadoc and source code for you. However, there may be times when this is not
possible. In such cases, you'll want to download the full releases of both Spring 4.2 and
Spring Security 4.2. The Javadoc and source code are top-notch. If you get confused or want
more information, the samples can provide an additional level of support or reassurance for
your learning. Visit the Supplementary Materials section, in Appendix, Additional Reference
Material to find additional information about Gradle, including running the samples,
obtaining the source code and Javadoc, and the alternatives for building your projects
without Gradle.

Reviewing the audit results
Let's return to our email and see how the audit is progressing. Uh-oh, the results don't look
good:

Anatomy of an Unsafe Application Chapter 1

[14]

APPLICATION AUDIT RESULTS

This application exhibits the following insecure behavior:

Inadvertent privilege escalation due to lack of URL protection and  general
authentication
Inappropriate or non-existent use of authorization
Missing database credential security
Personally-identifiable or sensitive information is easily accessible  or
unencrypted
Insecure transport-level protection due to lack of SSL encryption
Risk level is high

We recommend that this application should be taken offline until these issues can  be
resolved.

Ouch! This result looks bad for our company. We'd better work to resolve these issues as
quickly as possible.

Third-party security specialists are often hired by companies (or their partners or
customers) to audit the effectiveness of their software security, through a combination of
white hat hacking, source code review, and formal or informal conversations with
application developers and architects.

Anatomy of an Unsafe Application Chapter 1

[15]

White hat hacking or ethical hacking is done by professionals who are hired to instruct
companies on how to protect themselves better, rather than with the intent  to be malicious.

Typically, the goal of security audits is to provide management or clients with the assurance
that basic secure development practices have been followed, to ensure the integrity and
safety of the customer's data and system functions. Depending on the industry the software
is targeted at, the auditor may also test it using industry-specific standards or compliance
metrics.

Two specific security standards that you're likely to run into at some point
in your career are the Payment Card Industry Data Security Standard
(PCI DSS) and the Health Insurance Privacy and Accountability Act
(HIPAA) privacy rules. Both these standards are intended to ensure the
safety of specific sensitive information (such as credit card and medical
information) through a combination of process and software controls.
Many other industries and countries have similar rules about sensitive
or Personally Identifiable Information (PII). Failure to follow these
standards is not only bad practice but also something that could expose
you or your company to significant liability (not to mention bad press) in
the event of a security breach.

Receiving the results of a security audit can be an eye-opening experience. Following
through with the required software improvements can be the perfect opportunity for self-
education and software improvement, and can allow you to implement practices and
policies that lead to secure software.

Let's review the auditor's findings, and come up with a plan to address them  in detail.

Authentication
Authentication is one of two key security concepts that you must internalize when
developing secure applications (the other being authorization). Authentication identifies
who is attempting to request a resource. You may be familiar with authentication in your
daily online and offline life, in very different contexts, as follows:

Anatomy of an Unsafe Application Chapter 1

[16]

Credential-based authentication: When you log in to your web-based email
account, you most likely provide your username and password. The email
provider matches your username with a known user in its database and verifies
that your password matches what they have on record. These credentials are
what the email system uses to validate that you are a valid user of the system.
First, we'll use this type of authentication to secure sensitive areas of the JBCP
calendar application. Technically speaking, the email system can check
credentials not only in the database but anywhere, for example, a corporate
directory server such as Microsoft Active Directory. A number of these types of
integrations are covered throughout this book.
Two-factor authentication: When you withdraw money from your bank's
automated teller machine, you swipe your ID card and enter your personal
identification number before you are allowed to retrieve cash or conduct other
transactions. This type of authentication is similar to the username and password
authentication, except that the username is encoded on the card's magnetic strip.
The combination of the physical card and user-entered PIN allows the bank to
ensure that you should have access to the account. The combination of a
password and a physical device (your plastic ATM card) is a ubiquitous form of
two-factor authentication. In a professional, security-conscious environment, it's
common to see these types of devices in regular use for access to highly secure
systems, especially dealing with finance or personally identifiable information. A
hardware device, such as RSA SecurID, combines a time-based hardware device
with server-based authentication software, making the environment extremely
difficult to compromise.
Hardware authentication: When you start your car in the morning, you slip your
metal key into the ignition and turn it to get the car started. Although it may not
feel similar to the other two examples, the correct match of the bumps on the key
and the tumblers in the ignition switch function as a form of hardware
authentication.

There are literally dozens of forms of authentication that can be applied to the problem of
software and hardware security, each with their own pros and cons. We'll review some of
these methods as they apply to Spring Security throughout the first half of this book. Our
application lacks any type of authentication, which is why the audit included the risk of
inadvertent privilege escalation.

Anatomy of an Unsafe Application Chapter 1

[17]

Typically, a software system will be divided into two high-level realms,  such as
unauthenticated (or anonymous) and authenticated, as shown  in the following screenshot:

Application functionality in the anonymous realm is the functionality that is independent of
a user's identity (think of a welcome page for an online application).

Anonymous areas do not do the following:

Require a user to log in to the system or otherwise identify themselves  to be
usable
Display sensitive information, such as names, addresses, credit cards,  and orders
Provide functionality to manipulate the overall state of the system or its data

Unauthenticated areas of the system are intended for use by everyone, even by users who
we haven't specifically identified yet. However, it may be that additional functionality
appears to identified users in these areas (for example, the ubiquitous Welcome {First
Name} text). The selective displaying of content to authenticated users is fully supported
through the use of the Spring Security tag library and is covered in Chapter 11, Fine-
Grained Access Control.

We'll resolve this finding and implement form-based authentication using the automatic
configuration capability of Spring Security in Chapter 2, Getting Started with Spring Security.
Afterwards, we will explore various other means of performing authentication (which
usually revolves around system integration with enterprise  or other external authentication
stores).

Anatomy of an Unsafe Application Chapter 1

[18]

Authorization
Inappropriate or non-existent use of authorization

Authorization is the second of two core security concepts that are crucial in implementing
and understanding application security. Authorization uses the information that was
validated during authentication to determine whether access should be granted to a
particular resource. Built around the authorization model for the application, authorization
partitions the application functionality and data so that the availability of these items can be
controlled by matching the combination of privileges, functionality, and data to users. Our
application's failure at this point of the audit indicates that the application's functionality
isn't restricted by the user role. Imagine if you were running an e-commerce site and the
ability to view, cancel, or modify orders and customer information was available to any
user of the site!

Authorization typically involves the following two separate aspects that combine to
describe the accessibility of the secured system:

The first is the mapping of an authenticated principal to one or more authorities
(often called roles). For example, a casual user of your website might be viewed
 as having visitor authority, while a site administrator might be assigned
administrative authority.
The second is the assignment of authority checks to secured resources of the
system. This is typically done at the time a system is developed, either through an
explicit declaration in code or through configuration parameters. For example,
the screen that allows for the viewing of other users' events should be made
available only to those users with administrative authority.

A secured resource may be any aspect of the system that should be
conditionally available based on the authority of the user.

Secured resources of a web-based application could be individual web pages, entire
portions of the website, or portions of individual pages. Conversely, secured business
resources might be method calls on classes or individual business objects.

Anatomy of an Unsafe Application Chapter 1

[19]

You might imagine an authority check that would examine the principal, look up its user
account, and determine whether the principal is, in fact, an administrator. If this authority
check determines that the principal who is attempting to access the secured area is, in fact,
an administrator, then the request will succeed. If, however, the principal does not have the
sufficient authority, the request should be denied.

Let's take a closer look at an example of a particular secured resource, the All Events page.
The All Events page requires administrative access (after all, we don't want regular users
viewing other users' events), and as such, looks for a certain level of authority in the
principal accessing it.

If we think about how a decision might be made when a site administrator  attempts to
access the protected resource, we'd imagine that the examination of the actual authority
versus the required authority might be expressed concisely in terms  of the set theory. We
might then choose to represent this decision as a Venn diagram for the administrative user:

Anatomy of an Unsafe Application Chapter 1

[20]

There is an intersection between User Authorities (users and administrators)  and Required
Authorities (administrators) for the page, so the user is provided  with access.

Contrast this with an unauthorized user, as follows:

The sets of authorities are disjointed and have no common elements. So, the user is denied
access to the page. Thus, we have demonstrated the basic principle of the authorization of
access to resources.

In reality, there's real code making this decision, with the consequence that the user is
granted or denied access to the requested protected resource. We'll address the basic
authorization problem with the authorization infrastructure of Spring Security in Chapter
2, Getting Started with Spring Security, followed by more advanced authorization in Chapter
12, Access Control Lists, and Chapter 13, Custom Authorization.

Anatomy of an Unsafe Application Chapter 1

[21]

Database credential security
Database credentials are not secure or easily accessible. Through the examination of the
application source code and configuration files,  the auditors noted that user passwords
were stored in plain text in the configuration files, making it very easy for a malicious user
with access to the server to gain access to the application.

As the application contains personal and financial data, a rogue user being able to access
any data could expose the company to identity theft or tampering. Protecting access to the
credentials used to access the application should be a top priority for us, and an important
first step is ensuring that one point of failure in security does not compromise the entire
system.

We'll examine the configuration of database access layers in Spring Security for credential
storage, which requires JDBC connectivity, in Chapter 4, JDBC-Based Authentication. In the
same chapter, we'll also look at built-in techniques to increase the security of passwords
stored in the database.

Sensitive information
Personally identifiable or sensitive information is easily accessible or unencrypted. The
auditors noted that some significant and sensitive pieces of data were completely
unencrypted or masked anywhere in the system. Fortunately, there are some simple design
patterns and tools that allow us to protect this information securely, with annotation-based
AOP support in Spring Security.

Transport-level protection
There is insecure transport-level protection due to lack of SSL encryption.

While, in the real world, it's unthinkable that an online application containing private
information would operate without SSL protection, unfortunately, the JBCP calendar is in
just this situation. SSL protection ensures that communication between the browser client
and the web application server are secure against many kinds of tampering and snooping.

In the HTTPS Setup in Tomcat section, in Appendix, Additional Reference Material, we'll review
the basic options for  using transport-level security as part of the definition of the secured
structure  of the application.

Anatomy of an Unsafe Application Chapter 1

[22]

Using Spring Security 4.2 to address security concerns
Spring Security 4.2 provides a wealth of resources that allow for many common security
practices to be declared or configured in a straightforward manner. In the coming chapters,
we'll apply a combination of source code and application configuration changes to address
all of the concerns raised by the security auditors (and more), to give ourselves the
confidence that our calendar application is secure.

With Spring Security 4.2, we'll be able to make the following changes to increase our
application's security:

Segment users of the system into user classes
Assign levels of authorization to user roles
Assign user roles to user classes
Apply authentication rules globally across application resources
Apply authorization rules at all levels of the application architecture
Prevent common types of attacks intended to manipulate or steal a  user's session

Why Spring Security?
Spring Security exists to fill a gap in the universe of Java third-party libraries, much as the
Spring Framework originally did when it was first introduced. Standards such as Java
Authentication and Authorization Service (JAAS) or Java EE Security do offer some ways
of performing some of the same authentication and authorization functions, but Spring
Security is a winner because it includes everything you need to implement a top-to-bottom
application security solution in a concise and sensible way.

Additionally, Spring Security appeals to many, because it offers out-of-the-box integration
with many common enterprise authentication systems; so it's adaptable to most situations
with little effort (beyond configuration) on the part of the developer.

It's in wide use because there's really no other mainstream framework quite like it!

Anatomy of an Unsafe Application Chapter 1

[23]

Summary
In this chapter, we have reviewed the common points of risk in an unsecured web
application and the basic architecture of the sample application. We have also discussed the
strategies for securing the application.

In the next chapter, we'll explore how to get Spring Security set up quickly and get a basic
understanding of how it works.

2
Getting Started with Spring

Security
In this chapter, we'll apply a minimal Spring Security configuration to start addressing our
first finding—inadvertent privilege escalation due to a lack of  URL protection, and general
authentication from the security audit discussed in Chapter 1, Anatomy of an Unsafe
Application. We will then build on the basic configuration to provide a customized
experience for our users. This chapter is intended to get you up and running with Spring
Security and to provide a foundation for any other security-related tasks you will need to
perform.

During the course of this chapter, we will cover the following topics:

Implementing a basic level of security on the JBCP calendar application, using the
automatic configuration option in Spring Security
Learning how to customize both the login and logout experience
Configuring Spring Security to restrict access differently, depending  on the URL
Leveraging the expression-based access controls of Spring Security
Conditionally displaying basic information about the logged-in user using the JSP
library in Spring Security
Determining the user's default location after login, based on their role

Getting Started with Spring Security Chapter 2

[25]

Hello Spring Security
Although Spring Security can be extremely difficult to configure, the creators of the product
have been thoughtful and have provided us with a very simple mechanism to enable much
of the software's functionality with a strong baseline. From this baseline, additional
configuration will allow for a fine level of detailed control over the security behavior of the
application.

We'll start with our unsecured calendar application from Chapter 1, Anatomy of an Unsafe
Application, and turn it into a site that's secured with a rudimentary username and
password authentication. This authentication serves merely to illustrate the steps involved
in enabling Spring Security for our web application; you'll see that there are some obvious
flaws in this approach that will lead us to make further configuration refinements.

Importing the sample application
We encourage you to import the chapter02.00-calendar project into your IDE, and
follow along by obtaining the source code from this chapter, as described in the Getting
started with JBCP calendar sample code section in the Appendix, Additional Reference Material.

For each chapter, you will find multiple revisions of the code that represent checkpoints
within the book. This makes it easy to compare your work to the correct answers as you go.
At the beginning of each chapter, we will import the first revision of that chapter as a
starting point. For example, in this chapter, we start with chapter02.00-calendar, and
the first checkpoint will be chapter02.01-calendar. In Chapter 3, Custom Authentication,
we will start with chapter03.00-calendar, and the first checkpoint will be
chapter03.01-calendar. There are additional details in the Getting started with JBCP
calendar sample code section in the Appendix, Additional Reference Material, so be sure to refer
to it for details.

Updating your dependencies
The first step is to update the project's dependencies to include the necessary Spring
Security JAR files. Update the Gradle build.gradle file (from the sample application you
imported previously) to include the Spring Security JAR files that we will use in the
following few sections.

Getting Started with Spring Security Chapter 2

[26]

Throughout the book, we will be demonstrating how to provide the
required dependencies using Gradle. The build.gradle file is located in
the root of the project and represents all that is needed to build the project
(including the project's dependencies). Remember that Gradle will
download the transitive dependencies for each listed dependency. So, if
you are using another mechanism to manage dependencies, ensure that
you also include the transitive dependencies. When managing the
dependencies manually, it is useful to know that the Spring Security
reference includes a list of its transitive dependencies. A link to the Spring
Security reference can be found in the Supplementary Materials section in
the Supplementary materials section in the Appendix, Additional Reference
Material.

Let's take a look at the following code snippet:

 build.gradle:
 dependencies {
 compile "org.springframework.security:spring-security-
 config:${springSecurityVersion}"
 compile "org.springframework.security:spring-security-
 core:${springSecurityVersion}"
 compile "org.springframework.security:spring-security-
 web:${springSecurityVersion}"
 ...
 }

Using Spring 4.3 and Spring Security 4.2
Spring 4.2 is used consistently. Our sample applications provide an example of the former
option, which means that no additional work is required by you.

In the following code, we present an example fragment of what is added to the Gradle
build.gradle file to utilize the dependency management feature of Gradle; this ensures
that correct Spring version is used throughout the entire application. We are going to
leverage the Spring IO bill of materials (BOM) dependency, which will ensure that all the
dependency versions imported by the BOM will work together correctly:

 build.gradle
 // Spring Security IO with ensures correct Springframework versions
 dependencyManagement {
 imports {
 mavenBom 'io.spring.platform:platform-bom:Brussels-
${springIoVersion}'
 }

Getting Started with Spring Security Chapter 2

[27]

 }
 dependencies {
 ...
 }

If you are using Spring Tool Suite, any time you update the
build.gradle file, ensure you right-click on the project and navigate to
Gradle | Refresh Gradle Project… and select OK to update all the
dependencies.

For more information about how Gradle handles transitive dependencies, as well as the
BOM, refer to the Gradle documentation, which is listed in the Supplementary materials
section, in Appendix, Additional Reference Material.

Implementing a Spring Security XML
configuration file
The next step in the configuration process is to create a Java configuration file representing
all Spring Security components required to cover standard web requests.

Create a new Java file in the
src/main/java/com/packtpub/springsecurity/configuration/ directory with the
name SecurityConfig.java, and the following content. Among other things, the
following file demonstrates user login requirements for every page in our application,
provides a login page, authenticates the user, and requires the logged-in user to be
associated with a role called USER for every URL element:

 //src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java

 @Configuration
 @EnableWebSecurity
 public class SecurityConfig extends WebSecurityConfigurerAdapter {
 @Override
 public void configure(final AuthenticationManagerBuilder auth)
throws Exception
 {
 auth.inMemoryAuthentication().withUser("user1@example.com")
 .password("user1").roles("USER");
 }
 @Override
 protected void configure(final HttpSecurity http) throws Exception
{

Getting Started with Spring Security Chapter 2

[28]

 http.authorizeRequests()
 .antMatchers("/**").access("hasRole('USER')")
 // equivalent to <http auto-config="true">
 .and().formLogin()
 .and().httpBasic()
 .and().logout()
 // CSRF is enabled by default (will discuss later)
 .and().csrf().disable();
 }
 }

If you are using Spring Tool Suite, you can easily review
WebSecurityConfigurerAdapter by using F3. Remember that the next
checkpoint (chapter02.01-calendar) has a working solution, so the file
can be copied from there as well.

This is the only Spring Security configuration required to get our web application secured
with a minimal standard configuration. This style of configuration, using a Spring Security-
specific Java configuration, is known as Java Config.

Let's take a minute to break this configuration apart so we can get a high-level idea of what
is happening. In the configure(HttpSecurity) method, the HttpSecurity object
creates a Servlet Filter, which ensures that the currently logged-in user is associated with
the appropriate role. In this instance, the filter will ensure that the user is associated with
ROLE_USER. It is important to understand that the name of the role is arbitrary. Later, we
will create a user with ROLE_ADMIN and will allow this user to have access to additional
URLs that our current user does not have access to.

In the configure(AuthenticationManagerBuilder) method,
the AuthenticationManagerBuilder object is how Spring Security authenticates the
user. In this instance, we utilize an in-memory data store to compare a username and
password.

Our example and explanation of what is happening are a bit contrived. An in-memory
authentication store would not work in a production environment. However, it allows us to
get things up and running quickly. We will incrementally improve our understanding of
Spring Security as we update our application to use production quality security throughout
this book.

Getting Started with Spring Security Chapter 2

[29]

General support for Java Configuration was added to Spring Framework
in Spring 3.1. Since Spring Security 3.2 release, there has been Spring
Security Java Configuration support, which enables users to easily
configure Spring Security without the use of any XML. If you are familiar
with Chapter 6, LDAP Directory Services, and the Spring Security
documentation, then you should find quite a few similarities between it
and Security Java Configuration support.

Updating your web.xml file
The next steps involve a series of updates to the web.xml file. Some of the steps have
already been performed because the application was already using Spring MVC. However,
we will go over these requirements to ensure that more fundamental Spring requirements
are understood, in the event that you are using Spring Security in an application that is not
Spring-enabled.

The ContextLoaderListener class
The first step of updating the web.xml file is to remove it and replace it
with javax.servlet.ServletContainerInitializer, which is the preferred approach
to Servlet 3.0+ initialization. Spring MVC provides the
o.s.w.WebApplicationInitializer interface, which leverages this mechanism. In
Spring MVC, the preferred approach is to extend
o.s.w.servlet.support.AbstractAnnotationConfigDispatcherServletInitiali

zer. The WebApplicationInitializer class is
polymorphically o.s.w.context.AbstractContextLoaderInitializer and uses the
abstract createRootApplicationContext() method to create a root
ApplicationContext, then delegates it to ContextLoaderListener, which is registered
in the ServletContext instance, as shown in the following code snippet:

 //src/main/java/c/p/s/web/configuration/WebAppInitializer

 public class WebAppInitializer extends
 AbstractAnnotationConfigDispatcherServletInitializer {
 @Override
 protected Class<?>[] getRootConfigClasses() {
 return new Class[] { JavaConfig.class, SecurityConfig.class,
 DataSourceConfig.class };
 }
 ...
 }

Getting Started with Spring Security Chapter 2

[30]

The updated configuration will now load SecurityConfig.class from the classpath of
the WAR file.

ContextLoaderListener versus DispatcherServlet
The o.s.web.servlet.DispatcherServlet interface specifies configuration classes to be
loaded on their own using the getServletConfigClasses() method:

 //src/main/java/c/p/s/web/configuration/WebAppInitializer

 public class WebAppInitializer extends
 AbstractAnnotationConfigDispatcherServletInitializer {
 ...
 @Override
 protected Class<?>[] getServletConfigClasses() {
 return new Class[] { WebMvcConfig.class };
 }
 ...
 @Override
 public void onStartup(final ServletContext servletContext) throws
 ServletException {
 // Registers DispatcherServlet
 super.onStartup(servletContext);
 }
 }

The DispatcherServlet class creates o.s.context.ApplicationContext, which is a
child of the root ApplicationContext interface. Typically, Spring MVC-specific
components are initialized in the ApplicationContext interface of DispatcherServlet,
while the rest are loaded by ContextLoaderListener. It is important to know that beans
in a child ApplicationContext (such as those created by DispatcherServlet) can
reference beans of the parent ApplicationContext (such as those created by
ContextLoaderListener). However, the parent ApplicationContext interface cannot
refer to beans of the child ApplicationContext.

Getting Started with Spring Security Chapter 2

[31]

This is illustrated in the following diagram, in which Child Beans can refer to Root Beans,
but Root Beans cannot refer to Child Beans:

As in most use cases of Spring Security, we do not need Spring Security to refer to any of
the MVC-declared beans. Therefore, we have decided to have ContextLoaderListener
initialize all configurations of Spring Security.

The springSecurityFilterChain filter
The next step is to configure springSecurityFilterChain to intercept all requests by
creating an implementation of AbstractSecurityWebApplicationInitializer. It is
critical for springSecurityFilterChain to be declared first, to ensure the request is
secured prior to any other logic being invoked. To ensure springSecurityFilterChain
gets loaded first, we can use @Order(1) as shown in the following configuration:

 //src/main/java/c/p/s/web/configuration/SecurityWebAppInitializer

 @Order(1)
 public class SecurityWebAppInitializer extends
 AbstractSecurityWebApplicationInitializer {

Getting Started with Spring Security Chapter 2

[32]

 public SecurityWebAppInitializer() {
 super();
 }
 }

The SecurityWebAppInitializer class will automatically register
the springSecurityFilterChain filter for every URL in your application and will
add ContextLoaderListener, which loads SecurityConfig.

The DelegatingFilterProxy class
The o.s.web.filter.DelegatingFilterProxy class is a Servlet Filter provided by
Spring Web that will delegate all work to a Spring bean from
the ApplicationContext root, which must implement javax.servlet.Filter. Since by
default the bean is looked up by name, using the <filter-name> value, we must ensure
we use springSecurityFilterChain as the value of <filter-name>. The pseudocode
for how o.s.web.filter.DelegatingFilterProxy works for our web.xml file can be
found in the following code snippet:

 public class DelegatingFilterProxy implements Filter {
 void doFilter(request, response, filterChain) {
 Filter delegate =
applicationContet.getBean("springSecurityFilterChain")
 delegate.doFilter(request,response,filterChain);
 }
 }

The FilterChainProxy class
When working in conjunction with Spring Security,
o.s.web.filter.DelegatingFilterProxy will delegate to
the o.s.s.web.FilterChainProxy interface of Spring Security, which was created in our
minimal security.xml file. The FilterChainProxy class allows Spring Security to
conditionally apply any number of Servlet Filters to the servlet request. We will learn more
about each of the Spring Security filters, and their roles in ensuring that our application is
properly secured, throughout the rest of the book. The pseudocode for how
FilterChainProxy works are as follows:

 public class FilterChainProxy implements Filter {
 void doFilter(request, response, filterChain) {
 // lookup all the Filters for this request
 List<Filter> delegates =   lookupDelegates(request,response)
 // invoke each filter unless the delegate decided to stop

Getting Started with Spring Security Chapter 2

[33]

 for delegate in delegates {
 if continue processing
 delegate.doFilter(request,response,filterChain)
 }
 // if all the filters decide it is ok allow the
 // rest of the application to run
 if continue processing
 filterChain.doFilter(request,response)   }
 }

Due to the fact that both DelegatingFilterProxy and
FilterChainProxy are the front door to Spring Security, when used in a
web application, you would add a debug point when trying to figure out
what is happening.

Running a secured application
If you have not already done so, restart the application and visit
http://localhost:8080/. You will be presented with the following screen:

Great job! We've implemented a basic layer of security in our application using Spring
Security. At this point, you should be able to log in using user1@example.com as User and
user1 as Password. You'll see the calendar welcome page, which describes at a high level
what to expect from the application in terms of security.

Getting Started with Spring Security Chapter 2

[34]

Your code should now look like chapter02.01-calendar.

Common problems
Many users have trouble with the initial implementation of Spring Security in their
application. A few common issues and suggestions are listed next. We want to ensure that
you can run the example application and follow along!

Make sure you can build and deploy the application before putting Spring
Security in place.
Review some introductory samples and documentation on your servlet container
if needed.
It's usually easiest to use an IDE, such as Eclipse, to run your servlet container.
Not only is deployment typically seamless, but the console log is also readily
available to review for errors. You can also set breakpoints at strategic locations,
to be triggered by exceptions to better diagnose errors.
Make sure the versions of Spring and Spring Security that you're using match
and that there aren't any unexpected Spring JARs remaining as part of your
application. As previously mentioned, when using Gradle, it can be a good idea
to declare the Spring dependencies in the dependency management section.

A little bit of polish
Stop at this point and think about what we've just built. You may have noticed some
obvious issues that will require some additional work and knowledge of the Spring Security
product before our application is production-ready. Try to make a list of the changes that
you think are required before this security implementation is ready to roll out on the public-
facing website.

Getting Started with Spring Security Chapter 2

[35]

Applying the Hello World Spring Security implementation was blindingly fast and has
provided us with a login page, username, and password-based authentication, as well as
the automatic interception of URLs in our calendar application. However, there are gaps
between what the automatic configuration setup provides and what our end goal is, which
are listed as follows:

While the login page is helpful, it's completely generic and doesn't look like the
rest of our JBCP calendar application. We should add a login form that's
integrated with our application's look and feel.
There is no obvious way for a user to log out. We've locked down all pages in the
application, including the Welcome page, which a potential user may want to
browse anonymously. We'll need to redefine the roles required to accommodate
anonymous, authenticated, and administrative users.
We do not display any contextual information to indicate to the user that they are
authenticated. It would be nice to display a greeting similar
to welcome user1@example.com.
We've had to hardcode the username, password, and role information of the user
in the SecurityConfig configuration file. Recall this section of
the configure(AuthenticationManagerBuilder) method we added:

 auth.inMemoryAuthentication().withUser("user1@example.com")
 .password("user1").roles("USER");

You can see that the username and password are right there in the file. It's
unlikely that we'd want to add a new declaration to the file for every user of the
system! To address this, we'll need to update the configuration with another type
of authentication.

We'll explore different authentication options throughout the first half of the book.

Customizing login
We've seen how Spring Security makes it very easy to get started. Now let's see how we can
customize the login experience. In the following code snippet, we demonstrate the usage of
some of the more common ways to customize login, but we encourage you to refer to the
reference documentation of Spring Security, which includes an Appendix, Additional
Reference Material with all of the supported attributes.

Getting Started with Spring Security Chapter 2

[36]

Let's take a look at the following steps to customize login:

First, update your SecurityConfig.java file as follows:1.

 //src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java

 http.authorizeRequests()
 ...
 .formLogin()
 .loginPage("/login/form")
 .loginProcessingUrl("/login")
 .failureUrl("/login/form?error")
 .usernameParameter("username")
 .passwordParameter("password")

Let's take a look at the following methods depicted in the preceding code snippet:

The loginPage() method specifies where Spring Security will redirect the
browser if a protected page is accessed and the user is not authenticated. If a
login page is not specified, Spring Security will redirect the user to
/spring_security_login. Then o.s.s.web.filter.FilterChainProxy
will choose
o.s.s.web.authentication.ui.DefaultLoginPageGeneratingFilter,
which renders the default login page as one of the delegates, since
DefaultLoginPageGeneratingFilter is configured to process
/spring_security_login by default. Since we have chosen to override the
default URL, we are in charge of rendering the login page when
the /login/form URL is requested.
The loginProcessingUrl() method defaults to
/j_spring_security_check and specifies the URL that the login form (which
should include the username and password) should be submitted to, using an
HTTP post. When Spring Security processes this request, it will attempt to
authenticate the user.
The failureUrl() method specifies the page that Spring Security will redirect
to if the username and password submitted to loginProcessingUrl() are
invalid.
The usernameParameter() and passwordParameter() methods default to
j_username and j_password respectively, and specify the HTTP parameters
that Spring Security will use to authenticate the user when processing the
loginProcessingUrl() method.

Getting Started with Spring Security Chapter 2

[37]

It may be obvious, but if we only wanted to add a custom login page, we
would only need to specify the loginPage() method. We would then
create our login form using the default values for the remaining attributes.
However, it is often good practice to override the values of anything
visible to users, to prevent exposing that we are using Spring Security.
Revealing what frameworks we are using is a type of information leakage,
making it easier for attackers to determine potential holes in our security.

The next step is to create a login page. We can use any technology we want to2.
render the login page, as long as the login form produces the HTTP request that
we specified with our Spring Security configuration when submitted. By
ensuring the HTTP request conforms to our configuration, Spring Security can
authenticate the request for us. Create the login.html file, as shown in the
following code snippet:

 //src/main/webapp/WEB-INF/tempates/login.html

 <div class="container">
 <!--/*/ <th:block th:include="fragments/header :: header">
 </th:block> /*/-->
 <form th:action="@{/login}" method="POST"
 cssClass="form-horizontal">
 <div th:if="${param.error != null}" class="alert
 alert-danger">
 Failed to login.
 <span
th:if="${session[SPRING_SECURITY_LAST_EXCEPTION]
 != null}">
 <span th:text="${session
 [SPRING_SECURITY_LAST_EXCEPTION].message}">
 Invalid credentials

 </div>
 <div th:if="${param.logout != null}"
 class="alert alert-success">You have been logged out.
 </div>
 <label for="username">Username</label>
 <input type="text" id="username" name="username"
 autofocus="autofocus"/>
 <label for="password">Password</label>
 <input type="password" id="password" name="password"/>
 <div class="form-actions">
 <input id="submit" class="btn" name="submit"
 type="submit"
 value="Login"/>

Getting Started with Spring Security Chapter 2

[38]

 </div>
 </form>
 </div>

Remember that if you are having problems typing anything in the book,
you can refer to the solution at the next checkpoint (chapter02.02-
calendar).

The following number of items are worth highlighting in the
preceding login.html file:

The form action should be /login, to match the value provided for the
loginProcessingUrl() method we specified. For security reasons, Spring
Security only attempts to authenticate when using POST by default.
We can use param.error to see whether there was a problem logging in, since
the value of our failureUrl() method, /login/form?error, contains the
HTTP parameter error.
The session attribute, SPRING_SECURITY_LAST_EXCEPTION, contains the last
o.s.s.core.AuthenticationException exception, which can be used to
display the reason for a failed login. The error messages can be customized by
leveraging Spring's internationalization support.
The input names for the username and password inputs are chosen to
correspond to the values we specified for the usernameParameter() and
passwordParameter() methods in our SecurityConfig.java configuration.

The last step is to make Spring MVC aware of our new URL. This can be done by3.
adding the following method to WebMvcConfig:

 //src/main/java/com/packtpub/springsecurity/web/configuration/
 WebMvcConfig.java

 import org.springframework.web.servlet.config.annotation.
 ViewControllerRegistry;
 ...
 public class WebMvcConfig extends WebMvcConfigurationSupport {
 public void addViewControllers(ViewControllerRegistry
 registry){
 registry.addViewController("/login/form")
 .setViewName("login");
 }
 ...
 }

Getting Started with Spring Security Chapter 2

[39]

Configuring logout
The HttpSecurity configuration of Spring Security automatically adds support for
logging the user out. All that is needed is to create a link that points to
/j_spring_security_logout. However, we will demonstrate how to customize the URL
used to log the user out by performing the following steps:

Update the Spring Security configuration as follows:1.

 //src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java

 http.authorizeRequests()
 ...
 .logout()
 .logoutUrl("/logout")
 .logoutSuccessUrl("/login?logout");

You have to provide a link for the user to click on that will log them out. We will2.
update the header.html file so that the Logout link appears on every page:

 //src/main/webapp/WEB-INF/templates/fragments/header.html

 <div id="navbar" ...>
 ...
 <ul class="nav navbar-nav pull-right">

 Logout

 ...
 </div>

The last step is to update the login.html file to display a message indicating3.
logout was successful when the logout parameter is present:

 //src/main/webapp/WEB-INF/templates/login.html

 <div th:if="${param.logout != null}" class="alert
 alert-success"> You have been logged out.</div>
 <label for="username">Username</label>
 ...

Your code should now look like chapter02.02-calendar.

Getting Started with Spring Security Chapter 2

[40]

The page isn't redirecting properly
If you have not already, restart the application and visit http://localhost:8080 in
Firefox; you will see an error, as shown in the following screenshot:

What went wrong? The problem is, since Spring Security is no longer rendering the login
page, we must allow everyone (not just the USER role) to access the Login page. Without
granting access to the Login page, the following happens:

We request the Welcome page in the browser.1.
Spring Security sees that the Welcome page requires the USER role and that we2.
are not authenticated, so it redirects the browser to the Login page.

Getting Started with Spring Security Chapter 2

[41]

The browser requests the Login page.3.
Spring Security sees that the Login page requires the USER role and that we are4.
still not authenticated, so it redirects the browser to the Login page again.
The browser requests the Login page again.5.
Spring Security sees that the Login page requires the USER role, as shown in the6.
following diagram:

The process could just keep repeating indefinitely. Fortunately for us, Firefox realizes that
there are too many redirects occurring, stops performing the redirect, and displays a very
informative error message. In the next section, we will learn how to fix this error by
configuring URLs differently, depending on the access that they require.

Basic role-based authorization
We can expand on the Spring Security configuration from Hello Spring Security to vary the
access controls by URL. In this section, you will find a configuration that allows more
granular control over how resources can be accessed. In the configuration, Spring Security
does the following tasks:

It completely ignores any request that starts with /resources/. This is beneficial
since our images, CSS, and JavaScript do not need to use Spring Security.
It allows anonymous users to access the Welcome, Login, and Logout pages.
It only allows administrators access to the All Events page.
It adds an administrator that can access the All Events page.

Getting Started with Spring Security Chapter 2

[42]

Take a look at the following code snippet:

 //src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java

 http.authorizeRequests()
 .antMatchers("/resources/**").permitAll()
 .antMatchers("/").hasAnyRole("ANONYMOUS", "USER")
 .antMatchers("/login/*").hasAnyRole("ANONYMOUS", "USER")
 .antMatchers("/logout/*").hasAnyRole("ANONYMOUS", "USER")
 .antMatchers("/admin/*").hasRole("ADMIN")
 .antMatchers("/events/").hasRole("ADMIN")
 .antMatchers("/**").hasRole("USER")
 ...
 @Override
 public void configure(final AuthenticationManagerBuilder auth)
 throws Exception{
 auth.inMemoryAuthentication()
 .withUser("user1@example.com").password("user1").roles("USER")
 .and().withUser("admin1@example.com").password("admin1").
 roles("USER", "ADMIN");
 }

Notice that we do not include /calendar, the application's context root,
in the Spring Security configuration, because Spring Security takes care of
the context root transparently for us. In this way, we do not need to
update our configuration if we decide to deploy it to a different context
root.

In Spring Security 4,2, you can specify multiple RequestMatcher entries using a builder
pattern that allows you to have greater control over how security is applied to different
portions of your application. The first antMatchers() method states that Spring Security
should ignore any URL that starts with /resources/, and the second antMatchers()
method states that any other request will be processed by it. There are a few important
things to note about using multiple antMatchers methods, as follows:

If no path attribute is specified, it is the equivalent of using a path of /**, which
matches all requests.

Getting Started with Spring Security Chapter 2

[43]

Each antMatchers() method is considered in order, and only the first match is
applied. So, the order in which they appear in your configuration file is
important. The implication is that only the last antMatchers() method can use a
path that matches every request. If you do not follow this rule, Spring Security
will produce an error. The following is invalid because the first matcher matches
every request and will never get to the second mapping:

 http.authorizeRequests()
 .antMatchers("/**").hasRole("USER")
 .antMatchers("/admin/**").hasRole("ADMIN")

The default pattern is backed by o.s.s.web.util.AntPathRequestMatcher,
which will compare the specified pattern to an ant pattern to determine whether
it matches the servletPath and pathInfo methods of HttpServletRequest.
Note that query strings are ignored when determining whether a request is a
match. Internally, Spring Security uses o.s.u.AntPathMatcher to do all the
work. A summary of the rules is listed as follows:

 ? matches a single character.
 * matches zero or more characters, excluding /.
 ** matches zero or more directories in a path.

 The pattern "/events/**" matches "/events", "/events/",
 "/events/1", and "/events/1/form?test=1"; it does not
 match "/events123".
 The pattern "/events*" matches "/events", and "/events123";
 it does not match "/events/" or "/events/1".
 The pattern "/events*/**" matches "/events", "/events/",
 "/events/1","/events123", "/events123/456", and
 "/events/1/form?test=1".

The path attribute on the antMatchers() method further refines the filtering of
the request and allows access control to be applied. You can see that the updated
configuration allows different types of access, depending on the URL pattern. The
role ANONYMOUS is of particular interest since we have not defined it anywhere in
SecurityConfig.java. This is the default authority assigned to a user that is
not logged in. The following line, from the updates to our
SecurityConfig.java file, is what allows anonymous (unauthenticated) users
and users with the role USER authority to access the Login page. We will cover
access control options in more detail in the second half of the book:

 .antMatchers("/login/*").hasAnyRole("ANONYMOUS", "USER")

Getting Started with Spring Security Chapter 2

[44]

When defining the antMatchers() methods, there are a number of things to
keep in mind, including the following:

Just as each http method is considered from top to bottom, so are
the antMatchers() methods. This means it is important to specify
the most specific elements first. The following example illustrates a
configuration that does not specify the more specific pattern first,
which will result in warnings from Spring Security at startup:

 http.authorizeRequests()
 …
 // matches every request, so it will not continue
 .antMatchers("/**").hasRole("USER")
 // below will never match
 .antMatchers("/login/form").hasAnyRole("ANONYMOUS", "USER")

It is important to note that if http.authorizeRequests() is marked
anyRequest(), there can be no child antMatchers() method defined. This is
because anyRequest() will match all requests that match this
http.authorizeRequests() tag. Defining an antMatchers() child method
with anyRequest() contradicts the antMatchers() declaration. An example is
as follows:

 http.authorizeRequests().anyRequest().permitAll()
 // This matcher will never be executed
 // and not produce an error.
 .antMatchers("/admin/*").hasRole("ADMIN")

The path attribute of the antMatchers() element is independent and is not
aware of the anyRequest() attribute of the http method.

If you have not done so already, restart the application and
visit http://localhost:8080. Experiment with the application to see all the updates you
have made, as follows:

Select a link that requires authentication and observes the new login page.1.
Try typing an invalid username/password and view the error message.2.
Try logging in as an admin (admin1@example.com/admin1), and view all of the3.
events. Note that we are able to view all the events.

mailto:admin1@example.com

Getting Started with Spring Security Chapter 2

[45]

Try logging out and view the logout success message.4.
Try logging in as a regular user (user1@example.com/user1), and view all of 5.
the events. Note that we get an Access Denied page.

Your code should now look like chapter02.03-calendar.

Expression-based authorization
You may have noticed that granting access to everyone was not nearly as concise as we may
have liked. Fortunately, Spring Security can leverage Spring Expression Language (SpEL)
to determine whether a user has authorization. In the following code snippet, you can see
the updates when using SpEL with Spring Security:

 //src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java

 http.authorizeRequests()
 .antMatchers("/").access("hasAnyRole('ANONYMOUS', 'USER')")
 .antMatchers("/login/*").access("hasAnyRole('ANONYMOUS', 'USER')")
 .antMatchers("/logout/*").access("hasAnyRole('ANONYMOUS', 'USER')")
 .antMatchers("/admin/*").access("hasRole('ADMIN')")
 .antMatchers("/events/").access("hasRole('ADMIN')")
 .antMatchers("/**").access("hasRole('USER')")

You may notice that the /events/ security constraint is brittle. For
example, the /events URL is not protected by Spring Security to restrict
the ADMIN role. This demonstrates the need to ensure that we provide
multiple layers of security. We will exploit this sort of weakness in
Chapter 11, Fine-Grained Access Control.

Changing the access attribute from hasAnyRole('ANONYMOUS', 'USER') to
permitAll() might not seem like much, but this only scratches the surface of the power of
Spring Security's expressions. We will go into much greater detail about access control and
Spring expressions in the second half of the book. Go ahead and verify that the updates
work by running the application.

Getting Started with Spring Security Chapter 2

[46]

Your code should now look like chapter02.04-calendar.

Conditionally displaying authentication information
Currently, our application has no indication as to whether we are logged in or not. In fact, it
appears as though we are always logged in since the Logout link is always displayed. In
this section, we will demonstrate how to display the authenticated user's username and
conditionally display portions of the page using Thymeleaf’s Spring Security tag library. We
do so by performing the following steps:

Update your dependencies to include the thymeleaf-extras-1.
springsecurity4 JAR file. Since we are using Gradle, we will add a new
dependency declaration in our build.gradle file, as follows:

 //build.gradle

 dependency{
 ...
 compile 'org.thymeleaf.extras:thymeleaf-
 extras-springsecurity4'
 }

Next, we need to add SpringSecurityDialect to the Thymeleaf engine as2.
follows:

 //src/com/packtpub/springsecurity/web/configuration/
 ThymeleafConfig.java

 @Bean
 public SpringTemplateEngine templateEngine(
 final ServletContextTemplateResolver resolver)
 {
 SpringTemplateEngine engine = new SpringTemplateEngine();
 engine.setTemplateResolver(resolver);
 engine.setAdditionalDialects(new HashSet<IDialect>() {{
 add(new LayoutDialect());
 add(new SpringSecurityDialect());
 }});
 return engine;
 }

Getting Started with Spring Security Chapter 2

[47]

Update the header.html file to leverage the Spring Security tag library. You can3.
find the updates as follows:

 //src/main/webapp/WEB-INF/templates/fragments/header.html

 <html xmlns:th="http://www.thymeleaf.org"
 xmlns:sec="http://www.thymeleaf.org/thymeleaf-
 extras-springsecurity4">
 ...
 <div id="navbar" class="collapse navbar-collapse">
 ...
 <ul class="nav navbar-nav pull-right"
 sec:authorize="isAuthenticated()">

 <p class="navbar-text">Welcome <div class="navbar-text"
 th:text="${#authentication.name}">User</div></p>

 <a id="navLogoutLink" class="btn btn-default"
 role="button" th:href="@{/logout}">Logout

 |

 <ul class="nav navbar-nav pull-right"
 sec:authorize=" ! isAuthenticated()">
 <a id="navLoginLink" class="btn btn-default"
 role="button"
 th:href="@{/login/form}">Login
 |

 ...

The sec:authorize attribute determines whether the user is authenticated with
the isAuthenticated()value, and displays the HTML node if the user is
authenticated, and hides the node in the event that the user is not authenticated.
The access attribute should be rather familiar from the
antMatcher().access() element. In fact, both components leverage the same
SpEL support. There are attributes in the Thymeleaf tag libraries that do not use
expressions. However, using SpEL is typically the preferred method since it is
more powerful.

Getting Started with Spring Security Chapter 2

[48]

The sec:authentication attribute will look up the current
o.s.s.core.Authentication object. The property attribute will find the
principal attribute of the o.s.s.core.Authentication,object, which in this
case is o.s.s.core.userdetails.UserDetails. It then obtains the
UserDetails username property and renders it to the page. Don't worry if the
details of this are confusing. We are going to go over this in more detail in
Chapter 3, Custom Authentication.

If you haven't done so already, restart the application to see the updates we have made. At
this point, you may realize that we are still displaying links we do not have access to. For
example, user1@example.com should not see a link to the All Events page. Rest assured,
we'll fix this when we cover the tags in greater detail in Chapter 11, Fine-Grained Access
Control.

Your code should now look like this: chapter02.05-calendar.

Customizing behavior after login
We have already discussed how to customize a user's experience during login, but
sometimes it is necessary to customize the behavior after login. In this section, we will
discuss how Spring Security behaves after login and will provide a simple mechanism to
customize this behavior.

In the default configuration, Spring Security has two different flows after successful
authentication. The first scenario occurs if a user never visits a resource that requires
authentication. In this instance, after a successful login attempt, the user will be sent to the
defaultSuccessUrl() method chained to the formLogin() method. If left undefined,
defaultSuccessUrl() will be the context root of the application.

If a user requests a protected page before being authenticated, Spring Security will
remember the last protected page that was accessed prior to authenticating, using
o.s.s.web.savedrequest.RequestCache. Upon successful authentication, Spring
Security will send the user to the last protected page that was accessed prior to
authentication. For example, if an unauthenticated user requests the My Events page, they
will be sent to the Login page.

Getting Started with Spring Security Chapter 2

[49]

After successful authentication, they will be sent to the previously requested My Events
page.

A common requirement is to customize Spring Security to send the user to a different
defaultSuccessUrl() method, depending on the user's role. Let's take a look at how this
can be accomplished by performing the following steps:

The first step is to configure the defaultSuccessUrl() method chained after1.
the formLogin() method. Go ahead and update the security.xml file to use
/default instead of the context root:

 //src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java

 .formLogin()
 .loginPage("/login/form")
 .loginProcessingUrl("/login")
 .failureUrl("/login/form?error")
 .usernameParameter("username")
 .passwordParameter("password")
 .defaultSuccessUrl("/default")
 .permitAll()

The next step is to create a controller that processes /default. In the following2.
code, you will find a sample Spring MVC controller, DefaultController,
which demonstrates how to redirect administrators to the All Events page and
other users to the Welcome page. Create a new file in the following location:

 //src/main/java/com/packtpub/springsecurity/web/controllers/
 DefaultController.java

 // imports omitted
 @Controller
 public class DefaultController {
 @RequestMapping("/default")
 public String defaultAfterLogin(HttpServletRequest request) {
 if (request.isUserInRole("ADMIN")) {
 return "redirect:/events/";
 }
 return "redirect:/";
 }
 }

Getting Started with Spring Security Chapter 2

[50]

In Spring Tool Suite, you can use Shift + Ctrl + O to automatically add the
missing imports.

There are a few things to point out about DefaultController and how it works.
The first is that Spring Security makes the HttpServletRequest parameter
aware of the currently logged-in user. In this instance, we are able to inspect
which role the user belongs to without relying on any of Spring Security's APIs.
This is good because if Spring Security's APIs change or we decide we want to
switch our security implementation, we have less code that needs to be updated.
It should also be noted that while we implement this controller with a Spring
MVC controller, our defaultSuccessUrl() method can be handled by any
controller implementation (for example, Struts, a standard servlet, and so on) if
we desire.

If you wish to always go to the defaultSuccessUrl() method, you can3.
leverage the second parameter to the defaultSuccessUrl() method, which is a
Boolean for always use. We will not do this in our configuration, but you can see
an example of it as follows:

 .defaultSuccessUrl("/default", true)

You are now ready to give it a try. Restart the application and go directly to4.
the My Events page, then log in; you will see that you are on the My Events
page.
Next, log out and try logging in as user1@example.com.5.
You should be on the Welcome page. Log out and log in as6.
admin1@example.com, and you will be
sent to the All Events page.

Your code should now look like chapter02.06-calendar.

Getting Started with Spring Security Chapter 2

[51]

Summary
In this chapter, we have applied a very basic Spring Security configuration, explained how
to customize the user's login and logout experience, and demonstrated how to display basic
information, such as a username, in our web application.

In the next chapter, we will discuss how authentication in Spring Security works and how
we can customize it to our needs.

3
Custom Authentication

In Chapter 2, Getting Started with Spring Security, we demonstrated how to use an in-
memory datastore to authenticate the user. In this chapter, we'll explore how to solve some
common, real-world problems by extending Spring Security's authentication support to use
our existing set of APIs. Through this exploration, we'll get an understanding of each of the
building blocks that Spring Security uses in order to authenticate users.

During the course of this chapter, we will cover the following topics:

Leverage Spring Security’s annotations and Java-based configuration
Discovering how to obtain the details of the currently logged-in user
Adding the ability to log in after creating a new account
Learning the simplest method for indicating to Spring Security, that a user is
authenticated
Creating custom UserDetailsService and AuthenticationProvider
implementations that properly decouple the rest of the application from Spring
Security
Adding domain-based authentication to demonstrate how to authenticate with
more than just a username and password

Custom Authentication Chapter 3

[53]

JBCP calendar architecture
In Chapter 1, Anatomy of an Unsafe Application, and Chapter 2, Getting Started with Spring
Security, we used the Spring IO BOM to assist in dependency management, but the rest of
the code in the projects was using the core Spring Framework and required manual
configuration. Starting with this chapter, we will be using Spring Boot for the rest of the
applications, to simplify the application configuration process. The Spring Security
configuration we will be creating will be the same for both a Spring Boot and non-Boot
application. We will cover more details on Spring IO and Spring Boot in the Appendix,
Additional Reference Material.

Since this chapter is about integrating Spring Security with custom users and APIs, we will
start with a quick introduction to the domain model within the JBCP calendar application.

The CalendarUser object
Our calendar application uses a domain object named CalendarUser, which contains
information about our users, as follows:

 //src/main/java/com/packtpub/springsecurity/domain/CalendarUser.java

 public class CalendarUser implements Serializable {
 private Integer id;
 private String firstName;
 private String lastName;
 private String email;
 private String password;
 ... accessor methods omitted ..
 }

The Event object
Our application has an Event object that contains information about each event, as follows:

 //src/main/java/com/packtpub/springsecurity/domain/Event.java

 public class Event {
 private Integer id;
 private String summary;
 private String description;
 private Calendar when;
 private CalendarUser owner;
 private CalendarUser attendee;

Custom Authentication Chapter 3

[54]

 ... accessor methods omitted ..
 }

The CalendarService interface
Our application contains a CalendarService interface that can be used to access and store
our domain objects. The code for CalendarService is as follows:

//src/main/java/com/packtpub/springsecurity/service/CalendarService.java

 public interface CalendarService {
 CalendarUser getUser(int id);
 CalendarUser findUserByEmail(String email);
 List<CalendarUser> findUsersByEmail(String partialEmail);
 int createUser(CalendarUser user);
 Event getEvent(int eventId);
 int createEvent(Event event);
 List<Event> findForUser(int userId);
 List<Event> getEvents();
 }

We won't go over the methods used in CalendarService, but they should be fairly
straightforward. If you would like details about what each method does, please consult the
Javadoc in the sample code.

The UserContext interface
Like most applications, our application requires us to interact with the currently logged-in
user. We have created a very simple interface called UserContext to manage the currently
logged-in user as follows:

 //src/main/java/com/packtpub/springsecurity/service/UserContext.java

 public interface UserContext {
 CalendarUser getCurrentUser();
 void setCurrentUser(CalendarUser user);
 }

Custom Authentication Chapter 3

[55]

This means that our application can call UserContext.getCurrentUser() to obtain the
details of the currently logged-in user. It can also call
UserContext.setCurrentUser(CalendarUser) to specify which user is logged in. Later
in this chapter, we will explore how we can write an implementation of this interface that
uses Spring Security to access our current user and obtain their details using
SecurityContextHolder.

Spring Security provides quite a few different methods for authenticating a user. However,
the net result is that Spring Security will populate
o.s.s.core.context.SecurityContext with o.s.s.core.Authentication. The
Authentication object represents all the information we gathered at the time of
authentication (username, password, roles, and so on). The SecurityContext interface is
then set on the o.s.s.core.context.SecurityContextHolder interface. This means
that Spring Security and developers can use SecurityContextHolder to obtain
information about the currently logged-in user. An example of obtaining the current
username is illustrated as follows:

 String username = SecurityContextHolder.getContext()
 .getAuthentication()
 .getName();

It should be noted that null checks should always be done on the
Authentication object, as this could be null if the user is not logged in.

The SpringSecurityUserContext interface
The current UserContext implementation, UserContextStub, is a stub that always
returns the same user. This means that the My Events page will always display the same
user no matter who is logged in. Let's update our application to utilize the current Spring
Security user's username, to determine which events to display on the My Events page.

You should be starting with the sample code in chapter03.00-
calendar.

Custom Authentication Chapter 3

[56]

Take a look at the following steps:

The first step is to comment out the @Component attribute on UserContextStub,1.
so that our application no longer uses our scanned results.

The @Component annotation is used in conjunction with the
@ComponentScan annotation found in
com/packtpub/springsecurity/web/configuration/WebMvcConfi

g.java, to automatically create a Spring bean rather than creating an
explicit XML or Java configuration for each bean. You can learn more
about the classpath of Spring scanning in the Spring Reference link at
http:/ ​/ ​static. ​springsource. ​org/ ​spring/ ​docs/ ​current/ ​spring-
framework- ​reference/ ​html/​.

Take a look at the following code snippet:

//src/main/java/com/packtpub/springsecurity/service/UserContextStub.java

 ...
 //@Component
 public class UserContextStub implements UserContext {
 ...

The next step is to utilize SecurityContext to obtain the currently logged-in2.
user. We have included SpringSecurityUserContext within this chapter's
code, which is wired up with the necessary dependencies but contains no actual
functionality.
Open the SpringSecurityUserContext.java file and add the @Component3.
annotation. Next, replace the getCurrentUser implementation, as illustrated in
the following code snippet:

 //src/main/java/com/packtpub/springsecurity/service/
 SpringSecurityUserContext.java

 @Component
 public class SpringSecurityUserContext implements UserContext {
 private final CalendarService calendarService;
 private final UserDetailsService userDetailsService;
 @Autowired
 public SpringSecurityUserContext(CalendarService calendarService,
 UserDetailsService userDetailsService) {
 this.calendarService = calendarService;
 this.userDetailsService = userDetailsService;
 }
 public CalendarUser getCurrentUser() {

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/

Custom Authentication Chapter 3

[57]

 SecurityContext context = SecurityContextHolder.getContext();
 Authentication authentication = context.getAuthentication();
 if (authentication == null) {
 return null;
 }
 String email = authentication.getName();
 return calendarService.findUserByEmail(email);
 }
 public void setCurrentUser(CalendarUser user) {
 throw new UnsupportedOperationException();
 }
 }

Our code obtains the username from the current Spring Security
Authentication object and utilizes that to look up the current CalendarUser
object by email address. Since our Spring Security username is an email address,
we are able to use the email address to link CalendarUser with the Spring
Security user. Note that if we were to link accounts, we would normally want to
do this with a key that we generated rather than something that may change (that
is, an email address). We follow the good practice of returning only our domain
object to the application. This ensures that our application is only aware of our
CalendarUser object and thus is not coupled to Spring Security.

This code may seem eerily similar to when we used the
sec:authorize="isAuthenticated()"

tag attribute in Chapter 2, Getting Started with Spring Security, to display the
current user's username. In fact, the Spring Security tag library uses
SecurityContextHolder in the same manner as we have done here. We could
use our UserContext interface to place the current user on
HttpServletRequest and thus remove our dependency on the Spring Security
tag library.

Start up the application, visit http://localhost:8080/, and log in with4.
admin1@example.com as the username and admin1 as the password.
Visit the My Events page, and you will see that only the events for that current5.
user, who is the owner or the attendee, are displayed.
Try creating a new event; you will observe that the owner of the event is now6.
associated with the logged-in user.
Log out of the application and repeat these steps with user1@example.com as7.
the username and user1 as the password.

Custom Authentication Chapter 3

[58]

Your code should now look like chapter03.01-calendar.

Logging in new users using
SecurityContextHolder
A common requirement is to allow users to create a new account and then automatically log
them in to the application. In this section, we'll describe the simplest method for indicating
that a user is authenticated, by utilizing SecurityContextHolder.

Managing users in Spring Security
The application provided in Chapter 1, Anatomy of an Unsafe Application, provides a
mechanism for creating a new CalendarUser object, so it should be fairly trivial to create
our CalendarUser object after a user signs up. However, Spring Security has no
knowledge of CalendarUser. This means that we will need to add a new user in Spring
Security too. Don't worry, we will remove the need for the dual maintenance of users later
in this chapter.

Spring Security provides an o.s.s.provisioning.UserDetailsManager interface for
managing users. Remember our in-memory Spring Security configuration?

 auth.inMemoryAuthentication().
 withUser("user").password("user").roles("USER");

The .inMemoryAuthentication() method creates an in-memory implementation of
UserDetailsManager, named o.s.s.provisioning.InMemoryUserDetailsManager,
which can be used to create a new Spring Security user.

While converting from an XML configuration to a Java-based
configuration in Spring Security, there is currently a limitation with the
Spring Security DSL where exposing multiple beans is not currently
supported. There is a JIRA opened for this issue at https:/ ​/​jira. ​spring.
io/​browse/ ​SPR- ​13779. ​

https://jira.spring.io/browse/SPR-13779
https://jira.spring.io/browse/SPR-13779
https://jira.spring.io/browse/SPR-13779
https://jira.spring.io/browse/SPR-13779
https://jira.spring.io/browse/SPR-13779
https://jira.spring.io/browse/SPR-13779
https://jira.spring.io/browse/SPR-13779
https://jira.spring.io/browse/SPR-13779
https://jira.spring.io/browse/SPR-13779
https://jira.spring.io/browse/SPR-13779
https://jira.spring.io/browse/SPR-13779
https://jira.spring.io/browse/SPR-13779
https://jira.spring.io/browse/SPR-13779
https://jira.spring.io/browse/SPR-13779
https://jira.spring.io/browse/SPR-13779

Custom Authentication Chapter 3

[59]

Let's see how we can manage users in Spring Security by performing the following steps:

In order to expose UserDetailsManager using a Java-based configuration, we1.
need to create InMemoryUserDetailsManager outside of the
WebSecurityConfigurerAdapter DSL:

 //src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java

 @Bean
 @Override
 public UserDetailsManager userDetailsService() {
 InMemoryUserDetailsManager manager = new
 InMemoryUserDetailsManager();
 manager.createUser(
 User.withUsername("user1@example.com")
 .password("user1").roles("USER").build());
 manager.createUser(
 User.withUsername("admin1@example.com")
 .password("admin1").roles("USER", "ADMIN").build());
 return manager;
 }

Once we have an exposed UserDetailsManager interface in our Spring2.
configuration, all we need to do is update our existing CalendarService
implementation, DefaultCalendarService, to add a user in Spring Security.
Make the following updates to the DefaultCalendarService.java file:

 //src/main/java/com/packtpub/springsecurity/service/
 DefaultCalendarService.java

 public int createUser(CalendarUser user) {
 List<GrantedAuthority> authorities = AuthorityUtils.
 createAuthorityList("ROLE_USER");
 UserDetails userDetails = new User(user.getEmail(),
 user.getPassword(), authorities);
 // create a Spring Security user
 userDetailsManager.createUser(userDetails);
 // create a CalendarUser
 return userDao.createUser(user);
 }

In order to leverage UserDetailsManager, we first convert CalendarUser into3.
the UserDetails object of Spring Security.

Custom Authentication Chapter 3

[60]

Later, we use UserDetailsManager to save the UserDetails object. The4.
conversion is necessary because Spring Security has no understanding of how to
save our custom CalendarUser object, so we must map CalendarUser to an
object Spring Security understands. You will notice that the GrantedAuthority
object corresponds to the authorities attribute of our SecurityConfig file.
We hardcode this for simplicity and due to the fact that there is no concept of
roles in our existing system.

Logging in a new user to an application
Now that we are able to add new users to the system, we need to indicate that the user is
authenticated. Update SpringSecurityUserContext to set the current user on the
SecurityContextHolder object of Spring Security, as follows:

 //src/main/java/com/packtpub/springsecurity/service/
 SpringSecurityUserContext.java

 public void setCurrentUser(CalendarUser user) {
 UserDetails userDetails = userDetailsService.
 loadUserByUsername(user.getEmail());
 Authentication authentication = new
 UsernamePasswordAuthenticationToken(userDetails, user.getPassword(),
 userDetails.getAuthorities());
 SecurityContextHolder.getContext().
 setAuthentication(authentication);
 }

The first step we perform is to convert our CalendarUser object into the UserDetails
object of Spring Security. This is necessary because, just as Spring Security didn't know how
to save our custom CalendarUser object, Spring Security also does not understand how to
make security decisions with our custom CalendarUser object. We use Spring Security's
o.s.s.core.userdetails.UserDetailsService interface to obtain the same
UserDetails object we saved with UserDetailsManager. The UserDetailsService
interface provides a subset, lookup by username, of the functionality provided by Spring
Security's UserDetailsManager object that we have already seen.

Custom Authentication Chapter 3

[61]

Next, we create a UsernamePasswordAuthenticationToken object and place
UserDetails, the password, and GrantedAuthority in it. Lastly, we set the
authentication on SecurityContextHolder. In a web application, Spring Security will
automatically associate the SecurityContext object in SecurityContextHolder to our
HTTP session for us.

It is important that Spring Security must not be instructed to ignore a URL
(that is, using the permitAll() method), as discussed in Chapter 2,
Getting Started with Spring Security, in which SecurityContextHolder is
accessed or set. This is because Spring Security will ignore the request and
thus not persist SecurityContext for subsequent requests. The proper
method to allow access to the URL in which SecurityContextHolder is
used is to specify the access attribute of the antMatchers() method
(that is, antMatchers(…).permitAll()).

It is worth mentioning that we could have converted CalendarUser by creating a new
o.s.s.core.userdetails.User object directly, instead of looking it up in
UserDetailsService. For example, the following code would also authenticate the user:

List<GrantedAuthority> authorities =
AuthorityUtils.createAuthorityList("ROLE_USER");
UserDetails userDetails = new
User("username","password",authorities);
Authentication authentication = new
UsernamePasswordAuthenticationToken (
userDetails,userDetails.getPassword(),userDetails.getAuthorities())
;
SecurityContextHolder.getContext()
.setAuthentication(authentication);

The advantage of this approach is that there is no need to hit the datastore again. In our
case, the datastore is an in-memory datastore, but this could be backed by a database, which
could have some security implications. The disadvantage of this approach is that we do not
get to reuse the code much. Since this method is invoked infrequently, we opt for reusing
the code. In general, it is best to evaluate each situation separately to determine which
approach makes the most sense.

Custom Authentication Chapter 3

[62]

Updating SignupController
The application has a SignupController object, which is what processes the HTTP
request to create a new CalendarUser object. The last step is to update
SignupController to create our user and then indicate that they are logged in. Make the
following updates to SignupController:

//src/main/java/com/packtpub/springsecurity/web/controllers/
SignupController.java

@RequestMapping(value="/signup/new", method=RequestMethod.POST)
public String signup(@Valid SignupForm signupForm,
BindingResult result, RedirectAttributes redirectAttributes) {
... existing validation …
user.setPassword(signupForm.getPassword());
int id = calendarService.createUser(user);
user.setId(id);
userContext.setCurrentUser(user);
redirectAttributes.addFlashAttribute("message", "Success");
return "redirect:/";
}

If you have not done so already, restart the application, visit http://localhost:8080/,
create a new user, and see that the new user is automatically logged in.

Your code should now look like chapter03.02-calendar.

Creating a custom UserDetailsService object
While we are able to link our domain model (CalendarUser) with Spring Security's
domain model (UserDetails), we have to maintain multiple representations of the user.
To resolve this dual maintenance, we can implement a custom UserDetailsService
object to translate our existing CalendarUser domain model into an implementation of
Spring Security's UserDetails interface. By translating our CalendarUser object into
UserDetails, Spring Security can make security decisions using our custom domain
model. This means that we will no longer need to manage two different representations of a
user.

Custom Authentication Chapter 3

[63]

The CalendarUserDetailsService class
Up to this point, we have needed two different representations of users: one for Spring
Security to make security decisions, and one for our application to associate our domain
objects to. Create a new class named CalendarUserDetailsService that will make
Spring Security aware of our CalendarUser object. This will ensure that Spring Security
can make decisions based upon our domain model. Create a new file named
CalendarUserDetailsService.java, as follows:

//src/main/java/com/packtpub/springsecurity/core/userdetails/
CalendarUserDetailsService.java

// imports and package declaration omitted

@Component
public class CalendarUserDetailsService implements
UserDetailsService {
private final CalendarUserDao calendarUserDao;
@Autowired
public CalendarUserDetailsService(CalendarUserDao
 calendarUserDao) {
 this.calendarUserDao = calendarUserDao;
}
public UserDetails loadUserByUsername(String username) throws
 UsernameNotFoundException {
 CalendarUser user = calendarUserDao.findUserByEmail(username);
 if (user == null) {
 throw new UsernameNotFoundException("Invalid
 username/password.");
 }
 Collection<? extends GrantedAuthority> authorities =
 CalendarUserAuthorityUtils.createAuthorities(user);
 return new User(user.getEmail(), user.getPassword(),
 authorities);
}
}

Within Spring Tool Suite, you can use Shift+Ctrl+O to easily add the
missing imports. Alternatively, you can copy the code from the next
checkpoint (chapter03.03-calendar).

Here, we utilize CalendarUserDao to obtain CalendarUser by using the email address.
We take care not to return a null value; instead, a UsernameNotFoundException
exception should be thrown, as returning null breaks the UserDetailsService interface.

Custom Authentication Chapter 3

[64]

We then convert CalendarUser into UserDetails, implemented by the user, as we did in
the previous sections.

We now utilize a utility class named CalendarUserAuthorityUtils that we provided in
the sample code. This will create GrantedAuthority based on the email address so that we
can support users and administrators. If the email starts with admin, the user is treated as
ROLE_ADMIN, ROLE_USER. Otherwise, the user is treated as ROLE_USER. Of course, we
would not do this in a real application, but it's this simplicity that allows us to focus on this
lesson.

Configuring UserDetailsService
Now that we have a new UserDetailsService object, let's update the Spring Security
configuration to utilize it. Our CalendarUserDetailsService class is added to our
Spring configuration automatically, since we leverage classpath scanning and the
@Component annotation. This means we only need to update Spring Security to refer to the
CalendarUserDetailsService class we just created. We are also able to remove the
configure() and userDetailsService() methods, Spring Security's in-memory
implementation of UserDetailsService, since we are now providing our own
UserDetailsService implementation. Update the SecurityConfig.java file, as
follows:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityC
onfig.java

@Override
public void configure(AuthenticationManagerBuilder auth) throws
Exception {
 ...
}
@Bean
@Override
public UserDetailsManager userDetailsService() {
 ...
}

Custom Authentication Chapter 3

[65]

Removing references to UserDetailsManager
We need to remove the code we added in DefaultCalendarService that used
UserDetailsManager to synchronize the Spring Security
o.s.s.core.userdetails.User interface and CalendarUser. First, the code is not
necessary, since Spring Security now refers to CalendarUserDetailsService. Second,
since we removed the inMemoryAuthentication() method, there is no
UserDetailsManager object defined in our Spring configuration. Go ahead and remove all
references to UserDetailsManager found in DefaultCalendarService. The updates
will look similar to the following sample snippets:

//src/main/java/com/packtpub/springsecurity/service/
DefaultCalendarService.java

public class DefaultCalendarService implements CalendarService {
 private final EventDao eventDao;
 private final CalendarUserDao userDao;
 @Autowired
 public DefaultCalendarService(EventDao eventDao,CalendarUserDao
userDao) {
 this.eventDao = eventDao;
 this.userDao = userDao;
 }
 ...
 public int createUser(CalendarUser user) {
 return userDao.createUser(user);
 }
}

Start up the application and see that Spring Security's in-memory UserDetailsManager
object is no longer necessary (we removed it from our SecurityConfig.java file).

Your code should now look like chapter03.03-calendar.

Custom Authentication Chapter 3

[66]

The CalendarUserDetails object
We have successfully eliminated the need to manage both Spring Security users and our
CalendarUser objects. However, it is still cumbersome for us to continually need to
translate between the two objects. Instead, we will create a CalendarUserDetails object,
which can be referred to as both UserDetails and CalendarUser. Update
CalendarUserDetailsService to use CalendarUserDetails, as follows:

//src/main/java/com/packtpub/springsecurity/core/userdetails/
CalendarUserDetailsService.java

public UserDetails loadUserByUsername(String username) throws
UsernameNotFoundException {
...
return new CalendarUserDetails(user);
}
private final class CalendarUserDetails extends CalendarUser
implements UserDetails {
CalendarUserDetails(CalendarUser user) {
 setId(user.getId());
 setEmail(user.getEmail());
 setFirstName(user.getFirstName());
 setLastName(user.getLastName());
 setPassword(user.getPassword());
}
public Collection<? extends GrantedAuthority>
 getAuthorities() {
 return CalendarUserAuthorityUtils.createAuthorities(this);
}
public String getUsername() {
 return getEmail();
}
public boolean isAccountNonExpired() { return true; }
public boolean isAccountNonLocked() { return true; }
public boolean isCredentialsNonExpired() { return true; }
public boolean isEnabled() { return true; }
}

In the next section, we will see that our application can now refer to the principal
authentication on the current CalendarUser object. However, Spring Security can continue
to treat CalendarUserDetails as a UserDetails object.

Custom Authentication Chapter 3

[67]

The SpringSecurityUserContext simplifications
We have updated CalendarUserDetailsService to return a UserDetails object that
extends CalendarUser and implements UserDetails. This means that, rather than having
to translate between the two objects, we can simply refer to a CalendarUser object. Update
SpringSecurityUserContext as follows:

public class SpringSecurityUserContext implements UserContext {
public CalendarUser getCurrentUser() {
 SecurityContext context =
SecurityContextHolder.getContext();
 Authentication authentication = context.getAuthentication();
 if(authentication == null) {
 return null;
 }
 return (CalendarUser) authentication.getPrincipal();
}

public void setCurrentUser(CalendarUser user) {
 Collection authorities =
 CalendarUserAuthorityUtils.createAuthorities(user);
 Authentication authentication = new
UsernamePasswordAuthenticationToken(user,user.getPassword(),
authorities);
 SecurityContextHolder.getContext()
 .setAuthentication(authentication);
}
}

The updates no longer require the use of CalendarUserDao or Spring Security's
UserDetailsService interface. Remember our loadUserByUsername method from the
previous section? The result of this method call becomes the principal of the authentication.
Since our updated loadUserByUsername method returns an object that extends
CalendarUser, we can safely cast the principal of the Authentication object to
CalendarUser. We can pass a CalendarUser object as the principal into the constructor
for UsernamePasswordAuthenticationToken when invoking the setCurrentUser
method. This allows us to still cast the principal to a CalendarUser object when invoking
the getCurrentUser method.

Custom Authentication Chapter 3

[68]

Displaying custom user attributes
Now that CalendarUser is populated into Spring Security's authentication, we can update
our UI to display the name of the current user rather than the email address. Update the
header.html file with the following code:

 //src/main/resources/templates/fragments/header.html

 <ul class="nav navbar-nav pull-right"
 sec:authorize="isAuthenticated()">
 <li id="greeting">
 <p class="navbar-text">Welcome <div class="navbar-text"
 th:text="${#authentication.getPrincipal().getName()}">
 User</div></p>

Internally, the "${#authentication.getPrincipal().getName()}" tag attribute
executes the following code. Observe that the highlighted values correlate to the property
attribute of the authentication tag we specified in the header.html file:

 SecurityContext context = SecurityContextHolder.getContext();
 Authentication authentication = context.getAuthentication();
 CalendarUser user = (CalendarUser) authentication.getPrincipal();
 String firstAndLastName = user.getName();

Restart the application, visit http://localhost:8080/, and log in to view the updates.
Instead of seeing the current user's email, you should now see their first and last names.

Your code should now look like chapter03.04-calendar.

Custom Authentication Chapter 3

[69]

Creating a custom AuthenticationProvider
object
Spring Security delegates to an AuthenticationProvider object to determine whether a
user is authenticated or not. This means we can write custom AuthenticationProvider
implementations to inform Spring Security how to authenticate in different ways. The good
news is that Spring Security provides quite a few AuthenticationProvider objects, so
more often than not you will not need to create one. In fact, up until this point, we have
been utilizing Spring Security's
o.s.s.authentication.dao.DaoAuthenticationProvider object, which compares
the username and password returned by UserDetailsService.

CalendarUserAuthenticationProvider
Throughout the rest of this section, we are going to create a custom
AuthenticationProvider object named CalendarUserAuthenticationProvider that
will replace CalendarUserDetailsService. Then, we will use
CalendarUserAuthenticationProvider to consider an additional parameter to support
authenticating users from multiple domains.

We must use an AuthenticationProvider object rather than
UserDetailsService, because the UserDetails interface has no
concept of a domain parameter.

Create a new class named CalendarUserAuthenticationProvider, as follows:

 //src/main/java/com/packtpub/springsecurity/authentication/
 CalendarUserAuthenticationProvider.java

 // … imports omitted ...

 @Component
 public class CalendarUserAuthenticationProvider implements
 AuthenticationProvider {
 private final CalendarService calendarService;
 @Autowired
 public CalendarUserAuthenticationProvider
 (CalendarService calendarService) {
 this.calendarService = calendarService;
 }
 public Authentication authenticate(Authentication

Custom Authentication Chapter 3

[70]

 authentication) throws AuthenticationException {
 UsernamePasswordAuthenticationToken token =
 (UsernamePasswordAuthenticationToken)
 authentication;
 String email = token.getName();
 CalendarUser user = null;
 if(email != null) {
 user = calendarService.findUserByEmail(email);
 }
 if(user == null) {
 throw new UsernameNotFoundException("Invalid
 username/password");
 }
 String password = user.getPassword();
 if(!password.equals(token.getCredentials())) {
 throw new BadCredentialsException("Invalid
 username/password");
 }
 Collection<? extends GrantedAuthority> authorities =
 CalendarUserAuthorityUtils.createAuthorities(user);
 return new UsernamePasswordAuthenticationToken(user, password,
 authorities);
 }
 public boolean supports(Class<?> authentication) {
 return UsernamePasswordAuthenticationToken
 .class.equals(authentication);
 }
 }

Remember that you can use Shift+Ctrl+O within Eclipse to easily add the
missing imports. Alternatively, you can copy the implementation from
chapter03.05-calendar.

Before Spring Security can invoke the authenticate method, the supports method must
return true for the Authentication class that will be passed in. In this case,
AuthenticationProvider can authenticate a username and password. We do not accept
subclasses of UsernamePasswordAuthenticationToken, since there may be additional
fields that we do not know how to validate.

Custom Authentication Chapter 3

[71]

The authenticate method accepts an Authentication object as an argument that
represents an authentication request. In practical terms, it is the input from the user that we
need to attempt to validate. If authentication fails, the method should throw an
o.s.s.core.AuthenticationException exception. If authentication succeeds, it should
return an Authentication object that contains the proper GrantedAuthority objects for
the user. The returned Authentication object will be set on SecurityContextHolder. If
authentication cannot be determined, the method should return null.

The first step in authenticating the request is to extract the information from the
Authentication object that we need to authenticate the user. In our case, we extract the
username and look up CalendarUser by email address, just as
CalendarUserDetailsService did. If the provided username and password match
CalendarUser, we will return a UsernamePasswordAuthenticationToken object with
proper GrantedAuthority. Otherwise, we will throw an AuthenticationException
exception.

Remember how the login page leveraged SPRING_SECURITY_LAST_EXCEPTION to explain
why login failed? The message for the AuthenticationException exception thrown in
AuthenticationProvider is the last AuthenticationException exception and will be
displayed on our login page in the event of a failed login.

Configuring the
CalendarUserAuthenticationProvider object
Let's perform the following steps to configure CalendarUserAuthenticationProvider:

Update the SecurityConfig.java file to refer to our newly created1.
CalendarUserAuthenticationProvider object, and remove the reference to
CalendarUserDetailsService, as shown in the following code snippet:

 //src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java

 @Autowired CalendarUserAuthenticationProvider cuap;
 @Override
 public void configure(AuthenticationManagerBuilder auth)
 throws Exception {
 auth.authenticationProvider(cuap);
 }

Custom Authentication Chapter 3

[72]

Restart the application and ensure everything is still working. As a user, we do2.
not notice anything different. However, as a developer, we know that
CalendarUserDetails is no longer required; we are still able to display the
current user's first and last names, and Spring Security is still able to leverage
CalendarUser for authentication.

Your code should now look like chapter03.05-calendar.

Authenticating with different parameters
One of the strengths of AuthenticationProvider is that it can authenticate with any
parameters you wish. For example, maybe your application uses a random identifier for
authentication, or perhaps it is a multitenant application and requires a username,
password, and domain. In the following section, we will update
CalendarUserAuthenticationProvider to support multiple domains.

A domain is a way to scope our users. For example, if we deploy our
application once but have multiple clients using the same deployment,
each client may want a user with the username admin. By adding a
domain to our user object, we can ensure that each user is distinct and still
supports this requirement.

The DomainUsernamePasswordAuthenticationToken
class
When a user authenticates, Spring Security submits an Authentication object to
AuthenticationProvider with the information provided by the user. The current
UsernamePasswordAuthentication object only contains a username and password field.
Create a DomainUsernamePasswordAuthenticationToken object that contains a domain
field, as shown in the following code snippet:

 //src/main/java/com/packtpub/springsecurity/authentication/
 DomainUsernamePasswordAuthenticationToken.java

 public final class DomainUsernamePasswordAuthenticationToken extends
 UsernamePasswordAuthenticationToken {
 private final String domain;

Custom Authentication Chapter 3

[73]

 // used for attempting authentication
 public DomainUsernamePasswordAuthenticationToken(String
 principal, String credentials, String domain) {
 super(principal, credentials);
 this.domain = domain;
 }
 // used for returning to Spring Security after being
 //authenticated
 public DomainUsernamePasswordAuthenticationToken(CalendarUser
 principal, String credentials, String domain,
 Collection<? extends GrantedAuthority> authorities) {
 super(principal, credentials, authorities);
 this.domain = domain;
 }
 public String getDomain() {
 return domain;
 }
 }

Updating CalendarUserAuthenticationProvider
Let's take a look at the following steps for updating the
CalendarUserAuthenticationProvider.java file:

Now, we need to update CalendarUserAuthenticationProvider to utilize1.
the domain field as follows:

 //src/main/java/com/packtpub/springsecurity/authentication/
 CalendarUserAuthenticationProvider.java

 public Authentication authenticate(Authentication authentication)
 throws AuthenticationException {
 DomainUsernamePasswordAuthenticationToken token =
 (DomainUsernamePasswordAuthenticationToken) authentication;
 String userName = token.getName();
 String domain = token.getDomain();
 String email = userName + "@" + domain;
 ... previous validation of the user and password ...
 return new DomainUsernamePasswordAuthenticationToken(user,
 password, domain, authorities);
 }
 public boolean supports(Class<?> authentication) {
 return DomainUsernamePasswordAuthenticationToken
 .class.equals(authentication);
 }

Custom Authentication Chapter 3

[74]

We first update the supports method so that Spring Security will pass2.
DomainUsernamePasswordAuthenticationToken into our authenticate
method.
We then use the domain information to create our email address and3.
authenticate, as we had previously done. Admittedly, this example is contrived.
However, the example is able to illustrate how to authenticate with an additional
parameter.
The CalendarUserAuthenticationProvider interface can now use the new4.
domain field. However, there is no way for a user to specify the domain. For this,
we must update our login.html file.

Adding domain to the login page
Open up the login.html file and add a new input named domain, as follows:

 //src/main/resources/templates/login.html

 ...
 <label for="username">Username</label>
 <input type="text" id="username" name="username"/>
 <label for="password">Password</label>
 <input type="password" id="password" name="password"/>
 <label for="domain">Domain</label>
 <input type="text" id="domain" name="domain"/>
 …

Now, a domain will be submitted when users attempt to log in. However, Spring Security is
unaware of how to use that domain to create a
DomainUsernamePasswordAuthenticationToken object and pass it into
AuthenticationProvider. To fix this, we will need to create
DomainUsernamePasswordAuthenticationFilter.

Custom Authentication Chapter 3

[75]

The DomainUsernamePasswordAuthenticationFilter
class
Spring Security provides a number of servlet filters that act as controllers for authenticating
users. The filters are invoked as one of the delegates of the FilterChainProxy object that
we discussed in Chapter 2, Getting Started with Spring Security. Previously, the
formLogin() method instructed Spring Security to use
o.s.s.web.authentication.UsernamePasswordAuthenticationFilter to act as a
login controller. The filter's job is to perform the following tasks:

Obtain a username and password from the HTTP request.
Create a UsernamePasswordAuthenticationToken object with the information
obtained from the HTTP request.
Request that Spring Security validates
UsernamePasswordAuthenticationToken.
If the token is validated, it will set the authentication returned to it on
SecurityContextHolder, just as we did when a new user signed up for an
account. We will need to extend UsernamePasswordAuthenticationFilter to
leverage our newly created DoainUsernamePasswordAuthenticationToken
object.
Create a DomainUsernamePasswordAuthenticationFilter object, as follows:

 //src/main/java/com/packtpub/springsecurity/web/authentication/
 DomainUsernamePasswordAuthenticationFilter.java

 public final class
 DomainUsernamePasswordAuthenticationFilter extends
 UsernamePasswordAuthenticationFilter {
 public Authentication attemptAuthentication
 (HttpServletRequest request,HttpServletResponse response) throws
 AuthenticationException {
 if (!request.getMethod().equals("POST")) {
 throw new AuthenticationServiceException
 ("Authentication method not supported: "
 + request.getMethod());
 }
 String username = obtainUsername(request);
 String password = obtainPassword(request);
 String domain = request.getParameter("domain");
 // authRequest.isAuthenticated() = false since no
 //authorities are specified
 DomainUsernamePasswordAuthenticationToken authRequest
 = new DomainUsernamePasswordAuthenticationToken(username,

Custom Authentication Chapter 3

[76]

 password, domain);
 setDetails(request, authRequest);
 return this.getAuthenticationManager()
 .authenticate(authRequest);
 }
 }

The new DomainUsernamePasswordAuthenticationFilter object will perform the
following tasks:

Obtain a username, password, and domain from the HttpServletRequest
method.
Create our DomainUsernamePasswordAuthenticationToken object with
information obtained from the HTTP request.
Request that Spring Security validates
DomainUsernamePasswordAuthenticationToken. The work is delegated to
CalendarUserAuthenticationProvider.
If the token is validated, its superclass will set the authentication returned by
CalendarUserAuthenticationProvider on SecurityContextHolder, just
as we did to authenticate a user after they created a new account.

Updating our configuration
Now that we have created all the code required for an additional parameter, we need to
configure Spring Security to be aware of it. The following code snippet includes the
required updates to our SecurityConfig.java file to support our additional parameter:

//src/main/java/com/packtpub/springsecurity/configuration/
SecurityConfig.java

@Override
protected void configure(final HttpSecurity http) throws
Exception {
 http.authorizeRequests()
 ...
 .and().exceptionHandling()
 .accessDeniedPage("/errors/403")
 .authenticationEntryPoint(
 loginUrlAuthenticationEntryPoint())
 .and().formLogin()
 .loginPage("/login/form")
 .loginProcessingUrl("/login")
 .failureUrl("/login/form?error")
 .usernameParameter("username")

Custom Authentication Chapter 3

[77]

 .passwordParameter("password")
 .defaultSuccessUrl("/default", true)
 .permitAll()
 ...
 // Add custom UsernamePasswordAuthenticationFilter
 .addFilterAt(
 domainUsernamePasswordAuthenticationFilter(),
 UsernamePasswordAuthenticationFilter.class)
 ;
}
@Bean
public DomainUsernamePasswordAuthenticationFilter
domainUsernamePasswordAuthenticationFilter()
 throws Exception {
 DomainUsernamePasswordAuthenticationFilter dupaf = new
DomainUsernamePasswordAuthenticationFilter(
 super.authenticationManagerBean());
 dupaf.setFilterProcessesUrl("/login");
 dupaf.setUsernameParameter("username");
 dupaf.setPasswordParameter("password");
 dupaf.setAuthenticationSuccessHandler(
 new
SavedRequestAwareAuthenticationSuccessHandler(){{
 setDefaultTargetUrl("/default");
 }}
);
 dupaf.setAuthenticationFailureHandler(
 new SimpleUrlAuthenticationFailureHandler(){{
 setDefaultFailureUrl("/login/form?error");
 }}
);
 dupaf.afterPropertiesSet();
 return dupaf;
}
@Bean
public LoginUrlAuthenticationEntryPoint
loginUrlAuthenticationEntryPoint(){
 return new LoginUrlAuthenticationEntryPoint("/login/form");
}

The preceding code snippet configures standard beans in our Spring
Security configuration. We have shown this to demonstrate that it can be
done. However, throughout much of the rest of the book, we include
standard bean configuration in its own file, as this makes the configuration
less verbose. If you are having trouble, or prefer not to type all of this, you
may copy it from chapter03.06-calendar.

Custom Authentication Chapter 3

[78]

The following are a few highlights from the configuration updates:

We overrode defaultAuthenticationEntryPoint and added a reference to
o.s.s.web.authentication.LoginUrlAuthenticationEntryPoint, which
determines what happens when a request for a protected resource occurs and the
user is not authenticated. In our case, we are redirected to a login page.
We removed the formLogin() method and used a .addFilterAt() method to
insert our custom filter into FilterChainProxy. The position indicates the order
in which the delegates of FilterChain are considered and cannot overlap with
another filter, but can replace the filter at the current position. We replaced
UsernamePasswordAuthenticationFilter with our custom filter.
We added the configuration for our custom filter, which refers to the
authentication manager created by the
configure(AuthenticationManagerBuilder) method.

Take a look at the following diagram for your reference:

Custom Authentication Chapter 3

[79]

You can now restart the application and try the following steps, depicted in the preceding
diagram, to understand how all the pieces fit together:

Visit http://localhost:8080/events.1.
Spring Security will intercept the secured URL and use the2.
LoginUrlAuthenticationEntryPoint object to process it.
The LoginUrlAuthenticationEntryPoint object will send the user to the3.
login page. Enter admin1 as the username, example.com as the domain, and
admin1 as the password.
The DomainUsernamePasswordAuthenticationFilter object will intercept4.
the process of the login request. It will then obtain the username, domain, and
password from the HTTP request and create a
DomainUsernamePasswordAuthenticationToken object.
The DomainUsernamePasswordAuthenticationFilter object submits5.
DomainUsernamePasswordAuthenticationToken to
CalendarUserAuthenticationProvider.
The CalendarUserAuthenticationProvider interface validates6.
DomainUsernamePasswordAuthenticationToken and then returns an
authenticated DomainUsernamePasswordAuthenticationToken object (that is,
isAuthenticated() returns true).
The DomainUserPasswordAuthenticationFilter object updates7.
SecurityContext with DomainUsernamePasswordAuthenticationToken
and places it on SecurityContextHolder.

Your code should look like chapter03.06-calendar.

Which authentication method to use?
We have covered the three main methods of authenticating, so which one is the best? Like
all solutions, each comes with its pros and cons. You can find a summary of when to use a
specific type of authentication by referring to the following list:

Custom Authentication Chapter 3

[80]

SecurityContextHolder: Interacting directly with SecurityContextHolder
is certainly the easiest way of authenticating a user. It works well when you are
authenticating a newly created user or authenticating in an unconventional way.
By using SecurityContextHolder directly, we do not have to interact with so
many Spring Security layers. The downside is that we do not get some of the
more advanced features that Spring Security provides automatically. For
example, if we want to send the user to the previously requested page after
logging in, we would have to manually integrate that into our controller.
UserDetailsService: Creating a custom UserDetailsService object is an
easy mechanism that allows for Spring Security to make security decisions based
on our custom domain model. It also provides a mechanism to hook into other
Spring Security features. For example, Spring Security requires
UserDetailsService in order to use the built-in remember-me support covered
in Chapter 7, Remember-Me Services. The UserDetailsService object does not
work when authentication is not based on a username and password.
AuthenticationProvider: This is the most flexible method for extending
Spring Security. It allows a user to authenticate with any parameters that we
wish. However, if we wish to leverage features such as Spring Security's
remember-me, we will still need UserDetailsService.

Summary
This chapter has used real-world problems to introduce the basic building blocks used in
Spring Security. It also demonstrates to us how we can make Spring Security authenticate
against our custom domain objects by extending those basic building blocks. In short, we
have learned that the SecurityContextHolder interface is the central location for
determining the current user. Not only can it be used by developers to access the current
user, but also to set the currently logged-in user.

We also explored how to create custom UserDetailsService and
AuthenticationProvider objects and how to perform authentication with more than just
a username and password.

In the next chapter, we will explore some of the built-in support for JDBC-based
authentication.

4
JDBC-Based Authentication

In the previous chapter, we saw how we can extend Spring Security to utilize our
CalendarDao interface and our existing domain model to authenticate users. In this
chapter, we will see how we can use Spring Security's built-in JDBC support. To keep things
simple, this chapter's sample code is based on our Spring Security setup from Chapter 2,
Getting Started with Spring Security. In this chapter, we will cover the following topics:

Using Spring Security's built-in JDBC-based authentication support
Utilizing Spring Security's group-based authorization to make administering
users easier
Learning how to use Spring Security's UserDetailsManager interface
Configuring Spring Security to utilize the existing CalendarUser schema to
authenticate users
Learning how we can secure passwords using Spring Security's new
cryptography module
Using Spring Security's default JDBC authentication

If your application has not yet implemented security, or if your security infrastructure is
using a database, Spring Security provides out-of-the-box support that can simplify the
solving of your security needs. Spring Security provides a default schema for users,
authorities, and groups. If that does not meet your needs, it allows for the querying and
managing of users to be customized. In the next section, we are going to go through the
basic steps for setting up JDBC authentication with Spring Security.

JDBC-Based Authentication Chapter 4

[82]

Required dependencies
Our application has already defined all the necessary dependencies required for this
chapter. However, if you are using Spring Security's JDBC support, you are likely going to
want the following dependencies listed in your build.gradle file. It is important to
highlight that the JDBC driver that you will use will depend on which database you are
using. Consult your database vendor's documentation for details on which driver is needed
for your database.

Remember that all the Spring versions need to match, and all Spring
Security versions need to match (this includes transitive dependency
versions). If you are having difficulty getting this to work in your own
application, you may want to define the dependency management section
in build.gradle to enforce this, as shown in Chapter 2, Getting Started
with Spring Security. As previously mentioned, you will not need to worry
about this when using the sample code, since we have already set up the
necessary dependencies for you.

The following snippet defines the required dependencies needed for this chapter, including
Spring Security and JDBC dependencies:

 //build.gradle

 dependencies {
 ...
 // Database:
 compile('org.springframework.boot:spring-boot-starter-jdbc')
 compile('com.h2database:h2')
 // Security:
 compile('org.springframework.boot:spring-boot-starter-security')
 testCompile('org.springframework.security:spring-security-test')

 }

Using the H2 database
The first portion of this exercise involves setting up an instance of the Java-based H2
relational database, populated with the Spring Security default schema. We'll configure H2
to run in memory using Spring's EmbeddedDatabase configuration feature—a significantly
simpler method of configuration than
setting up the database by hand. You can find additional information on the H2 website
at http:/​/​www.​h2database. ​com/ ​.

http://www.h2database.com/
http://www.h2database.com/
http://www.h2database.com/
http://www.h2database.com/
http://www.h2database.com/
http://www.h2database.com/
http://www.h2database.com/
http://www.h2database.com/
http://www.h2database.com/
http://www.h2database.com/

JDBC-Based Authentication Chapter 4

[83]

Keep in mind that in our sample application, we'll primarily use H2 due to its ease of setup.
Spring Security will work with any database that supports ANSI SQL out of the box. We
encourage you to tweak the configuration and use the database of your preference if you're
following along with the examples. As we didn't want this portion of the book to focus on
the complexities of database setup, we chose convenience over realism for the purpose of
the exercises.

Provided JDBC scripts
We've supplied all the SQL files that are used for creating the schema and data in an H2
database for this chapter in the src/main/resources/database/h2/ folder. Any files
prefixed with security are to support Spring Security's default JDBC implementation.
Any SQL files prefixed with calendar are custom SQL files for the JBCP calendar
application. Hopefully, this will make running the samples a little easier. If you're following
along with your own database instance, you may have to adjust the schema definition
syntax to fit your particular database. Additional database schemas can be found in the
Spring Security reference. You can find a link to the Spring Security Reference in the book's
Appendix, Additional Reference Material.

Configuring the H2 embedded database
To configure the H2 embedded database, we need to create a DataSource and run SQL to
create the Spring Security table structure. We will need to update the SQL that is loaded at
startup to include Spring Security's basic schema definition, Spring Security user
definitions, and the authority mappings for users. You can find the DataSource definition
and the relevant updates in the following code snippet:

//src/main/java/com/packtpub/springsecurity/configuration/DataSourceConfig.
java

 @Bean
 public DataSource dataSource() {
 return new EmbeddedDatabaseBuilder()
 .setName("dataSource")
 .setType(EmbeddedDatabaseType.H2)
 .addScript("/database/h2/calendar-schema.sql")
 .addScript("/database/h2/calendar-data.sql")
 .addScript("/database/h2/security-schema.sql")
 .addScript("/database/h2/security-users.sql")
 .addScript("/database/h2/security-user-authorities.sql")
 .build();

JDBC-Based Authentication Chapter 4

[84]

 }

Remember that the EmbeddedDatabaseBuilder() method creates this database only in
memory, so you won't see anything on the disk, and you won't be able to use standard tools
to query it. However, you can use the H2 console that is embedded in the application to
interact with the database. See the instructions on the Welcome page of our application to
learn how to use it.

Configuring a JDBC UserDetailsManager
implementation
We'll modify the SecurityConfig.java file to declare that we're using a JDBC
UserDetailsManager implementation, instead of the Spring Security in-memory
UserDetailsService implementation that we configured in Chapter 2, Getting Started
with Spring Security. This is done with a simple change to the UserDetailsManager
declaration, as follows:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va

 …
 @Bean
 @Override
 public UserDetailsManager userDetailsService() {
 JdbcUserDetailsManager manager = new JdbcUserDetailsManager();
 manager.setDataSource(dataSource);
 return manager;
 }
 …

We replace the previous configure(AuthenticationManagerBuilder) method, along
with all of the child elements, with the userDetailsService() method, as shown in the
preceding code snippet.

The default user schema of Spring Security
Let's take a look at each of the SQL files used to initialize the database. The first script we
added contains the default Spring Security schema definition for users and their authorities.
The following script has been adapted from Spring Security's Reference, which is listed in
the Appendix, Additional Reference Material to have explicitly named constraints, to make
troubleshooting easier:

JDBC-Based Authentication Chapter 4

[85]

 //src/main/resources/database/h2/security-schema.sql

 create table users(
 username varchar(256) not null primary key,
 password varchar(256) not null,
 enabled boolean not null
);
 create table authorities (
 username varchar(256) not null,
 authority varchar(256) not null,
 constraint fk_authorities_users
 foreign key(username) references users(username)
);
 create unique index ix_auth_username on authorities
(username,authority);

Defining users
The next script is in charge of defining the users in our application. The included SQL
statement creates the same users that we have used throughout the entire book so far. The
file also adds an additional user, disabled1@example.com, who will not be able to log in
since we indicate the user as disabled:

 //src/main/resources/database/h2/security-users.sql

 insert into users (username,password,enabled)
 values ('user1@example.com','user1',1);
 insert into users (username,password,enabled)
 values ('admin1@example.com','admin1',1);
 insert into users (username,password,enabled)
 values ('user2@example.com','admin1',1);
 insert into users (username,password,enabled)
 values ('disabled1@example.com','disabled1',0);

Defining user authorities
You may have noticed that there is no indication if a user is an administrator or a regular
user. The next file specifies a direct mapping of the user to the corresponding authorities. If
a user did not have an authority mapped to it, Spring Security would not allow that user to
be logged in:

 //src/main/resources/database/h2/security-user-authorities.sql

 insert into authorities(username,authority)

JDBC-Based Authentication Chapter 4

[86]

 values ('user1@example.com','ROLE_USER');
 insert into authorities(username,authority)
 values ('admin1@example.com','ROLE_ADMIN');
 insert into authorities(username,authority)
 values ('admin1@example.com','ROLE_USER');
 insert into authorities(username,authority)
 values ('user2@example.com','ROLE_USER');
 insert into authorities(username,authority)
 values ('disabled1@example.com','ROLE_USER');

After the SQL is added to the embedded database configuration, we should be able to start
the application and log in. Try logging in with the new user using
disabled1@example.com as the username and disabled1 as the password. Notice that
Spring Security does not allow the user to log in and provides the error message Reason:
User is disabled.

Your code should now look like this: calendar04.01-calendar.

The UserDetailsManager interface
We have already leveraged the InMemoryUserDetailsManager class in Spring Security in
Chapter 3, Custom Authentication, to look up the current CalendarUser application in our
SpringSecurityUserContext implementation of UserContext. This allowed us to
determine which CalendarUser should be used when looking up the events for the My
Events page. Chapter 3, Custom Authentication, also demonstrated how to update the
DefaultCalendarService.java file to utilize InMemoryUserDetailsManager, to
ensure that we created a new Spring Security user when we created CalendarUser. This
chapter reuses exactly the same code. The only difference is that the UserDetailsManager
implementation is backed by the JdbcUserDetailsManager class of Spring Security,
which uses a database instead of an in-memory datastore.

What other features does UserDetailsManager provide out of the box?

Although these types of functions are relatively easy to write with additional JDBC
statements, Spring Security actually provides out-of-the-box functionality to support many
common create, read, update, and delete (CRUD) operations on users in JDBC databases.
This can be convenient for simple systems, and a good base to build on for any custom
requirements that a user may have:

JDBC-Based Authentication Chapter 4

[87]

Method Description

void createUser(UserDetails
user)

It creates a new user with the given
UserDetails information, including any
declared GrantedAuthority authorities.

void updateUser(final
UserDetails user)

It updates a user with the given UserDetails
information. It updates GrantedAuthority
and removes the user from the user cache.

void deleteUser(String
username)

It deletes the user with the given username and
removes the user from the user cache.

boolean userExists(String
username)

It indicates whether or not a user (active or
inactive) exists with the given username.

void changePassword(String
oldPassword, String
newPassword)

It changes the password of the currently
logged-in user. The user must then supply the
correct password in order for the operation to
succeed.

If UserDetailsManager does not provide all the methods that are necessary for your
application, you can extend the interface to provide these custom requirements. For
example, if you needed the ability to list all of the possible users in an administrative view,
you could write your own interface with this method and provide an implementation that
points to the same datastore as the UserDetailsManager implementation you are
currently using.

Group-based access control
The JdbcUserDetailsManager class supports the ability to add a level of indirection
between the users and the GrantedAuthority declarations by grouping
GrantedAuthority into logical sets called groups.

JDBC-Based Authentication Chapter 4

[88]

Users are then assigned one or more groups, and their membership confers a set of the
GrantedAuthority declarations:

As you can see in the preceding diagram, this indirection allows the assignment of the same
set of roles to multiple users, by simply assigning any new users to existing groups. This is
different behavior that we've seen so far, where previously we assigned
GrantedAuthority directly to individual users.

This bundling of common sets of authorities can be helpful in the following scenarios:

You need to segregate users into communities, with some overlapping roles
between groups.
You want to globally change the authorization for a class of user. For example, if
you have a supplier group, you might want to enable or disable their access to
particular portions of the application.
You have a large number of users, and you don't need user-level authority
configuration.

Unless your application has a very small user base, there is a very high likelihood that you'll
be using group-based access control. While group-based access control is slightly more
complex than other strategies, the flexibility and simplicity of managing a user's access
makes this complexity worthwhile. This indirect technique of aggregating user privileges
by group is commonly referred to as group-based access control (GBAC).

JDBC-Based Authentication Chapter 4

[89]

GBAC is an approach common to almost every secured operating system or software
package on the market. Microsoft Active Directory (AD) is one of the most visible
implementations of large-scale GBAC, due to its design of slotting AD users into groups
and assigning privileges to those groups. Management of privileges in large AD-based
organizations is made exponentially simpler through the use of GBAC.

Try to think of the security models of the software you use—how are the users, groups, and
privileges managed? What are the pros and cons of the way the security model is written?

Let's add a level of abstraction to the JBCP calendar application and apply the concept of
group-based authorization to the site.

Configuring group-based access control
We'll add two groups to the application: regular users, which we'll call Users, and
administrative users, which we'll call Administrators. Our existing accounts will be
associated with the appropriate groups through an additional SQL script.

Configuring JdbcUserDetailsManager to use groups
By default, Spring Security does not use GBAC. Therefore, we must instruct Spring Security
to enable the use of groups. Modify the SecurityConfig.java file to use
GROUP_AUTHORITIES_BY_USERNAME_QUERY, as follows:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va

 private static String GROUP_AUTHORITIES_BY_USERNAME_QUERY = “ ”+
 "select g.id, g.group_name, ga.authority " +
 "from groups g, group_members gm, " +
 "group_authorities ga where gm.username = ? " +
 "and g.id = ga.group_id and g.id = gm.group_id";
 @Override
 public void configure(AuthenticationManagerBuilder auth) throws
Exception {
 auth
 .jdbcAuthentication()
 .dataSource(dataSource)
 .groupAuthoritiesByUsername(
 GROUP_AUTHORITIES_BY_USERNAME_QUERY
);
 }

JDBC-Based Authentication Chapter 4

[90]

Utilizing GBAC JDBC scripts
Next, we need to update the scripts that are being loaded at startup. We need to remove the
security-user-authorities.sql mapping so that our users no longer obtain their
authorities with direct mapping. We then need to add two additional SQL scripts. Update
the DataSource bean configuration to load the SQL required for GBAC, as follows:

//src/main/java/com/packtpub/springsecurity/configuration/DataSourceConfig.
java

 @Bean
 public DataSource dataSource() {
 return new EmbeddedDatabaseBuilder()
 .setName("dataSource")
 .setType(EmbeddedDatabaseType.H2)
 .addScript("/database/h2/calendar-schema.sql")
 .addScript("/database/h2/calendar-data.sql")
 .addScript("/database/h2/security-schema.sql")
 .addScript("/database/h2/security-users.sql")
 .addScript("/database/h2/security-groups-schema.sql")
 .addScript("/database/h2/security-groups-mappings.sql")
 .build();
 }

The group-based schema
It may be obvious, but the first SQL file we added contains updates to the schema to
support group-based authorization. You can find the contents of the file in the following
code snippet:

 //src/main/resources/database/h2/security-groups-schema.sql

 create table groups (
 id bigint generated by default as identity(start with 0) primary key,
 group_name varchar(256) not null
);
 create table group_authorities (
 group_id bigint not null,
 authority varchar(256) not null,
 constraint fk_group_authorities_group
 foreign key(group_id) references groups(id)
);
 create table group_members (
 id bigint generated by default as identity(start with 0) primary key,
 username varchar(256) not null,
 group_id bigint not null,\

JDBC-Based Authentication Chapter 4

[91]

 constraint fk_group_members_group
 foreign key(group_id) references groups(id)\
);

Group authority mappings
Now we need to map our existing users to groups, and the groups to authorities. This is
done in the security-groups-mappings.sql file. Mapping based on groups can be
convenient because often, organizations already have a logical group of users for various
reasons. By utilizing the existing groupings of users, we can drastically simplify our
configuration. This is how a layer of indirection helps us. We have included the group
definitions, group to authority mappings, and a few users in the following group mapping:

 //src/main/resources/database/h2/security-groups-mappings.sql

 -- Create the Groups

 insert into groups(group_name) values ('Users');
 insert into groups(group_name) values ('Administrators');

 -- Map the Groups to Roles

 insert into group_authorities(group_id, authority)
 select id,'ROLE_USER' from groups where group_name='Users';
 insert into group_authorities(group_id, authority)
 select id,'ROLE_USER' from groups where
 group_name='Administrators';
 insert into group_authorities(group_id, authority)
 select id,'ROLE_ADMIN' from groups where
 group_name='Administrators';

 -- Map the users to Groups

 insert into group_members(group_id, username)
 select id,'user1@example.com' from groups where
 group_name='Users';
 insert into group_members(group_id, username)
 select id,'admin1@example.com' from groups where
 group_name='Administrators';
 ...

Go ahead and start the application, and it will behave just as before; however, the
additional layer of abstraction between the users and roles simplifies the managing of large
groups of users.

JDBC-Based Authentication Chapter 4

[92]

Your code should now look like calendar04.02-calendar.

Support for a custom schema
It's common for new users of Spring Security to begin their experience by adapting the
JDBC user, group, or role mapping to an existing schema. Even though a legacy database
doesn't conform to the expected Spring Security schema, we can still configure
JdbcDaoImpl to map to it.

We will now update Spring Security's JDBC support to use our existing CalendarUser
database along with a new calendar_authorities table.

We can easily change the configuration of JdbcUserDetailsManager to utilize this
schema and override Spring Security's expected table definitions and columns, which we're
using for the JBCP calendar application.

Determining the correct JDBC SQL queries
The JdbcUserDetailsManager class has three SQL queries that have a well-defined
parameter and a set of returned columns. We must determine the SQL that we'll assign to
each of these queries, based on the intended functionality. Each SQL query used by
JdbcUserDetailsManager takes the username presented at login as its one and only
parameter:

Namespace query attribute name Description Expected SQL
columns

users-by-username-query Returns one or
more users
matching the
username; only the
first user is used.

Username (string)
Password (string)
Enabled (Boolean)

JDBC-Based Authentication Chapter 4

[93]

authorities-by-username-query Returns one or
more granted
authorities directly
provided to the
user. Typically
used when GBAC
is disabled.

Username (string)
GrantedAuthority

(string)

group-authorities-by-username-query Returns granted
authorities and
group details
provided to the
user through group
membership. Used
when GBAC is
enabled.

Group Primary Key

(any)
Group Name (any)
GrantedAuthority

(string)

Be aware that in some cases, the return columns are not used by the default
JdbcUserDetailsManager implementation, but they must be returned anyway.

Updating the SQL scripts that are loaded
We need to initialize the DataSource with our custom schema, rather than with Spring
Security's default schema. Update the DataSourceConfig.java file, as follows:

//src/main/java/com/packtpub/springsecurity/configuration/DataSourceConfig.
java

 @Bean
 public DataSource dataSource() {
 return new EmbeddedDatabaseBuilder()
 .setName("dataSource")
 .setType(EmbeddedDatabaseType.H2)
 .addScript("/database/h2/calendar-schema.sql")
 .addScript("/database/h2/calendar-data.sql")
 .addScript("/database/h2/calendar-authorities.sql")
 .build();
 }

Notice that we have removed all of the scripts that start with security, and replaced them
with calendar-authorities.sql.

JDBC-Based Authentication Chapter 4

[94]

The CalendarUser authority SQL
You can view the CalendarUser authority mappings in the following code snippet:

 //src/main/resources/database/h2/calendar-authorities.sql

 create table calendar_user_authorities (
 id bigint identity,
 calendar_user bigint not null,
 authority varchar(256) not null,
);
 -- user1@example.com
 insert into calendar_user_authorities(calendar_user, authority)
 select id,'ROLE_USER' from calendar_users where
 email='user1@example.com';
 -- admin1@example.com
 insert into calendar_user_authorities(calendar_user, authority)
 select id,'ROLE_ADMIN' from calendar_users where
 email='admin1@example.com';
 insert into calendar_user_authorities(calendar_user, authority)
 select id,'ROLE_USER' from calendar_users where
 email='admin1@example.com';
 -- user2@example.com
 insert into calendar_user_authorities(calendar_user, authority)
 select id,'ROLE_USER' from calendar_users where
 email='user2@example.com';

Notice that we use the id as the foreign key, which is better than utilizing
the username as a foreign key (as Spring Security does). By using the id as
the foreign key, we can allow users to easily change their username.

Inserting custom authorities
We need to update DefaultCalendarService to insert the authorities for the user using
our custom schema when we add a new CalendarUser class. This is because while we
reused the schema for the user definition, we did not define custom authorities in our
existing application. Update DefaultCalendarService, as follows:

//src/main/java/com/packtpub/springsecurity/service/DefaultCalendarService.
java

 import org.springframework.jdbc.core.JdbcOperations;
 ...
 public class DefaultCalendarService implements CalendarService {

JDBC-Based Authentication Chapter 4

[95]

 ...
 private final JdbcOperations jdbcOperations;
 @Autowired
 public DefaultCalendarService(EventDao eventDao,
 CalendarUserDao userDao, JdbcOperations jdbcOperations) {
 ...
 this.jdbcOperations = jdbcOperations;
 }
 ...
 public int createUser(CalendarUser user) {
 int userId = userDao.createUser(user);
 jdbcOperations.update(
 "insert into
calendar_user_authorities(calendar_user,authority)
 values(?,?)", userId, "ROLE_USER");
 return userId;
 }
 }

You may have noticed the JdbcOperations interface that is used for
inserting our user. This is a convenient template provided by Spring that
helps manage boilerplate code, such as connection and transaction
handling. For more details, refer to the Appendix, Additional Reference
Material of this book to find the Spring Reference.

Configuring JdbcUserDetailsManager to use
custom SQL queries
In order to use custom SQL queries for our non-standard schema, we'll simply update our
userDetailsService() method to include new queries. This is quite similar to how we
enabled support for GBAC, except instead of using the default SQL, we will use our
modified SQL. Notice that we remove our old
setGroupAuthoritiesByUsernameQuery() method call, since we will not be using it in
this example, in order to keep things simple:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va

 private static String CUSTOM_USERS_BY_USERNAME_QUERY = ""+
 "select email, password, true " +
 "from calendar_users where email = ?";
 private static String CUSTOM_AUTHORITIES_BY_USERNAME_QUERY = ""+
 "select cua.id, cua.authority " +
 "from calendar_users cu, calendar_user_authorities "+

JDBC-Based Authentication Chapter 4

[96]

 "cua where cu.email = ? "+
 "and cu.id = cua.calendar_user";
 @Override
 public void configure(AuthenticationManagerBuilder auth) throws
Exception {
 auth
 .jdbcAuthentication()
 .dataSource(dataSource)
 .usersByUsernameQuery(USERS_BY_USERNAME_QUERY)
 .authoritiesByUsernameQuery(
 AUTHORITIES_BY_USERNAME_QUERY
);
 }

This is the only configuration required to use Spring Security to read settings from an
existing, non-default schema! Start up the application and ensure that everything is
working properly.

Your code should now look like this: calendar04.03-calendar.

Keep in mind that the utilization of an existing schema commonly requires an extension of
JdbcUserDetailsManager to support the changing of passwords, the renaming of user
accounts, and other user-management functions.

If you are using JdbcUserDetailsManager to perform user-management tasks, then there
are over 20 SQL queries utilized by the class that are accessible through the configuration.
However, only the three covered are available through the namespace configuration. Please
refer to the Javadoc or source code to review the defaults for the queries used by
JdbcUserDetailsManager.

Configuring secure passwords
You might recall from the security audit in Chapter 1, Anatomy of an Unsafe Application, that
the security of passwords stored in cleartext was a top priority of the auditors. In fact, in
any secured system, password security is a critical aspect of trust and authoritativeness of
an authenticated principal. Designers of a fully secured system must ensure that passwords
are stored in a way in which malicious users would have an impractically difficult time
compromising them.

JDBC-Based Authentication Chapter 4

[97]

The following general rules should be applied to passwords stored in a database:

Passwords must not be stored in cleartext (plaintext)
Passwords supplied by the user must be compared to the recorded passwords in
the database
A user's password should not be supplied to the user upon demand (even if the
user forgets it)

For the purposes of most applications, the best fit for these requirements involves one-way
encoding, known as the hashing of the passwords. Using a cryptographic hash provides
properties such as security and uniqueness that are important to properly authenticate
users, with the added bonus that once it is hashed, the password cannot be extracted from
the value that is stored.

In most secure application designs, it is neither required nor desirable to ever retrieve the
user's actual password upon request, as providing the user's password to them without the
proper additional credentials could present a major security risk. Instead, most applications
provide the user the ability to reset their password, either by presenting additional
credentials (such as their social security number, date of birth, tax ID, or other personal
information), or through an email-based system.

Storing other types of sensitive information
Many of the guidelines listed that apply to passwords apply equally to
other types of sensitive information, including social security numbers and
credit card information (although, depending on the application, some of
these may require the ability to decrypt). Storing this type of information
to represent it in multiple ways, for example, a customer's full 16-digit
credit card number, would be stored in a highly encrypted form, but the
last four digits might be stored in cleartext. For reference, think of any
internet commerce site that displays XXXX XXXX XXXX 1234 to help you
identify your stored credit cards.

You may already be thinking ahead and wondering, given our admittedly unrealistic
approach of using SQL to populate our H2 database with users, how do we encode the
passwords? H2, or most other databases for that matter, don't offer encryption methods as
built-in database functions.

Typically, the bootstrap process (populating a system with initial users and data) is handled
through a combination of SQL loads and Java code. Depending on the complexity of your
application, this process can get very complicated.

JDBC-Based Authentication Chapter 4

[98]

For the JBCP calendar application, we'll retain the dataSource() bean declaration and
DataSource is a name in code in the corresponding SQL, and then add some SQL that will
modify the passwords to their hashed values.

The PasswordEncoder method
Password hashing in Spring Security is encapsulated and defined by implementations of
the o.s.s.authentication.encoding.PasswordEncoder interface. The simple
configuration of a password encoder is possible through the passwordEncoder() method
within the AuthenticationManagerBuilder element, as follows:

 auth
 .jdbcAuthentication()
 .dataSource(dataSource)
 .usersByUsernameQuery(CUSTOM_USERS_BY_USERNAME_QUERY)
 .authoritiesByUsernameQuery(CUSTOM_AUTHORITIES_BY_USERNAME_QUERY)
 .passwordEncoder(passwordEncoder());

You'll be happy to learn that Spring Security ships with a number of implementations of
passwordEncoder, which are applicable for different needs and security requirements.

The following table provides a list of the out-of-the-box implementation classes and their
benefits. Note that all implementations reside in the o.s.s.authentication.encoding
package:

Implementation class Description Hash value

PlaintextPasswordEncoder It encodes the password
as plaintext; this is the
default.

<p>plaintext

Md4PasswordEncoderPasswordEncoder This encoder utilizes the
MD4 hash algorithm. The
MD4 hash algorithm is not
a secure algorithm—use
of this encoder is not
recommended.

md4

Md5PasswordEncoderPassword This encoder utilizes the
MD5 one-way encoding
algorithm.

JDBC-Based Authentication Chapter 4

[99]

Implementation class Description Hash value

ShaPasswordEncoderPasswordEncoder This encoder utilizes the
SHA one-way encoding
algorithm. This encoder
can support configurable
levels of encoding
strength.

sha
sha-256

LdapShaPasswordEncoder An implementation of
LdapSha and LdapSsha
algorithms used in
integration with LDAP
authentication stores.
We'll learn more about
this algorithm in Chapter
6, LDAP Directory
Services, where we will
cover LDAP.

{sha}
{ssha}

As with many other areas of Spring Security, it's also possible to reference a bean definition
by implementing PasswordEncoder to provide more precise configuration and
allowing PasswordEncoder to be wired into other beans through the dependency injection.
For the JBCP calendar application, we'll need to use this bean reference method in order to
hash the passwords of the newly created users.

Let's walk through the process of configuring basic password encoding for the JBCP
calendar application.

Configuring password encoding
Configuring basic password encoding involves two steps: hashing the passwords we load
into the database after the SQL script executes, and ensuring that Spring Security is
configured to work with PasswordEncoder.

JDBC-Based Authentication Chapter 4

[100]

Configuring the PasswordEncoder method
First, we'll declare an instance of PasswordEncoder as a normal Spring bean, as follows:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va

 @Bean
 public ShaPasswordEncoder passwordEncoder(){
 return new ShaPasswordEncoder(256);
 }

You'll notice that we're using the SHA-256 PasswordEncoder implementation. This is an
efficient one-way encryption algorithm, commonly used for password storage.

Making Spring Security aware of the
PasswordEncoder method
We'll need to configure Spring Security to have a reference to PasswordEncoder, so that it
can encode and compare the presented password during user login. Simply add a
passwordEncoder method and refer to the bean ID we defined in the previous step:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va

 @Override
 public void configure(AuthenticationManagerBuilder auth)
 throws Exception {
 auth
 .jdbcAuthentication()
 .dataSource(dataSource)
 .usersByUsernameQuery(CUSTOM_USERS_BY_USERNAME_QUERY)
 .authoritiesByUsernameQuery(
 CUSTOM_AUTHORITIES_BY_USERNAME_QUERY)
 .passwordEncoder(passwordEncoder())
 ;
 }

If you were to try the application at this point, you'd notice that what were previously valid
login credentials would now be rejected. This is because the passwords stored in the
database (loaded with the calendar-users.sql script) are not stored as a hash that
matches the password encoder. We'll need to update the stored passwords to be hashed
values.

JDBC-Based Authentication Chapter 4

[101]

Hashing the stored passwords
As illustrated in the following diagram, when a user submits a password, Spring Security
hashes the submitted password and then compares that against the unhashed password in
the database:

This means that users cannot log in to our application. To fix this, we will update the SQL
that is loaded at startup time to update the passwords to be the hashed values. Update the
DataSourceConfig.java file, as follows:

//src/main/java/com/packtpub/springsecurity/configuration/DataSourceConfig.
java

 @Bean
 public DataSource dataSource() {
 return new EmbeddedDatabaseBuilder()
 .setName("dataSource")
 .setType(EmbeddedDatabaseType.H2)
 .addScript("/database/h2/calendar-schema.sql")
 .addScript("/database/h2/calendar-data.sql")
 .addScript("/database/h2/calendar-authorities.sql")
 .addScript("/database/h2/calendar-sha256.sql")
 .build();
 }

JDBC-Based Authentication Chapter 4

[102]

The calendar-sha256.sql file simply updates the existing passwords to their expected
hashed values, as follows:

 update calendar_users set password =
 '0a041b9462caa4a31bac3567e0b6e6fd9100787db2ab433d96f6d178cabfce90'
 where email = 'user1@example.com';

How did we know what value to update the password to? We have provided
o.s.s.authentication.encoding.Sha256PasswordEncoderMain to demonstrate how
to use the configured PasswordEncoder interface to hash the existing passwords. The
relevant code is as follows:

 ShaPasswordEncoder encoder = new ShaPasswordEncoder(256);
 String encodedPassword = encoder.encodePassword(password, null);

Hashing the passwords of new users
If we tried running the application and creating a new user, we would not be able to log in.
This is because the newly-created user's password would not be hashed. We need to update
DefaultCalendarService to hash the password. Make the following updates to ensure
that the newly-created users' passwords are hashed:

//src/main/java/com/packtpub/springsecurity/service/DefaultCalendarService.
java

 import
org.springframework.security.authentication.encoding.PasswordEncoder;
 // other imports omitted
 public class DefaultCalendarService implements CalendarService {
 ...
 private final PasswordEncoder passwordEncoder;
 @Autowired
 public DefaultCalendarService(EventDao eventDao,
 CalendarUserDao userDao, JdbcOperations jdbcOperations,
 PasswordEncoder passwordEncoder) {
 ...
 this.passwordEncoder = passwordEncoder;
 }
 ...
 public int createUser(CalendarUser user) {
 String encodedPassword = passwordEncoder.
 encodePassword(user.getPassword(), null);
 user.setPassword(encodedPassword);

JDBC-Based Authentication Chapter 4

[103]

 ...
 return userId;
 }
 }

Not quite secure
Go ahead and start the application. Try creating a new user with user1 as the password.
Log out of the application, then use the instructions on the Welcome page to open the H2
console and view all of the users' passwords. Did you notice that the hashed values for the
newly created user and user1@example.com are the same value? The fact that we have
now figured out another user's password is a little disturbing. We will solve this with a
technique known as salting.

Your code should now look like this: calendar04.04-calendar .

Would you like some salt with that password? If the security auditor were to examine the
encoded passwords in the database, he'd find something that would still make him
concerned about the website's security. Let's examine the following stored username and
password values for a few of our users:

Username Plaintext
password

Hashed password

admin1@example.com admin1 25f43b1486ad95a1398e3eeb3d83bc4010015fcc9bed
b35b432e00298d5021f7

user1@example.com user1 0a041b9462caa4a31bac3567e0b6e6fd9100787db2ab
433d96f6d178cabfce90

JDBC-Based Authentication Chapter 4

[104]

This looks very secure—the encrypted passwords obviously bear no resemblance to the
original passwords. What could the auditor be concerned about? What if we add a new user
who happens to have the same password as our user1@example.com user?

Username Plaintext
password

Hashed password

hacker@example.com user1 0a041b9462caa4a31bac3567e0b6e6fd9100787d
b2ab433d96f6d178cabfce90

Now, note that the encrypted password of the hacker@example.com user is exactly the
same as the real user! Thus, a hacker who had somehow gained the ability to read the
encrypted passwords in the database could compare their known password's encrypted
representation with the unknown one for the user account, and see they are the same! If the
hacker had access to an automated tool to perform this analysis, they could likely
compromise the user's account within a matter of hours.

While it is difficult to guess a single password, hackers can calculate all the hashes ahead of
time and store a mapping of the hash to the original password. Then, figuring out the
original password is a matter of looking up the password by its hashed value in constant
time. This is a hacking technique known as rainbow tables.

One common and effective method of adding another layer of security to encrypted
passwords is to incorporate a salt. A salt is a second plaintext component, which is
concatenated with the plaintext password prior to performing the hash, in order to ensure
that two factors must be used to generate (and thus compare) the hashed password values.
Properly selected salts can guarantee that no two passwords will ever have the same hashed
value, thus preventing the scenario that concerned our auditor, and avoiding many
common types of brute force password cracking techniques.

Best practice salts generally fall into one of the following three categories:

They are algorithmically generated from some pieces of data associated with the
user, for example, the timestamp that the user created
They are randomly generated and stored in some form
They are plaintext or two-way encrypted along with the user's password record

JDBC-Based Authentication Chapter 4

[105]

Remember that because the salt is added to the plaintext password, it can't be one-way
encrypted—the application needs to be able to look up or derive the appropriate salt value
for a given user's record in order to calculate the hash of the password, and to compare it
with the stored hash of the user when performing authentication.

Using salt in Spring Security
Spring Security 3.1 provides a new cryptography module that is included in the spring-
security-core module and is available separately in spring-security-crypto. The
crypto module contains its own o.s.s.crypto.password.PasswordEncoder interface.
In fact, using this interface is the preferred method for encoding passwords, because it will
salt passwords using a random salt. At the time of this writing, there are the following
three implementations of o.s.s.crypto.password.PasswordEncoder:

Class Description

o.s.s.crypto.bcrypt.BCryptPasswordEncoder This class uses the bcrypt
hashing function. It supports
salt and the ability to slow
down to perform over time as
technology improves. This
helps protect against brute-
force search attacks.

o.s.s.crypto.password.NoOpPasswordEncoder This class does no encoding (it
returns the password in its
plaintext form).

o.s.s.crypto.password.StandardPasswordEncoder This class uses SHA-256 with
multiple iterations and a
random salt value.

For those who are familiar with Spring Security 3.0, salt used to be
provided using o.s.s.authentication.dao.SaltSource. While still
supported, this mechanism is not demonstrated in this book, since it is not
the preferred mechanism for providing salt.

JDBC-Based Authentication Chapter 4

[106]

Updating the Spring Security configuration
This can be done by updating the Spring Security configuration. Remove the old
ShaPasswordEncoder encoder and add the new StandardPasswordEncoder encoder, as
follows:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va

 @Bean
 public PasswordEncoder passwordEncoder(){
 return new StandardPasswordEncoder();
 }

Migrating existing passwords
Let's take a look at the following steps and learn about migrating existing passwords:

We need to update our existing passwords to use the values produced by the1.
new PasswordEncoder class. If you would like to generate your own passwords,
you can use the following code snippet:

 StandardPasswordEncoder encoder = new StandardPasswordEncoder();
 String encodedPassword = encoder.encode("password");

Remove the previously used calendar-sha256.sql file, and add the provided2.
saltedsha256.sql file as follows:

 //src/main/java/com/packtpub/springsecurity/configuration/
 DataSourceConfig.java

 @Bean
 public DataSource dataSource() {
 return new EmbeddedDatabaseBuilder()
 .setName("dataSource")
 .setType(EmbeddedDatabaseType.H2)
 .addScript("/database/h2/calendar-schema.sql")
 .addScript("/database/h2/calendar-data.sql"
 .addScript("/database/h2/calendar-authorities.sql")
 .addScript("/database/h2/calendar-saltedsha256.sql")
 .build();
 }

JDBC-Based Authentication Chapter 4

[107]

Updating DefaultCalendarUserService
The passwordEncoder() method we defined previously is smart enough to handle the
new password encoder interface. However, DefaultCalendarUserService needs to
update to the new interface. Make the following updates to the
DefaultCalendarUserService class:

//src/main/java/com/packtpub/springsecurity/service/DefaultCalendarService.
java

 import
org.springframework.security.authentication.encoding.PasswordEncoder;
 import org.springframework.security.crypto.password.PasswordEncoder;

 // other imports omitted

 public class DefaultCalendarService implements CalendarService {
 ...
 public int createUser(CalendarUser user) {
 String encodedPassword = passwordEncoder.encode(user.getPassword());
 user.setPassword(encodedPassword);
 ...
 return userId;
 }
 }

Trying out the salted passwords
Start up the application and try creating another user with the password user1. Use the H2
console to compare the new user's password, and observe that they are different.

Your code should now look like this: calendar04.05-calendar.

Spring Security now generates a random salt and combines this with the password before
hashing our password. It then adds the random salt to the beginning of the password in
plaintext, so that passwords can be checked. The stored password can be summarized as
follows:

 salt = randomsalt()
 hash = hash(salt+originalPassword)
 storedPassword = salt + hash

JDBC-Based Authentication Chapter 4

[108]

This is the pseudocode for hashing a newly created password.

To authenticate a user, salt and hash can be extracted from the stored password, since
both salt and hash are fixed lengths. Then, the extracted hash can be compared against a
new hash, computed with extracted salt and the inputted password:

The following is the pseudocode for validating a salted password:

 storedPassword = datasource.lookupPassword(username)
 salt, expectedHash = extractSaltAndHash(storedPassword)
 actualHash = hash(salt+inputedPassword)
 authenticated = (expectedHash == actualHash)

JDBC-Based Authentication Chapter 4

[109]

Summary
In this chapter, we learned how to use Spring Security's built-in JDBC support. Specifically,
we have learned that Spring Security provides a default schema for new applications. We
also explored how to implement GBAC and how it can make managing users easier.
We also learned how to integrate Spring Security's JDBC support with an existing database
and also how to secure our passwords by hashing them and using a randomly-generated
salt.

In the next chapter, we will explore the Spring Data project and how to configure Spring
Security to use object-relational mapping (ORM) to connect to an RDBMS, as well as a
document database.

5
Authentication with Spring Data

In the previous chapter, we covered how to leverage Spring Security's built-in JDBC
support. In this chapter, we will look at the Spring Data project, and how to leverage JPA to
perform authentication against a relational database. We will also explore how to perform
authentication against a document database using MongoDB. This chapter's sample code is
based on the Spring Security setup from Chapter 4, JDBC-Based Authentication, and has
been updated to refactor out the need for SQL and to use ORM for all database interactions.

During the course of this chapter, we will cover the following topics:

Some of the basic concepts related to the Spring Data project
Utilizing Spring Data JPA to authenticate against a relational database
Utilizing Spring Data MongoDB to authenticate against a document database
How to customize Spring Security for more flexibility when dealing with Spring
Data integration
Understanding the Spring Data project

The Spring Data project's mission is to provide a familiar and consistent Spring-based
programming model for data access, while still retaining the special traits of the underlying
data provider.

The following are just a few of the powerful features in this Spring Data project:

Powerful repository and custom object-mapping abstractions
Dynamic query derivation from repository method names
Implementation of domain base classes, providing basic properties
Support for transparent auditing (created and last changed)
The ability to integrate custom repository code

Authentication with Spring Data Chapter 5

[111]

Easy Spring integration via Java-based configuration and custom XML
namespaces
Advanced integration with Spring MVC controllers
Experimental support for cross-store persistence

This project simplifies the use of data access technologies, relational and non-relational
databases, map-reduce frameworks, and cloud-based data services. This umbrella project
contains many subprojects that are specific to a given database. These projects were
developed by working together with many of the companies and developers that are
behind these exciting technologies. There are also many community maintained modules
and other related modules including JDBC Support and Apache Hadoop.

The following table describes the main modules that make up the Spring Data project:

Module Description

Spring Data Commons Applies core Spring concepts all Spring Data projects

Spring Data Gemfire Provides easy configuration and access to Gemfire from
Spring applications

Spring Data JPA Makes it easy to implement JPA-based repositories

Spring Data Key Value Map-based repositories and SPIs, which can easily build a
Spring Data module for key-value stores

Spring Data LDAP Provides Spring Data repository support for Spring LDAP

Spring Data MongoDB Spring-based, object-document support, and repositories for
MongoDB

Spring Data REST Exports Spring Data repositories as hypermedia-driven
RESTful resources

Spring Data Redis Provides easy configuration and access to Redis from Spring
applications

Spring Data for Apache
Cassandra

Spring Data module for Apache Cassandra

Spring Data for Apache
Solr

Spring Data module for Apache Solr

Authentication with Spring Data Chapter 5

[112]

Spring Data JPA
The Spring Data JPA project aims to significantly improve the ORM implementation of data
access layers by reducing the effort to the amount that’s actually needed. A developer only
needs to write repository interfaces, including custom finder methods, and Spring will
provide the implementation automatically.

The following are just a few of the powerful features specific to the Spring Data JPA project:

Sophisticated support for building repositories based on Spring and JPA
Support for Querydsl predicates, and thus, type-safe JPA queries
Transparent auditing of domain classes
Pagination support, dynamic query execution, and the ability to integrate custom
data access code
Validation of @Query annotated queries at bootstrap time
Support for XML based entity mapping
The JavaConfig based repository configuration by introducing
@EnableJpaRepositories

Updating our dependencies
We have already included all the dependencies you need for this chapter, so you will not
need to make any updates to your build.gradle file. However, if you are just adding
Spring Data JPA support to your own application, you need to add spring-boot-
starter-data-jpa as a dependency in the build.gradle file, as follows:

 //build.gradle

 dependencies {
 ...
 // REMOVE: compile('org.springframework.boot:spring-boot-starter-jdbc')
 compile('org.springframework.boot:spring-boot-starter-data-jpa')
 ...
 }

Notice we removed the spring-boot-starter-jdbc dependency. The spring-boot-
starter-data-jpa dependency will contain all the dependencies needed to wire our
domain objects to our embedded database with JPA.

Authentication with Spring Data Chapter 5

[113]

Updating the JBCP calendar to use Spring Data
JPA
To get familiar with Spring Data, we will first convert the JBCP calendar SQL to leverage
ORM, using the Spring Data JPA starter.

Creating and maintaining SQL can be quite tedious. In the previous chapters, when we
wanted to create a new CalendarUser table in the database, we had to create a fair amount
of boilerplate code, as follows:

 //src/main/java/com/packtpub/springsecurity/
 dataaccess/JdbcCalendarUserDao.java

 public int createUser(final CalendarUser userToAdd) {
 if (userToAdd == null) {
 throw new IllegalArgumentException("userToAdd cannot be null");
 }
 if (userToAdd.getId() != null) {
 throw new IllegalArgumentException("userToAdd.getId() must be
 null when creating a
 "+CalendarUser.class.getName());
 }
 KeyHoldener keyHolder = new GeratedKeyHolder();
 this.jdbcOperations.update(new PreparedStatementCreator() {
 public PreparedStatement createPreparedStatement
 (Connection connection)
 throws SQLException {
 PreparedStatement ps = connection.prepareStatement("insert into
 calendar_users (email, password, first_name, last_name)
 values (?, ?, ?, ?)", new String[] {
 "id" });
 ps.setString(1, userToAdd.getEmail());
 ps.setString(2, userToAdd.getPassword());
 ps.setString(3, userToAdd.getFirstName());
 ps.setString(4, userToAdd.getLastName());
 return ps;
 }
 }, keyHolder);
 return keyHolder.getKey().intValue();
 }

To create this object, we technically need 12 lines of code to perform the operation.

Authentication with Spring Data Chapter 5

[114]

Now, with Spring Data JPA, the same implementation can be reduced to the following code
snippet:

//src/main/java/com/packtpub/springsecurity/dataaccess/JpaCalendarUserDao.j
ava

 public int createUser(final CalendarUser userToAdd) {
 if (userToAdd == null) {
 throw new IllegalArgumentException("userToAdd cannot be null");
 }
 if (userToAdd.getId() != null) {
 throw new IllegalArgumentException("userToAdd.getId()
 must be null when creating a "+CalendarUser.class.getName());
 }
 Set<Role> roles = new HashSet<>();
 roles.add(roleRepository.findOne(0));
 userToAdd.setRoles(roles);
 CalendarUser result = repository.save(userToAdd);
 repository.flush();
 return result.getId();
 }

Now, to create this object using JPA, we technically need five lines of code to perform the
operation. We now need less than half the amount of code to perform the same operation.

Reconfiguring the database configuration
Firstly, we will convert the current JBCP calendar project. Let's begin by reconfiguring the
database.

We can begin by removing the DataSourceConfig.java file, as we will be leveraging
Spring Boot's built-in support for an embedded H2 database. We will also need to remove
the reference to DataSourceConfig.java in the JavaConfig.java file, as there is
currently a reference to JavaConfig.java inside the @Import annotation.

Initializing the database
We can now remove the src/main/resources/database directory and all contents in
that directory. This directory contains several .sql files, and we will consolidate and move
them to the next step:

Authentication with Spring Data Chapter 5

[115]

Now, we need to create a data.sql file that will contain our seed data, as follows:

 //src/main/resources/data.sql:

Take a look at the following SQL statement, depicting the password for user1:

 insert into calendar_users(id,username,email,password,
 first_name,last_name)
 values(0,'user1@example.com','user1@example.com',
 '$2a$04$qr7RWyqOnWWC1nwotUW1nOe1RD5.
 mKJVHK16WZy6v49pymu1WDHmi','User','1');

Take a look at the following SQL statement, depicting the password
for admin1 :

 insert into calendar_users(id,username,email,password,
 first_name,last_name)
 values (1,'admin1@example.com','admin1@example.com',
 '$2a$04$0CF/Gsquxlel3fWq5Ic/ZOGDCaXbMfXYiXsviTNMQofWRXhvJH3IK',
 'Admin','1');

Take a look at the following SQL statement, depicting the password for user2:

 insert into calendar_users(id,username,email,password,first_name,
 last_name)
 values (2,'user2@example.com','user2@example.com',
 '$2a$04$PiVhNPAxunf0Q4IMbVeNIuH4M4ecySWHihyrclxW..PLArjLbg8CC',
 'User2','2');

Take a look at the following SQL statement, depicting the user roles:

 insert into role(id, name) values (0, 'ROLE_USER');
 insert into role(id, name) values (1, 'ROLE_ADMIN');

Here, user1 has one role:

 insert into user_role(user_id,role_id) values (0, 0);

 Here, admin1 has two roles:

 insert into user_role(user_id,role_id) values (1, 0);
 insert into user_role(user_id,role_id) values (1, 1);

Authentication with Spring Data Chapter 5

[116]

 Take a look at the following SQL statement, depicting events:

 insert into events (id,when,summary,description,owner,attendee)
 values (100,'2017-07-03 20:30:00','Birthday Party',
 'This is going to be a great birthday',0,1);
 insert into events (id,when,summary,description,owner,attendee)
 values (101,'2017-12-23 13:00:00','Conference Call','Call with
 the client',2,0);
 insert into events (id,when,summary,description,owner,attendee)
 values (102,'2017-09-14 11:30:00','Vacation',
 'Paragliding in Greece',1,2);

Now, we can update the application properties to define our embedded database properties
in the src/main/resources/application.yml file as follows:

 # Embedded Database
 datasource:
 url: jdbc:h2:mem:dataSource;DB_CLOSE_DELAY=-1;DB_CLOSE_ON_EXIT=FALSE
 driverClassName: org.h2.Driver
 username: sa
 password:
 continue-on-error: true
 jpa:
 database-platform: org.hibernate.dialect.H2Dialect
 show-sql: true
 hibernate:
 ddl-auto: create-drop

At this point, we have removed the old database configuration and added the new
configuration. The application will not work at this point, but this can still be considered a
marker point before we continue on to the next steps of conversion.

Your code should now look like calendar05.01-calendar .

Authentication with Spring Data Chapter 5

[117]

Refactoring from SQL to ORM
Refactoring from an SQL to an ORM implementation is simpler than you might think. Most
of the refactoring involves the removal of excess code in the form of an SQL. In this next
section, we will refactor our SQL implementation to a JPA implementation.

In order for JPA to map our domain objects to our database, we need to perform some
mapping on our domain objects.

Mapping domain objects using JPA
Take a look at the following steps to learn about mapping the domain objects:

Let's begin by mapping our Event.java file so all the domain objects will use1.
JPA, as follows:

//src/main/java/com/packtpub/springsecurity/domain/Event.java

import javax.persistence.*;
@Entity
@Table(name = "events")
public class Event implements Serializable{
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
private Integer id;
@NotEmpty(message = "Summary is required")
private String summary;
@NotEmpty(message = "Description is required")
private String description;
@NotNull(message = "When is required")
private Calendar when;
@NotNull(message = "Owner is required")
 @ManyToOne(fetch = FetchType.LAZY)
 @JoinColumn(name="owner", referencedColumnName="id")
private CalendarUser owner;
 @ManyToOne(fetch = FetchType.LAZY)
 @JoinColumn(name="attendee", referencedColumnName="id")
private CalendarUser attendee;

Authentication with Spring Data Chapter 5

[118]

We need to create a Role.java file with the following contents:2.

//src/main/java/com/packtpub/springsecurity/domain/Role.java

import javax.persistence.*;
@Entity
@Table(name = "role")
public class Role implements Serializable {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
private Integer id;
private String name;
 @ManyToMany(fetch = FetchType.EAGER, mappedBy = "roles")
private Set<CalendarUser> users;

The Role object will be used to map authorities to our CalendarUser table. Let's3.
map our CalendarUser.java file, now that we have a Role.java file:

//src/main/java/com/packtpub/springsecurity/domain/CalendarUser
.java

import javax.persistence.*;
import java.io.Serializable;
import java.util.Set;
@Entity
@Table(name = "calendar_users")
public class CalendarUser implements Serializable {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private Integer id;
 private String firstName;
 private String lastName;
 private String email;
 private String password;
 @ManyToMany(fetch = FetchType.EAGER)
 @JoinTable(name = "user_role",
 joinColumns = @JoinColumn(name = "user_id"),
 inverseJoinColumns = @JoinColumn(name = "role_id"))
 private Set<Role> roles;

At this point, we have mapped our domain objects with the required JPA annotation,
including @Entity and @Table to define the RDBMS location, as well as structural,
reference, and association mapping annotations.

The application will not work at this point, but this can still be considered a marker
point before we continue on to the next steps of conversion.

Authentication with Spring Data Chapter 5

[119]

You should be starting with the source from chapter05.02-calendar.

Spring Data repositories
We will now add the required interfaces for Spring Data to map our required CRUD
operations to our embedded database, by performing the following steps:

We begin by adding a new interface in a new package, which will be1.
com.packtpub.springsecurity.repository. The new file will be called
CalendarUserRepository.java, as follows:

//com/packtpub/springsecurity/repository/CalendarUserRepository.java

 package com.packtpub.springsecurity.repository;
 import com.packtpub.springsecurity.domain.CalendarUser;
 import org.springframework.data.jpa.repository.JpaRepository;

 public interface CalendarUserRepository
 extends JpaRepository<CalendarUser, Integer> {
 CalendarUser findByEmail(String email);
 }

This will allow for standard CRUD operations such as find(), save(), and
delete() on our CalendarUser objects.

We can now continue by adding a new interface in the same repository package,2.
which will be com.packtpub.springsecurity.repository, and the new file
will be called EventRepository.java:

 //com/packtpub/springsecurity/repository/EventRepository.java

 package com.packtpub.springsecurity.repository;
 import com.packtpub.springsecurity.domain.Event;
 import org.springframework.data.jpa.repository.JpaRepository;

 public interface EventRepository extends JpaRepository<Event,
 Integer> {}

This will allow for standard CRUD operations such as find(), save(), and
delete() on our Event objects.

Authentication with Spring Data Chapter 5

[120]

Finally, we will be adding a new interface in the same repository package, which3.
will be com.packtpub.springsecurity.repository, and the new file will be
called RoleRepository.java. This CrudRepository interface will be used to
manage the Role object for our security roles associated with a given
CalendarUser:

 //com/packtpub/springsecurity/repository/

 package com.packtpub.springsecurity.repository;
 import com.packtpub.springsecurity.domain.Event;
 import org.springframework.data.jpa.repository.JpaRepository;

 public interface RoleRepository extends JpaRepository<Role,
 Integer> {}

This will allow for standard CRUD operations such as find(), save(), and
delete() on our Role objects.

Data access objects
We need to refactor the JdbcEventDao.java file with a new name, JpaEventDao.java,
so we can replace the JDBC SQL code with our new Spring Data code. Let's take a look at
the following steps:

Specifically, we need to add the new EventRepository interface, and replace1.
the SQL code with the new ORM repository, as shown in the following code:

 //com/packtpub/springsecurity/dataaccess/JpaEventDao.java

 package com.packtpub.springsecurity.dataaccess;
 import com.packtpub.springsecurity.domain.CalendarUser;
 import com.packtpub.springsecurity.domain.Event;
 import com.packtpub.springsecurity.repository.EventRepository;
 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.data.domain.Example;
 import org.springframework.stereotype.Repository;
 import org.springframework.transaction.annotation.Transactional;
 ...
 @Repository
 public class JpaEventDao implements EventDao {
 private EventRepository repository;
 @Autowired
 public JpaEventDao(EventRepository repository) {
 if (repository == null) {

Authentication with Spring Data Chapter 5

[121]

 throw new IllegalArgumentException("repository
 cannot be null");
 }
 this.repository = repository;
 }
 @Override
 @Transactional(readOnly = true)
 public Event getEvent(int eventId) {
 return repository.findOne(eventId);
 }
 @Override
 public int createEvent(final Event event) {
 ...
 final Calendar when = event.getWhen();
 if(when == null) {
 throw new IllegalArgumentException("event.getWhen()
 cannot be null");
 }
 Event newEvent = repository.save(event);
 ...
 }
 @Override
 @Transactional(readOnly = true)
 public List<Event> findForUser(final int userId) {
 Event example = new Event();
 CalendarUser cu = new CalendarUser();
 cu.setId(userId);
 example.setOwner(cu);
 return repository.findAll(Example.of(example));
 }
 @Override
 @Transactional(readOnly = true)
 public List<Event> getEvents() {
 return repository.findAll();
 }
 }

At this point, we need to refactor the DAO classes to support the new2.
CrudRepository interfaces we have created. Let's begin with refactoring the
JdbcCalendarUserDao.java file. First, we can rename the file to
JpaCalendarUserDao.java to indicate that this is using JPA, and not standard
JDBC:

 //com/packtpub/springsecurity/dataaccess/JpaCalendarUserDao.java

 package com.packtpub.springsecurity.dataaccess;
 ... omitted for brevity ...

Authentication with Spring Data Chapter 5

[122]

 @Repository
 public class JpaCalendarUserDao
 implements CalendarUserDao {
 private CalendarUserRepository userRepository;
 private RoleRepository roleRepository;
 @Autowired
 public JpaCalendarUserDao(CalendarUserRepository repository,
 RoleRepository roleRepository) {
 if (repository == null) {
 throw new IllegalArgumentException("repository
 cannot be null");
 }
 if (roleRepository == null) {
 throw new IllegalArgumentException("roleRepository
 cannot be null");
 }
 this. userRepository = repository;
 this.roleRepository = roleRepository;
 }
 @Override
 @Transactional(readOnly = true)
 public CalendarUser getUser(final int id) {
 return userRepository.findOne(id);
 }
 @Override
 @Transactional(readOnly = true)
 public CalendarUser findUserByEmail(final String email) {
 if (email == null) {
 throw new IllegalArgumentException
 ("email cannot be null");
 }
 try {
 return userRepository.findByEmail(email);
 } catch (EmptyResultDataAccessException notFound) {
 return null;
 }
 }
 @Override
 @Transactional(readOnly = true)
 public List<CalendarUser> findUsersByEmail(final String email) {
 if (email == null) {
 throw new IllegalArgumentException("email
 cannot be null");
 }
 if ("".equals(email)) {
 throw new IllegalArgumentException("email
 cannot be empty string");
 }

Authentication with Spring Data Chapter 5

[123]

 return userRepository.findAll();
 }
 @Override
 public int createUser(final CalendarUser userToAdd) {
 if (userToAdd == null) {
 throw new IllegalArgumentException("userToAdd
 cannot be null");
 }
 if (userToAdd.getId() != null) {
 throw new IllegalArgumentException("userToAdd.getId()
 must be null when creating a "+
 CalendarUser.class.getName());
 }
 Set<Role> roles = new HashSet<>();
 roles.add(roleRepository.findOne(0));
 userToAdd.setRoles(roles);
 CalendarUser result = userRepository.save(userToAdd);
 userRepository.flush();
 return result.getId();
 }
 }

As you can see in the preceding code, the update fragments to leverage the
amount needed for JPA are quite a bit less than the required code for JDBC. This
means we can focus on business logic and not worry about the plumbing.

We continue by refactoring the JdbcEventDao.java file. First, we can rename 3.
the file to JpaEventDao.java, to indicate that this is using JPA and not standard
JDBC, as follows:

//com/packtpub/springsecurity/dataaccess/JpaEventDao.java

package com.packtpub.springsecurity.dataaccess;
... omitted for brevity ...
@Repository
public class JpaEventDao implements EventDao {
 private EventRepository repository;
 @Autowired
 public JpaEventDao(EventRepository repository) {
 if (repository == null) {
 throw new IllegalArgumentException("repository
 cannot be null");
 }
 this.repository = repository;
 }
 @Override
 @Transactional(readOnly = true)

Authentication with Spring Data Chapter 5

[124]

 public Event getEvent(int eventId) {
 return repository.findOne(eventId);
 }
 @Override
 public int createEvent(final Event event) {
 if (event == null) {
 throw new IllegalArgumentException("event cannot be
null");
 }
 if (event.getId() != null) {
 throw new IllegalArgumentException
 ("event.getId() must be null when creating a new
Message");
 }
 final CalendarUser owner = event.getOwner();
 if (owner == null) {
 throw new IllegalArgumentException("event.getOwner()
 cannot be null");
 }
 final CalendarUser attendee = event.getAttendee();
 if (attendee == null) {
 throw new
IllegalArgumentException("attendee.getOwner()
 cannot be null");
 }
 final Calendar when = event.getWhen();
 if(when == null) {
 throw new IllegalArgumentException
 ("event.getWhen()cannot be null");
 }
 Event newEvent = repository.save(event);
 return newEvent.getId();
 }
 @Override
 @Transactional(readOnly = true)
 public List<Event> findForUser(final int userId) {
 Event example = new Event();
 CalendarUser cu = new CalendarUser();
 cu.setId(userId);
 example.setOwner(cu);
 return repository.findAll(Example.of(example));
 }
 @Override
 @Transactional(readOnly = true)
 public List<Event> getEvents() {
 return repository.findAll();
 }
}

Authentication with Spring Data Chapter 5

[125]

In the preceding code, the update fragments to leverage the JPA repositories have
been placed in bold, so now the Event and CalendarUser objects are mapped to
our underlying RDBMS.

The application will not work at this point, but this can still be considered a marker point
before we continue on to the next steps of conversion.

At this point, your source code should look the same as chapter05.03-
calendar.

Application services
The only thing left to do is configure Spring Security to use the new artifacts.

We need to edit the DefaultCalendarService.java file and only remove the remaining
code that was used to add USER_ROLE to any new User object that was created as follows:

 //com/packtpub/springsecurity/service/DefaultCalendarService.java

 package com.packtpub.springsecurity.service;
 ... omitted for brevity ...
 @Repository
 public class DefaultCalendarService implements CalendarService {
 @Override
 public int createUser(CalendarUser user) {
 String encodedPassword =
passwordEncoder.encode(user.getPassword());
 user.setPassword(encodedPassword);
 int userId = userDao.createUser(user);
 //jdbcOperations.update("insert into
 calendar_user_authorities(calendar_user,authority)
 values (?,?)", userId,
 //"ROLE_USER");
 return userId;
 }
 }

Authentication with Spring Data Chapter 5

[126]

The UserDetailsService object
Let's take a look at the following steps to add the UserDetailsService object:

Now, we need to add a new implementation of the UserDetailsService object,1.
we will use our CalendarUserRepository interface to authenticate and
authorize users again, with the same underlying RDBMS, but using our new JPA
implementation as follows:

 //com/packtpub/springsecurity/service/UserDetailsServiceImpl.java

 package com.packtpub.springsecurity.service;
 ... omitted for brevity ...
 @Service
 public class UserDetailsServiceImpl
 implements UserDetailsService {
 @Autowired
 private CalendarUserRepository userRepository;
 @Override
 @Transactional(readOnly = true)
 public UserDetails loadUserByUsername(final String username)
 throws UsernameNotFoundException {
 CalendarUser user = userRepository.findByEmail(username);
 Set<GrantedAuthority> grantedAuthorities = new HashSet<>();
 for (Role role : user.getRoles()){
 grantedAuthorities.add(new SimpleGrantedAuthority
 (role.getName()));
 }
 return new org.springframework.security.core.userdetails.User(
 user.getEmail(), user.getPassword(), grantedAuthorities);
 }
 }

Now, we have to configure Spring Security to use our custom2.
UserDetailsService object, as follows:

 //com/packtpub/springsecurity/configuration/SecurityConfig.java

 package com.packtpub.springsecurity.configuration;
 ... omitted for brevity ...
 @Configuration
 @EnableWebSecurity
 public class SecurityConfig extends WebSecurityConfigurerAdapter {\
 @Autowired
 private UserDetailsService userDetailsService;
 @Override

Authentication with Spring Data Chapter 5

[127]

 public void configure(AuthenticationManagerBuilder auth)
 throws Exception {
 auth
 .userDetailsService(userDetailsService)
 .passwordEncoder(passwordEncoder());
 }
 @Bean
 @Override
 public UserDetailsService userDetailsService() {
 return new UserDetailsServiceImpl();
 }
 ...
 }

Start the application and try logging in to the application. Any of the configured3.
users can now log in and create new events. You can also create a new user and
will be able to log in as the new user immediately.

Your code should now look like calendar05.04-calendar.

Refactoring from an RDBMS to a document
database
Luckily, with the Spring Data project, once we have a Spring Data implementation, we have
most of the difficult work completed. Now, there are only a few implementation-specific
changes that need to be refactored.

Document database implementation with
MongoDB
We are now going to work on refactoring our RDBMS implementation—with JPA as our
ORM provider—into a document database implementation, using MongoDB as our
underlying database provider. MongoDB (from humongous) is a free and open source
cross-platform document-oriented database program. Classified as a NoSQL database
program, MongoDB uses JSON-like documents with schemas. MongoDB is developed by
MongoDB Inc. and is located at https:/ ​/​github. ​com/​mongodb/ ​mongo.

https://github.com/mongodb/mongo
https://github.com/mongodb/mongo
https://github.com/mongodb/mongo
https://github.com/mongodb/mongo
https://github.com/mongodb/mongo
https://github.com/mongodb/mongo
https://github.com/mongodb/mongo
https://github.com/mongodb/mongo
https://github.com/mongodb/mongo
https://github.com/mongodb/mongo
https://github.com/mongodb/mongo

Authentication with Spring Data Chapter 5

[128]

Updating our dependencies
We have already included all of the dependencies you need for this chapter, so you will not
need to make any updates to your build.gradle file. However, if you are just adding
Spring Data JPA support to your own application, you will need to add spring-boot-
starter-data-jpa as a dependency in the build.gradle file, as follows:

 //build.gradle
 // JPA / ORM / Hibernate:
 //compile('org.springframework.boot:spring-boot-starter-data-jpa')
 // H2 RDBMS
 //runtime('com.h2database:h2')
 // MongoDB:

 compile('org.springframework.boot:spring-boot-starter-data-mongodb')
 compile('de.flapdoodle.embed:de.flapdoodle.embed.mongo')

Notice we removed the spring-boot-starter-jpa dependency. The spring-boot-
starter-data-mongodb dependency will contain all the dependencies needed to wire our
domain objects to our embedded MongoDB database, with a mix of Spring and MongoDB
annotations.

We also added the Flapdoodle embedded MongoDB database, but this is only meant for
testing and demonstration purposes. Embedded MongoDB will provide a platform neutral
way for running MongoDB in unit tests. This embedded database is located at https:/ ​/
github.​com/​flapdoodle- ​oss/ ​de. ​flapdoodle. ​embed. ​mongo.

Reconfiguring the database configuration in
MongoDB
First, we will begin to convert the current JBCP calendar project. Let's begin by
reconfiguring the database to use the Flapdoodle embedded MongoDB database.
Previously, when we updated the dependencies for this project, we added a Flapdoodle
dependency that gave the project an embedded MongoDB database which we could
automatically use instead of installing a full version of MongoDB installation. To stay
consistent with the JBCP application, we need to change the name of our database. With
Spring Data, we can change the MongoDB configuration using the YAML configuration, as
follows:

 //src/main/resources/application.yml

 spring

https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo
https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo
https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo
https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo
https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo
https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo
https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo
https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo
https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo
https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo
https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo
https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo
https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo
https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo
https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo
https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo
https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo
https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo

Authentication with Spring Data Chapter 5

[129]

 # MongoDB
 data:
 mongodb:
 host: localhost
 database: dataSource

The most important configuration for our current requirements is changing the database
name to dataSource, which is the same name we have been using throughout this book.

Initializing the MongoDB database
With the JPA implementation, we used the data.sql file to initialize the data in our
database. For MongoDB implementation, we can remove the data.sql file and replace it
with a Java configuration file, which we will call MongoDataInitializer.java:

 //src/main/java/com/packtpub/springsecurity/configuration/
 MongoDataInitializer.java

 …
 @Configuration
 public class MongoDataInitializer {
 @Autowired
 private RoleRepository roleRepository;
 @Autowired
 private CalendarUserRepository calendarUserRepository;
 @Autowired
 private EventRepository eventRepository;
 @PostConstruct
 public void setUp() {
 calendarUserRepository.deleteAll();
 roleRepository.deleteAll();
 eventRepository.deleteAll();
 seedRoles();
 seedCalendarUsers();
 seedEvents();
 }
 CalendarUser user1, admin, user2;
 {
 user1 = new CalendarUser(0, "user1@example.com",
 "$2a$04$qr7RWyqOnWWC1nwotUW1nOe1RD5.mKJVHK16WZy6v49pymu1WDHmi",
 "User","1");
 admin = new CalendarUser(1,"admin1@example.com",
 "$2a$04$0CF/Gsquxlel3fWq5Ic/ZOGDCaXbMfXYiXsviTNMQofWRXhvJH3IK",
 "Admin","1");
 user2 = new CalendarUser(2,"user2@example.com",
 "$2a$04$PiVhNPAxunf0Q4IMbVeNIuH4M4ecySWHihyrclxW..PLArjLbg8CC",

Authentication with Spring Data Chapter 5

[130]

 "User2","2");
 }
 Role user_role, admin_role;
 private void seedRoles(){
 user_role = new Role(0, "ROLE_USER");
 admin_role = new Role(1, "ROLE_ADMIN");
 user_role = roleRepository.save(user_role);
 admin_role = roleRepository.save(admin_role);
 }
 private void seedEvents(){
 // Event 1
 Event event1 = new Event(100, "Birthday Party", "This is
 going to be a great birthday", new
 GregorianCalendar(2017,6,3,6,36,00), user, admin);
 // Event 2
 Event event2 = new Event(101, "Conference Call",
 "Call with the client",new
 GregorianCalendar(2017,11,23,13,00,00),user2, user);
 // Event 3
 Event event3 = new Event(102, "Vacation",
 "Paragliding in Greece",new
GregorianCalendar(2017,8,14,11,30,00),
 admin, user2);
 // Save Events
 eventRepository.save(event1);
 eventRepository.save(event2);
 eventRepository.save(event3);
 }
 private void seedCalendarUsers(){
 // user1
 user1.addRole(user_role);
 // admin2
 admin.addRole(user_role);
 admin.addRole(admin_role);
 // user2
 user2.addRole(user_role);
 calendarUserRepository.save(user1);
 calendarUserRepository.save(admin);
 calendarUserRepository.save(user2);
 }
 }

This will be executed at load time and will seed the same data into our MongoDB as we did
with our H2 database.

Authentication with Spring Data Chapter 5

[131]

Mapping domain objects with MongoDB
Let's begin by mapping our Event.java file so that each of the domain objects are saved as
a document in our MongoDB database. This can be done by performing the following
steps:

With a document database, domain object mapping is a little different, but the1.
same ORM concepts hold true. Let's begin with the Event JPA implementation,
then take a look how we can transform our Entity to document mapping:

 //src/main/java/com/packtpub/springsecurity/domain/Event.java

 ...
 import javax.persistence.*;
 @Entity
 @Table(name = "events")
 public class Event implements Serializable{
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private Integer id;
 private String summary;
 private String description;
 private Calendar when;
 @ManyToOne(fetch = FetchType.LAZY)
 @JoinColumn(name="owner", referencedColumnName="id")
 private CalendarUser owner;
 @ManyToOne(fetch = FetchType.LAZY)
 @JoinColumn(name="attendee", referencedColumnName="id")
 private CalendarUser attendee;
 …

In Entity-based JPA mapping, we needed to use six different annotations to create2.
the required mapping. Now, with document-based MongoDB mapping, we need
to change all the previous mapping annotations. Here is a fully refactored
example of our Event.java file:

 //src/main/java/com/packtpub/springsecurity/domain/Event.java

 import org.springframework.data.annotation.Id;
 import org.springframework.data.annotation.PersistenceConstructor;
 import org.springframework.data.domain.Persistable;
 import org.springframework.data.mongodb.core.mapping.DBRef;
 import org.springframework.data.mongodb.core.mapping.Document;
 ...
 @Document(collection="events")
 public class Event implements Persistable<Integer>, Serializable{

Authentication with Spring Data Chapter 5

[132]

 @Id
 private Integer id;
 private String summary;
 private String description;
 private Calendar when;
 @DBRef
 private CalendarUser owner;
 @DBRef
 private CalendarUser attendee;
 @PersistenceConstructor
 public Event(Integer id,
 String summary,
 String description,
 Calendar when,
 CalendarUser owner,
 CalendarUser attendee) {
 ...
 }

In the preceding code, we can see a following few notable changes:

First, we declare the class to be of type1.
@o.s.d.mongodb.core.mapping.Document, and provide a collection name for
these documents.
Next, the Event class must implement the o.s.d.domain.Persistable2.
interface, providing the primary key type (Integer) for our document.
Now, we change the annotation for our domain ID to @o.s.d.annotation.Id,3.
to define the domain primary key.
Previously, we had to map our owner and attendee CalendarUser object to two4.
different mapping annotations.
Now, we only have to define the two types to be of type5.
@o.s.d.mongodb.core.mapping.DBRef, and allow Spring Data to take care of
the underlying references.
The final annotation we have to add defines a specific constructor to be used for6.
new documents to be added to our document, by using the
@o.s.d.annotation.PersistenceConstructor annotation.
Now that we have reviewed the changes needed to refactor from JPA to7.
MongoDB, let's refactor the other domain object starting with the Role.java file,
as follows:

 //src/main/java/com/packtpub/springsecurity/domain/Role.java

 ...

Authentication with Spring Data Chapter 5

[133]

 import org.springframework.data.annotation.Id;
 import org.springframework.data.annotation.PersistenceConstructor;
 import org.springframework.data.domain.Persistable;
 import org.springframework.data.mongodb.core.mapping.Document;
 @Document(collection="role")
 public class Role implements Persistable<Integer>, Serializable {
 @Id
 private Integer id;
 private String name;
 public Role(){}
 @PersistenceConstructor
 public Role(Integer id, String name) {
 this.id = id;
 this.name = name;
 }

The final domain object that we need to refactor is our CalendarUser.java file.8.
After all, this is the most complex domain object we have in this application:

//src/main/java/com/packtpub/springsecurity/domain/CalendarUser.java

 ...
 import org.springframework.data.annotation.Id;
 import org.springframework.data.annotation.PersistenceConstructor;
 import org.springframework.data.domain.Persistable;
 import org.springframework.data.mongodb.core.mapping.DBRef;
 import org.springframework.data.mongodb.core.mapping.Document;
 @Document(collection="calendar_users")
 public class CalendarUser implements Persistable<Integer>,
 Serializable {
 @Id
 private Integer id;
 private String firstName;
 private String lastName;
 private String email;
 private String password;
 @DBRef(lazy = false)
 private Set<Role> roles = new HashSet<>(5);
 public CalendarUser() {}
 @PersistenceConstructor
 public CalendarUser(Integer id,String email, String password,
 String firstName,String lastName) {
 this.id = id;
 this.firstName = firstName;
 this.lastName = lastName;
 this.email = email;
 this.password = password;
 }

Authentication with Spring Data Chapter 5

[134]

As you can see, the effort to refactor our domain objects from JPA to MongoDB is fairly
simple, and requires less annotation configuration than the JPA configuration.

Spring Data repositories of MongoDB
We now have only a few changes to make to refactor from a JPA implementation to a
MongoDB implementation. We will begin by refactoring our
CalendarUserRepository.java file by changing the interface that our repository
extends, as follows:

 //com/packtpub/springsecurity/repository/CalendarUserRepository.java

 ...
 import org.springframework.data.mongodb.repository.MongoRepository;
 public interface CalendarUserRepository extends MongoRepository
 <CalendarUser, Integer> {
 ...

This same change needs to be applied to the EventRepository.java file and
the RoleRepository.java files accordingly.

If you need help with any of these changes, remember the source for
chapter05.05 will have the completed code available for your reference.

Data access objects in MongoDB
In our EventDao interface, we are required to create a new Event object. With JPA, we can
have our object ID automatically generated. With MongoDB, there are several ways to
assign primary key identifiers, but for the sake of this demonstration, we are just going to
use an atomic counter, as follows:

//src/main/java/com/packtpub/springsecurity/dataaccess/MongoEventDao.java

 ...
 import java.util.concurrent.atomic.AtomicInteger;
 @Repository
 public class MongoEventDao implements EventDao {
 // Simple Primary Key Generator
 private AtomicInteger eventPK = new AtomicInteger(102);
 ...
 @Override

Authentication with Spring Data Chapter 5

[135]

 public int createEvent(Event event) {
 ...
 // Get the next PK instance
 event.setId(eventPK.incrementAndGet());
 Event newEvent = repository.save(event);
 return newEvent.getId();
 }
 ...

There was technically no change to our CalendarUserDao object, but for consistency in
this book, we renamed the implementation file to denote the use of Mongo:

 @Repository
 public class MongoCalendarUserDao implements CalendarUserDao {

There are no other Data Access Objects (DAO) changes required for this refactoring
example.

Go ahead and start the application, and it will behave just as before. Try to log in as user1
and admin1, and test it to ensure that both users can add new events to the system, to
ensure the mapping is correct for the entire application.

You should be starting with the source from chapter05.05-calendar.

Summary
We have looked at the power and flexibility of the Spring Data project and explored several
aspects related to application development, as well as its integration with Spring Security.
In this chapter, we covered the Spring Data project and a few of its capabilities. We also saw
the refactoring process to convert from legacy JDBC code using SQL, to ORM with JPA, and
from a JPA implementation with Spring Data to a MongoDB implementation using Spring
Data. We also covered configuring Spring Security to leverage an ORM Entity in a
relational database and in a document database.

In the next chapter, we will explore Spring Security's built-in support for LDAP-based
authentication.

6
LDAP Directory Services

In this chapter, we will review the Lightweight Directory Access Protocol (LDAP) and
learn how it can be integrated into a Spring Security-enabled application to provide
authentication, authorization, and user information services to interested constituents.

During the course of this chapter, we will cover the following topics:

Learning some of the basic concepts related to the LDAP protocol and server
implementations
Configuring a self-contained LDAP server within Spring Security
Enabling LDAP authentication and authorization
Understanding the model behind LDAP search and user matching
Retrieving additional user details from standard LDAP structures
Differentiating between LDAP authentication methods and evaluating the pros
and cons of each type
Explicitly configuring Spring Security LDAP using Spring bean declarations
Connecting to external LDAP directories
Exploring the built-in support for Microsoft AD
We will also explore how to customize Spring Security for more flexibility when
dealing with custom AD deployments

LDAP Directory Services Chapter 6

[137]

Understanding LDAP
LDAP has its roots in logical directory models dating back over 30 years—conceptually akin
to a combination of an organizational chart and an address book. Today, LDAP is used
more and more as a way to centralize corporate user information, partition thousands of
users into logical groups, and allow unified sharing of user information between many
disparate systems.

For security purposes, LDAP is quite commonly used to facilitate centralized username and
password authentication—users' credentials are stored in the LDAP directory, and
authentication requests can be made against the directory on the user's behalf. This eases
management for administrators, as user credentials—login ID, password, and other
details—are stored in a single location in the LDAP directory. Additionally, organizational
information, such as group or team assignments, geographic location, and corporate
hierarchy membership, are defined based on the user's location in the directory.

LDAP
At this point, if you have never used LDAP before, you may be wondering what it is. We'll
illustrate a sample LDAP schema with a screen from the Apache Directory Server 2.0.0-
M231.5 example directory, as shown in the following screenshot:

LDAP Directory Services Chapter 6

[138]

Starting at a particular user entry for uid=admin1@example.com (highlighted in the
preceding screenshot), we can infer the organizational membership of admin1 by starting at
this node in the tree and moving upward. We can see that the user aeinstein is a member
of the organizational unit (ou=users), which itself is a part of the domain example.com
(the abbreviation dc shown in the preceding screenshot stands for domain component).
Preceding this are the organizational elements (DIT and Root DSE) of the LDAP tree itself,
which don't concern us in the context of Spring Security. The position of the user
aeinstein in the LDAP hierarchy is semantically and definitively meaningful—you can
imagine a much more complex hierarchy easily illustrating the organizational and
departmental boundaries of a huge organization.

The complete top-to-bottom path formed by walking down the tree to an individual leaf
node forms a string composed of all intervening nodes along the way, as with the node path
of admin1, as follows:

 uid=admin1,ou=users,dc=example,dc=com

The preceding node path is unique and is known as a node's distinguished name (DN).
The distinguished name is akin to a database primary key, allowing a node to be uniquely
identified and located in a complex tree structure. We'll see a node's DN used extensively
throughout the authentication and searching process with Spring Security LDAP
integration.

Note that there are several other users listed at the same level of organization as admin1.
All of these users are assumed to be within the same organizational position as admin1.
Although this example organization is relatively simple and flat, the structure of LDAP is
arbitrarily flexible, with many levels of nesting and logical organization possible.

Spring Security LDAP support is assisted by the Spring LDAP module (http:/ ​/​www.
springsource.​org/ ​ldap), which is actually a separate project from the core Spring
Framework and Spring Security projects. It's considered to be stable and provides a helpful
set of wrappers around the standard Java LDAP functionality.

Common LDAP attribute names
Each actual entry in the tree is defined by one or more object classes. An object class is a
logical unit of organization, grouping a set of semantically-related attributes. By declaring
an entry in the tree as an instance of a particular object class, such as a person, the organizer
of the LDAP directory is able to provide users of the directory with a clear indication of
what each element of the directory represents.

http://www.springsource.org/ldap
http://www.springsource.org/ldap
http://www.springsource.org/ldap
http://www.springsource.org/ldap
http://www.springsource.org/ldap
http://www.springsource.org/ldap
http://www.springsource.org/ldap
http://www.springsource.org/ldap
http://www.springsource.org/ldap
http://www.springsource.org/ldap

LDAP Directory Services Chapter 6

[139]

LDAP has a rich set of standard schemas covering the available LDAP object classes and
their applicable attributes (along with gobs of other information). If you are planning on
doing extensive work with LDAP, it's highly advised that you review a good reference
guide, such as the appendix of the book Zytrax OpenLDAP (http:/ ​/ ​www.​zytrax. ​com/ ​books/
ldap/​ape/​), or Internet2 Consortium's Guide to Person-related Schemas (http:/ ​/​middleware.
internet2.​edu/​eduperson/ ​).

In the previous section, we were introduced to the fact that each entry in an LDAP tree has
a DN, which uniquely identifies it in the tree. The DN is composed of a series of attributes,
one (or more) of which is used to uniquely identify the path down the tree of the entry
represented by the DN. As each segment of the path described by the DN represents an
LDAP attribute, you could refer to the available, well-defined LDAP schemas and object
classes to determine what each of the attributes in any given DN means.

We've included some of the common attributes and their meanings in the following table.
These attributes tend to be organizing attributes—meaning that they are typically used to
define the organizational structure of the LDAP tree—and are ordered from top to bottom
in the structure that you're likely to see in a typical LDAP installation:

Attribute name Description Example

dc Domain component: Generally, the
highest level of organization in an
LDAP hierarchy.

dc=jbcpcalendar,dc=com

c Country: Some LDAP hierarchies are
structured at a high level by country.

c=US

o Organization name: It is a parent
business organization used for
classifying LDAP resources.

o=Oracle Corporation

ou Organizational unit: It is a divisional
business organization which is
generally within an organization.

ou=Product Development

cn Common name: This is a common
name, or a unique or human-readable
name for the object. For humans, this
is usually the person's full name,
while for other resources in LDAP
(computers, and so on), it's typically
the hostname.

cn=Super Visor
cn=Jim Bob

http://www.zytrax.com/books/ldap/ape/
http://www.zytrax.com/books/ldap/ape/
http://www.zytrax.com/books/ldap/ape/
http://www.zytrax.com/books/ldap/ape/
http://www.zytrax.com/books/ldap/ape/
http://www.zytrax.com/books/ldap/ape/
http://www.zytrax.com/books/ldap/ape/
http://www.zytrax.com/books/ldap/ape/
http://www.zytrax.com/books/ldap/ape/
http://www.zytrax.com/books/ldap/ape/
http://www.zytrax.com/books/ldap/ape/
http://www.zytrax.com/books/ldap/ape/
http://www.zytrax.com/books/ldap/ape/
http://www.zytrax.com/books/ldap/ape/
http://www.zytrax.com/books/ldap/ape/
http://middleware.internet2.edu/eduperson/
http://middleware.internet2.edu/eduperson/
http://middleware.internet2.edu/eduperson/
http://middleware.internet2.edu/eduperson/
http://middleware.internet2.edu/eduperson/
http://middleware.internet2.edu/eduperson/
http://middleware.internet2.edu/eduperson/
http://middleware.internet2.edu/eduperson/
http://middleware.internet2.edu/eduperson/
http://middleware.internet2.edu/eduperson/
http://middleware.internet2.edu/eduperson/

LDAP Directory Services Chapter 6

[140]

Attribute name Description Example

uid User ID: Although not organizational
in nature, the uid attribute is
generally what Spring looks for
during user authentication and
search.

uid=svisor

userPassword User password: This attribute stores
the password for the person object to
which this attribute is associated. It is
typically one-way hashed using SHA
or something similar.

userPassword=plaintext
userPassword={SHA}cryptval

The attributes in the preceding table do, however, tend to be organizing attributes on the
directory tree and, as such, will probably form various search expressions or mappings that
you will use to configure Spring Security to interact with the LDAP server.

Remember that there are hundreds of standard LDAP
attributes—these represent a very small fraction of those you are likely to
see when integrating with a fully-populated LDAP server.

Updating our dependencies
We have already included all of the dependencies you need for this chapter, so you will not
need to make any updates to your build.gradle file. However, if you were just adding
LDAP support to your own application, you would need to add spring-security-ldap
as a dependency in build.gradle, as follows:

 //build.gradle

 dependencies {
 // LDAP:
 compile('org.springframework.boot:spring-boot-starter-data-ldap')
 compile("org.springframework.ldap:spring-ldap-core")
 compile("org.springframework.security:spring-security-ldap")
 compile("org.springframework:spring-tx")
 compile("com.unboundid:unboundid-ldapsdk")
 ...
 }

LDAP Directory Services Chapter 6

[141]

Due to an artifact resolution issue with Gradle, spring-tx must be pulled
in or Gradle will fetch an older one that doesn’t work.

As mentioned previously, Spring Security's LDAP support is built on top of Spring LDAP.
Gradle will automatically bring this dependency in as a transitive dependency, so there is
no need to explicitly list it.

If you were using ApacheDS to run an LDAP server within your web application, as we are
doing in our calendar application, you would need to add dependencies on the relevant
ApacheDS JARs. There is no need to make these updates to our sample application, since
we have already included them. Note that these dependencies are not necessary if you are
connecting to an external LDAP server:

//build.gradle

 compile 'org.apache.directory.server:apacheds-core:2.0.0-M23'
 compile 'org.apache.directory.server:apacheds-protocol-ldap:2.0.0-M23'
 compile 'org.apache.directory.server:apacheds-protocol-shared:2.0.0
 -M23'

Configuring embedded LDAP integration

Let's now enable the JBCP calendar application to support LDAP-based authentication.
Fortunately, this is a relatively simple exercise, using the embedded LDAP server and a
sample LDIF file. For this exercise, we will be using an LDIF file created for this book,
intended to capture many of the common configuration scenarios with LDAP and Spring
Security. We have included several more sample LDIF files, some from Apache DS 2.0.0-
M23 and one from the Spring Security unit tests, which you may choose to experiment with
as well.

Configuring an LDAP server reference
The first step is to configure the embedded LDAP server. Spring Boot will automatically
configure an embedded LDAP server, but we will need to tweak the configuration a bit.
Make the following updates to your application.yml file:

 //src/main/resources/application.yml

 spring:
 ## LDAP
 ldap:
 embedded:

LDAP Directory Services Chapter 6

[142]

 ldif: classpath:/ldif/calendar.ldif
 base-dn: dc=jbcpcalendar,dc=com
 port: 33389

You should be starting with the source from chapter06.00-calendar.

We are loading the calendar.ldif file from classpath, and using it to populate the
LDAP server. The root attribute declares the root of the LDAP directory using the specified
DN. This should correspond to the logical root DN in the LDIF file we're using.

Be aware that for embedded LDAP servers, the base-dn attribute is
required. If it is not specified or is specified incorrectly, you may receive
several odd errors upon initialization of the Apache DS server. Also, be
aware that the ldif resource should only load a single ldif, otherwise
the server will fail to start up. Spring Security requires a single resource,
since using something such as classpath*:calendar.ldif does not
provide the deterministic ordering that is required.

We'll reuse the bean ID defined here later, in the Spring Security configuration files, when
we declare the LDAP user service and other configuration elements. All other attributes on
the <ldap-server> declaration are optional when using the embedded LDAP mode.

Enabling the LDAP AuthenticationProviderNext
interface
Next, we'll need to configure another AuthenticationProvider interface that checks user
credentials against the LDAP provider. Simply update the Spring Security configuration to
use an o.s.s.ldap.authentication.LdapAuthenticationProvider reference, as
follows:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va

 @Override
 public void configure(AuthenticationManagerBuilder auth)
 throws Exception {
 auth
 .ldapAuthentication()
 .userSearchBase("")
 .userSearchFilter("(uid={0})")

LDAP Directory Services Chapter 6

[143]

 .groupSearchBase("ou=Groups")
 .groupSearchFilter("(uniqueMember={0})")
 .contextSource(contextSource())
 .passwordCompare()
 .passwordAttribute("userPassword");
 }
 @Bean
 public DefaultSpringSecurityContextSource contextSource() {
 return new DefaultSpringSecurityContextSource(
 Arrays.asList("ldap://localhost:33389/"),
 "dc=jbcpcalendar,dc=com");
 }

We'll discuss these attributes a bit more later. For now, get the application back up and
running, and try logging in with admin1@example.com as the username and admin1 as the
password. You should be logged in!

Your source code should look like chapter05.01-calendar.

Troubleshooting embedded LDAP
It is quite possible that you will run into hard-to-debug problems with embedded LDAP.
Apache DS is not usually very friendly with its error messages, doubly so in Spring Security
embedded mode. If you are getting a 404 error when trying to access the application in
your browser, there is a good chance that things did not start up properly. Some things to
double-check if you can't get this simple example running are as follows:

Ensure the baseDn attribute is set on the
DefaultSpringSecurityContextSource declaration in your configuration
file, and make sure it matches the root defined in the LDIF file that's loaded at
startup. If you get errors referencing missing partitions, it's likely that either the
root attribute was missed or doesn't match your LDIF file.

LDAP Directory Services Chapter 6

[144]

Be aware that a failure starting up the embedded LDAP server is not a fatal
failure. In order to diagnose errors loading LDIF files, you will need to ensure
that the appropriate log settings, including logging for the Apache DS server, are
enabled, at least at error level. The LDIF loader is under the
org.apache.directory.server.protocol.shared.store package, and this
should be used to enable the logging of LDIF load errors.
If the application server shuts down non-gracefully, you may be required to
delete some files in your temporary directory (%TEMP% on Windows systems or
/tmp on Linux-based systems) in order to start the server again. The error
messages regarding this are (fortunately) fairly clear. Unfortunately, embedded
LDAP isn't as seamless and easy to use as the embedded H2 database, but it is
still quite a bit easier than trying to download and configure many of the freely-
available external LDAP servers.

An excellent tool for troubleshooting or accessing LDAP servers in general is the Apache
Directory Studio project, which offers standalone and Eclipse plugin versions. The free
download is available at http:/ ​/​directory. ​apache. ​org/ ​studio/ ​. If you want to follow
along with the book, you may want to download Apache Directory Studio 2.0.0-M23 now.

Understanding how Spring LDAP
authentication works
We saw that we were able to log in using a user defined in the LDAP directory. But what
exactly happens when a user issues a login request for a user in LDAP? There are the
following three basic steps to the LDAP authentication process:

Authenticate the credentials supplied by the user against the LDAP directory.1.
Determine the GrantedAuthority object that the user has, based on their2.
information in LDAP.
Pre-load information from the LDAP entry for the user into a custom3.
UserDetails object, for further use by the application.

http://directory.apache.org/studio/
http://directory.apache.org/studio/
http://directory.apache.org/studio/
http://directory.apache.org/studio/
http://directory.apache.org/studio/
http://directory.apache.org/studio/
http://directory.apache.org/studio/
http://directory.apache.org/studio/
http://directory.apache.org/studio/
http://directory.apache.org/studio/
http://directory.apache.org/studio/
http://directory.apache.org/studio/

LDAP Directory Services Chapter 6

[145]

Authenticating user credentials
For the first step, authentication against the LDAP directory, a custom authentication
provider is wired into AuthenticationManager. The
o.s.s.ldap.authentication.LdapAuthenticationProvider interface takes the user's
provided credentials and verifies them against the LDAP directory, as illustrated in the
following diagram:

We can see that the o.s.s.ldap.authentication.LdapAuthenticator interface
defines a delegate to allow the provider to make the authentication request in a
customizable way. The implementation that we've implicitly configured to this point,
o.s.s.ldap.authentication.BindAuthenticator, attempts to use the user's
credentials to bind (log in) to the LDAP server as if it were the user themselves making a
connection. For an embedded server, this is sufficient for our authentication needs;
however, external LDAP servers may be stricter, and in these, users may not be allowed to
bind to the LDAP directory. Fortunately, an alternative method of authentication exists,
which we will explore later in this chapter.

LDAP Directory Services Chapter 6

[146]

As noted in the preceding diagram, keep in mind that the search is performed under an
LDAP context created by the credentials specified in the
DefaultSpringSecurityContextSource reference's baseDn attribute. With an
embedded server, we don't use this information, but with an external server reference,
unless baseDn is supplied, anonymous binding is used. Retaining some control over the
public availability of information in the directory is very common for organizations which
require valid credentials to search an LDAP directory, and as such, baseDn will be almost
always required in real-world scenarios. The baseDn attribute represents the full DN of a
user with valid access to bind the directory and perform searches.

Demonstrating authentication with Apache
Directory Studio
We are going to demonstrate how the authentication process works by using Apache
Directory Studio 1.5 to connect to our embedded LDAP instance and performing the same
steps that Spring Security is performing. We will use user1@example.com throughout the
simulation. These steps will help to ensure a firm grasp of what is happening behind the
scenes and will help in the event that you are having difficulty figuring out the correct
configuration.

Ensure that the calendar application is started up and working. Next, start Apache
Directory Studio 1.5 and close the Welcome screen.

Binding anonymously to LDAP
The first step is to bind anonymously to LDAP. The bind is done anonymously because we
did not specify the baseDn and password attributes on our
DefaultSpringSecurityContextSource object. Within Apache Directory Studio, create
a connection using the following steps:

Click on File | New | LDAP Browser | LDAP Connection.1.
Click on Next.2.

LDAP Directory Services Chapter 6

[147]

Enter the following information, and then click on Next:3.
Connection name: calendar-anonymous
Hostname: localhost
Port: 33389

We did not specify baseDn, so select No Authentication as the Authentication4.
Method.
Click on Finish.5.

You can safely ignore the message indicating no default schema information is present. You
should now see that you are connected to the embedded LDAP instance.

Searching for the user
Now that we have a connection, we can use it to look up the user's DN that we wish to bind
to, by performing the following steps:

Right-click on DIT and select New | New Search.1.
Enter a search base of dc=jbcpcalendar,dc=com. This corresponds to the2.
baseDn attribute of our DefaultSpringSecurityContextSource object that
we specified.
Enter a filter of uid=user1@example.com. This corresponds to the value we3.
specified for the userSearchFilter method of
AuthenticationManagerBuilder. Note that we have included the parentheses
and have substituted the username we are attempting to log in with with the {0}
value.
Click on Search.4.
Click on the DN of the single result returned by our search. You can now see that5.
our LDAP user is displayed. Note that this DN matches the value we searched
for. Remember this DN, as it will be used in our next step.

mailto:uid%3Dadmin1@example.com

LDAP Directory Services Chapter 6

[148]

Binding as a user to LDAP
Now that we have found the full DN of our user, we need to try to bind to LDAP as that
user to validate the submitted password. These steps are the same as in the anonymous
bind we already did, except that we will specify the credentials of the user that we are
authenticating.

Within ApacheDS, create a connection using the following steps:

Select File | New | LDAP Browser | LDAP Connection.1.
Click on Next.2.
Enter the following information and click on Next:3.

Connection name: calendar-user1
Hostname: localhost
Port: 33389

Leave Authentication Method as Simple Authentication.4.
Enter the DN from our search result as Bind DN. The value should be5.
uid=admin1@example.com,ou=Users,dc=jbcpcalendar,dc=com.
The Bind password should be the password that was submitted at the time of6.
login. In our case, we want to use admin1 to successfully authenticate. If the
wrong password was entered, we would fail to connect and Spring Security
would report an error.
Click on Finish.7.

Spring Security will determine that the username and password were correct for this
user when it is able to successfully bind with the provided username and password (similar
to how we were able to create a connection). Spring Security will then proceed with
determining the user's role membership.

LDAP Directory Services Chapter 6

[149]

Determining user role membership
After the user has been successfully authenticated against the LDAP server, authorization
information must be determined next. Authorization is defined by a principal's list of roles,
and an LDAP-authenticated user's role membership is determined, as illustrated in the
following diagram:

We can see that after authenticating the user against LDAP,
LdapAuthenticationProvider delegates to LdapAuthoritiesPopulator. The
DefaultLdapAuthoritiesPopulator interface will attempt to locate the authenticated
user's DN in an attribute located at or below another entry in the LDAP hierarchy. The DN
of the location searched for user role assignments is defined in the groupSearchBase
method; in our sample, we set this to groupSearchBase("ou=Groups"). When the user's
DN is located within an LDAP entry below the DN of groupSearchBase, an attribute on
the entry in which their DN is found is used to confer a role to them.

How Spring Security roles are associated with LDAP users can be a little confusing, so let's
look at the JBCP calendar LDAP repository and see how the association of a user with a role
works. The DefaultLdapAuthoritiesPopulator interface uses several methods of the
AuthenticationManagerBuilder declaration to govern the searching of roles for the
user. These attributes are used approximately in the following order:

LDAP Directory Services Chapter 6

[150]

groupSearchBase: It defines the base DN under which the LDAP integration1.
should look for one or more matches for the user's DN. The default value
performs a search from the LDAP root, which may be expensive.
groupSearchFilter: It defines the LDAP search filter used to match the user's2.
DN to an attribute of an entry located under groupSearchBase. This search
filter is parameterized with two parameters—the first ({0}) being the user's DN,
and the second ({1}) being the user's username. The default value is
uniqueMember={0}.
groupRoleAttribute: It defines the attribute of the matching entries, which will3.
be used to compose the user's GrantedAuthority object. The default value is
cn.
rolePrefix: It is the prefix that will be prepended to the value found in4.
groupRoleAttribute, to make a Spring Security GrantedAuthority object.
The default value is ROLE_.

This can be a little abstract and hard for new developers to follow because it's very different
from anything we've seen so far with our JDBC and JPA-based UserDetailsService
implementations. Let's continue walking through the login process with our
user1@example.com user in the JBCP calendar LDAP directory.

Determining roles with Apache Directory
Studio
We will now try to determine the roles for our user with Apache Directory Studio. Using
the calendar-user1 connection we created previously, perform the following steps:

Right-click on DIT and select New | New Search.1.
Enter a search base of ou=Groups,dc=jbcpcalendar,dc=com. This2.
corresponds to the baseDn attribute of the
DefaultSpringSecurityContextSource object we specified, plus the
groupSearchBase attribute we specified for the
AuthenticationManagerBuilder object.
Enter a filter of3.
uniqueMember=uid=user1@example.com,ou=Users,dc=jbcpcalendar,dc=

com. This corresponds to the default groupSearchFilter attribute of
(uniqueMember={0}). Notice that we have substituted the full DN of the user we
found in our previous exercise for the {0} value.

LDAP Directory Services Chapter 6

[151]

Click on Search.4.
You will observe that the User group is the only group returned in our search5.
results. Click on the DN of the single result returned by our search. You can now
see the User group displayed in Apache DS. Note that the group has a
uniqueMember attribute with the full DN of our user and other users.

Spring Security now creates the GrantedAuthority object for each result by forcing the
name of the group that was found into uppercase and prepending ROLE_ to the group
name. The pseudocode would look similar to the following code snippet:

 foreach group in groups:

 authority = ("ROLE_"+group).upperCase()

 grantedAuthority = new GrantedAuthority(authority)

Spring LDAP is as flexible as your gray matter. Keep in mind that,
although this is one way to organize an LDAP directory to be compatible
with Spring Security, typical usage scenarios are exactly the opposite—an
LDAP directory already exists that Spring Security needs to be wired into.
In many cases, you will be able to reconfigure Spring Security to deal with
the hierarchy of the LDAP server; however, it's key that you plan
effectively and understand how Spring works with LDAP when it's
querying. Use your brain, map out the user search and group search, and
come up with the most optimal plan you can think of—keep the scope of
searches as minimal and as precise as possible.

Can you describe how the results of the login process would differ for our
admin1@example.com user? If you are confused at this point, we'd suggest that you take a
breather and try using Apache Directory Studio to work through browsing the embedded
LDAP server, configured by the running of an application. It can be easier to grasp the flow
of Spring Security's LDAP configuration if you attempt to search the directory yourself by
following the algorithm described previously.

Mapping additional attributes of UserDetails
Finally, once the LDAP lookup has assigned the user a set of the GrantedAuthority
objects, o.s.s.ldap.userdetails.LdapUserDetailsMapper will consult
o.s.s.ldap.userdetails.UserDetailsContextMapper to retrieve any additional
details to populate the UserDetails object for application use.

LDAP Directory Services Chapter 6

[152]

Using AuthenticationManagerBuilder, we've configured up until this point that
LdapUserDetailsMapper will be used to populate a UserDetails object with
information gleaned from the user's entry in the LDAP directory:

We'll see in a moment how UserDetailsContextMapper can be configured to pull a
wealth of information from the standard LDAP person and inetOrgPerson objects. With
the baseline LdapUserDetailsMapper, little more than username, password, and
GrantedAuthority is stored.

Although there is more machinery involved behind the scenes in LDAP user authentication
and detail retrieval, you'll notice that the overall process seems somewhat similar to the
JDBC authentication that we studied in Chapter 4, JDBC-Based
Authentication (authenticating the user and populating GrantedAuthority) . As with
JDBC authentication, there is the ability to perform advanced configuration of LDAP
integration. Let's dive deeper and see what's possible!

LDAP Directory Services Chapter 6

[153]

Advanced LDAP configuration
Once we get beyond the basics of LDAP integration, there's a plethora of additional
configuration capabilities in the Spring Security LDAP module that are still within the
security WebSecurityConfigurerAdapter style of configuration. These include retrieval
of user personal information, additional options for user authentication, and the use of
LDAP as the UserDetailsService interface in conjunction with a standard
DaoAuthenticationProvider class.

Sample JBCP LDAP users
We've supplied a number of different users in the JBCP calendar LDIF file. The following
quick reference chart may help you with the advanced configuration exercises, or with self-
exploration:

Username/password Role(s) Password encoding

admin1@example.com/admin1 ROLE_ADMIN,
ROLE_USER

Plaintext

user1@example.com/user1 ROLE_USER Plaintext

shauser@example.com/shauser ROLE_USER {sha}

sshauser@example.com/sshauser ROLE_USER {ssha}

hasphone@example.com/hasphone ROLE_USER Plaintext (in the
telephoneNumber

attribute)

We'll explain why password encoding matters in the next section.

Password comparison versus bind authentication
Some LDAP servers will be configured so that certain individual users are not allowed to
bind directly to the server, or so that anonymous binding (what we have been using for user
search up until this point) is disabled. This tends to occur in very large organizations which
want a restricted set of users to be able to read information from the directory.

LDAP Directory Services Chapter 6

[154]

In these cases, the standard Spring Security LDAP authentication strategy will not work,
and an alternative strategy must be used, implemented by
o.s.s.ldap.authentication.PasswordComparisonAuthenticator (a sibling
class of BindAuthenticator):

LDAP Directory Services Chapter 6

[155]

The PasswordComparisonAuthenticator interface binds to LDAP and searches for the
DN matching the username provided by the user. It then compares the user-supplied
password with the userPassword attribute stored on the matching LDAP entry. If the
encoded password matches, the user is authenticated and the flow proceeds, as with
BindAuthenticator.

Configuring basic password comparison
Configuring password comparison authentication instead of bind authentication is as
simple as adding a method to the AuthenticationManagerBuilder declaration. Update
the SecurityConfig.java file, as follows:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va

 @Override
 public void configure(AuthenticationManagerBuilder auth)
 throws Exception {
 auth
 .ldapAuthentication()
 .userSearchBase("")
 .userSearchFilter("(uid={0})")
 .groupSearchBase("ou=Groups")
 .groupSearchFilter("(uniqueMember={0})")
 .contextSource(contextSource())
 .passwordCompare()
 .passwordEncoder(new LdapShaPasswordEncoder())
 .passwordAttribute("userPassword");
 }

The PasswordCompareConfigurer class, that is used by declaring the passwordCompare
method, uses PlaintextPasswordEncoder for password encoding. To use the SHA-1
password algorithm, we need to set a password encoder, and we can use
o.s.s.a.encoding.LdapShaPasswordEncoder for SHA support (recall that we discussed
the SHA-1 password algorithm extensively in Chapter 4, JDBC-Based Authentication).

In our calendar.ldif file, we have the password field set to userPassword. The default
password attribute for the PasswordCompareConfigurer class is password. So, we also
need to override the password attribute with the passwordAttribute method.

LDAP Directory Services Chapter 6

[156]

After restarting the server, you can attempt to log in using shauser@example.com as the
username and shauser as password.

Your code should look like chapter06.02-calendar.

LDAP password encoding and storage
LDAP has general support for a variety of password encoding algorithms, ranging from
plaintext to one-way hash algorithms—similar to those we explored in the previous
chapter—with database-backed authentication. The most common storage formats for
LDAP passwords are SHA (SHA-1 one-way hashed), and SSHA (SHA-1 one-way hashed with
a salt value). Other password formats often supported by many LDAP implementations are
thoroughly documented in RFC 2307, An Approach to Using LDAP as a Network Information
Service (http:/​/​tools. ​ietf. ​org/ ​html/ ​rfc2307). The designers of RFC 2307 did a very
clever thing with regards to password storage. Passwords retained in the directory are, of
course, encoded with whatever algorithm is appropriate (SHA and so on), but then, they are
prefixed with the algorithm used to encode the password. This makes it very easy for the
LDAP server to support multiple algorithms for password encoding. For example, an
SHA encoded password is stored in the directory as
{SHA}5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8.

We can see that the password storage algorithm is very clearly indicated with the {SHA}
notation and stored along with the password.

The SSHA notation is an attempt to combine the strong SHA-1 hash algorithm with
password salting to prevent dictionary attacks. As with password salting, which we
reviewed in the previous chapter, the salt is added to the password prior to calculating the
hash. When the hashed password is stored in the directory, the salt value is appended to the
hashed password. The password is prepended with {SSHA} so that the LDAP directory
knows that the user-supplied password needs to be compared differently. The majority of
modern LDAP servers utilize SSHA as their default password storage algorithm.

http://tools.ietf.org/html/rfc2307
http://tools.ietf.org/html/rfc2307
http://tools.ietf.org/html/rfc2307
http://tools.ietf.org/html/rfc2307
http://tools.ietf.org/html/rfc2307
http://tools.ietf.org/html/rfc2307
http://tools.ietf.org/html/rfc2307
http://tools.ietf.org/html/rfc2307
http://tools.ietf.org/html/rfc2307
http://tools.ietf.org/html/rfc2307
http://tools.ietf.org/html/rfc2307
http://tools.ietf.org/html/rfc2307
http://tools.ietf.org/html/rfc2307

LDAP Directory Services Chapter 6

[157]

The drawbacks of a password comparison
authenticator
Now that you know a bit about how LDAP uses passwords, and we
have PasswordComparisonAuthenticator set up, what do you think will happen if you
log in using our sshauser@example.com user with their password, stored in the SSHA
format?

Go ahead, put the book aside and try it, and then come back.

Your login was denied, right? And yet you were still able to log in as the user with the
SHA-encoded password. Why? The password encoding and storage didn't matter when we
were using bind authentication. Why do you think that is?

The reason it didn't matter with bind authentication was that the LDAP server was taking
care of the authentication and validation of the user's password. With password compare
authentication, Spring Security LDAP is responsible for encoding the password in the
format expected by the directory and then matching it against the directory to validate the
authentication.

For security purposes, password comparison authentication can't actually read the
password from the directory (reading directory passwords is often denied by the security
policy). Instead, PasswordComparisonAuthenticator performs an LDAP search, rooted
at the user's directory entry, attempting to match with a password attribute and value as
determined by the password that's been encoded by Spring Security.

So, when we try to log in with sshauser@example.com,
PasswordComparisonAuthenticator is encoding the password using the configured SHA
algorithm and attempting to do a simple match, which fails, as the directory password for
this user is stored in the SSHA format.

Our current configuration, using LdapShaPasswordEncoder, already supports SHA and
SSHA, so currently, it still doesn't work. Let's think why that might be. Remember that SSHA
uses a salted password, with the salt value stored in the LDAP directory along with the
password. However, PasswordComparisonAuthenticator is coded so that it cannot read
anything from the LDAP server (this typically violates the security policy with companies
that don't allow binding). Thus, when PasswordComparisonAuthenticator computes
the hashed password, it has no way to determine what salt value to use.

LDAP Directory Services Chapter 6

[158]

In conclusion, PasswordComparisonAuthenticator is valuable in certain limited
circumstances where the security of the directory itself is a concern, but it will never be as
flexible as straight bind authentication.

Configuring the UserDetailsContextMapper
object
As we noted earlier, an instance of
the o.s.s.ldap.userdetails.UserDetailsContextMapper interface is used to map a
user's entry into the LDAP server to a UserDetails object in memory. The default
UserDetailsContextMapper object behaves similarly to JpaDaoImpl, given the level of
detail that is populated on the returned UserDetails object—that is to say, not a lot of
information is returned besides the username and password.

However, an LDAP directory potentially contains many more details about individual users
than usernames, passwords, and roles. Spring Security ships with two additional methods
of pulling more user data from two of the standard LDAP object schemas—person and
inetOrgPerson.

Implicit configuration of
UserDetailsContextMapper
In order to configure a different UserDetailsContextMapper implementation than the
default, we simply need to declare which LdapUserDetails class we want
LdapAuthenticationProvider to return. The security namespace parser will be smart
enough to instantiate the correct UserDetailsContextMapper implementation based on
the type of the LdapUserDetails interface requested.

Let's reconfigure our SecurityConfig.java file to use the inetOrgPerson version of the
mapper. Update the SecurityConfig.java file, as illustrated in the following code:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va

 @Override
 public void configure(AuthenticationManagerBuilder auth)
 throws Exception {
 auth
 .ldapAuthentication()

LDAP Directory Services Chapter 6

[159]

 .userSearchBase("")
 .userSearchFilter("(uid={0})")
 .groupSearchBase("ou=Groups")
 .groupSearchFilter("(uniqueMember={0})")
 .userDetailsContextMapper(
 new InetOrgPersonContextMapper())
 .contextSource(contextSource())
 .passwordCompare()
 // Supports {SHA} and {SSHA}
 .passwordEncoder(new LdapShaPasswordEncoder())
 .passwordAttribute("userPassword");
 }

If we remove the passwordEncoder method, then the LDAP users that
are using SHA passwords will fail to authenticate.

If you were to restart the application and attempt to log in as an LDAP user, you would see
that nothing changed. In fact, UserDetailsContextMapper has changed behind the
scenes to read the additional details in the case where attributes from the inetOrgPerson
schema are available in the user's directory entry.

Try authenticating with admin1@example.com as the username and admin1 as the
password. It should fail to authenticate.

Viewing additional user details
To assist you in this area, we'll add the ability to view the current account to the JBCP
calendar application. We'll use this page to illustrate how the richer person and
the inetOrgPerson LDAP schemas can provide additional (optional) information to your
LDAP-enabled application.

You may have noticed that this chapter came with an additional controller named
AccountController. You can see the relevant code, as follows:

//src/main/java/com/packtpub/springsecurity/web/controllers/AccountControll
er.java

 ...
 @RequestMapping("/accounts/my")
 public String view(Model model) {
 Authentication authentication = SecurityContextHolder.
 getContext().getAuthentication();

LDAP Directory Services Chapter 6

[160]

 // null check on authentication omitted
 Object principal = authentication.getPrincipal();
 model.addAttribute("user", principal);
 model.addAttribute("isLdapUserDetails", principal instanceof
 LdapUserDetails);
 model.addAttribute("isLdapPerson", principal instanceof Person);
 model.addAttribute("isLdapInetOrgPerson", principal instanceof
 InetOrgPerson);
 return "accounts/show";
 }
 ...

The preceding code will retrieve the UserDetails object (principal) stored in the
Authentication object by LdapAuthenticationProvider and determine what type of
LdapUserDetailsImplinterface it is. The page code itself will then display various
details depending on the type of UserDetails object that has been bound to the user's
authentication information, as we see in the following JSP code. We have already included
JSP as well:

 //src/main/resources/templates/accounts/show.html

 <dl>
 <dt>Username</dt>
 <dd id="username" th:text="${user.username}">ChuckNorris</dd>
 <dt>DN</dt>
 <dd id="dn" th:text="${user.dn}"></dd>

 <dt>Description</dt>
 <dd id="description" th:text="${user.description}"></dd>
 <dt>Telephone</dt>
 <dd id="telephoneNumber" th:text="${user.telephoneNumber}"></dd>
 <dt>Full Name(s)</dt>

 <dd th:text="${cn}"></dd>

 <dt>Email</dt>
 <dd id="email" th:text="${user.mail}"></dd>
 <dt>Street</dt>
 <dd id="street" th:text="${user.street}"></dd>

 </dl>

LDAP Directory Services Chapter 6

[161]

The only work that actually needs to be done is to add a link in our header.html file, as
shown in the following code snippet:

 //src/main/resources/templates/fragments/header.html

 <p class="navbar-text">Welcome

 <div class="navbar-text" th:text="${#authentication.name}">
 User</div>

 </p>

We've added the following two more users that you can use to examine the differences in
the available data elements:

Username Password Type

shainet@example.com shainet inetOrgPerson

shaperson@example.com shaperson person

Your code should look like chapter05.03-calendar.

Restart the server and examine the Account Details page for each of the types of users by
clicking on username in the upper-right corner. You'll note that when UserDetails class is
configured to use inetOrgPerson, although o.s.s.ldap.userdetails.InetOrgPerson
is what is returned, the fields may or may not be populated depending on the available
attributes in the directory entry.

In fact, inetOrgPerson has many more attributes that we've illustrated on this simple
page. You can review the full list in RFC 2798, Definition of the inetOrgPerson LDAP Object
Class (http:/​/​tools. ​ietf. ​org/ ​html/ ​rfc2798).

One thing you may notice is that there is no facility to support additional attributes that
may be specified on an Object entry, but don't fall into a standard schema. The standard
UserDetailsContextMapper interfaces don't support arbitrary lists of attributes, but it is
possible nonetheless to customize it with a reference to your own
UserDetailsContextMapper interface through the use of the
userDetailsContextMapper method.

http://tools.ietf.org/html/rfc2798
http://tools.ietf.org/html/rfc2798
http://tools.ietf.org/html/rfc2798
http://tools.ietf.org/html/rfc2798
http://tools.ietf.org/html/rfc2798
http://tools.ietf.org/html/rfc2798
http://tools.ietf.org/html/rfc2798
http://tools.ietf.org/html/rfc2798
http://tools.ietf.org/html/rfc2798
http://tools.ietf.org/html/rfc2798
http://tools.ietf.org/html/rfc2798
http://tools.ietf.org/html/rfc2798
http://tools.ietf.org/html/rfc2798

LDAP Directory Services Chapter 6

[162]

Using an alternate password attribute
In some cases, it may be necessary to use an alternate LDAP attribute instead of
userPassword, for authentication purposes. This can happen during occasions when
companies have deployed custom LDAP schemas or don't have the requirement for strong
password management (arguably, this is never a good idea, but it definitely does occur in
the real world).

The PasswordComparisonAuthenticator interface also supports the ability to verify the
user's password against an alternate LDAP entry attribute instead of the standard
userPassword attribute. This is very easy to configure, and we can demonstrate a simple
example using the plaintext telephoneNumber attribute. Update the
SecurityConfig.java, as follows:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va

 @Override
 public void configure(AuthenticationManagerBuilder auth)
 throws Exception {
 auth
 .ldapAuthentication()
 .userSearchBase("")
 .userSearchFilter("(uid={0})")
 .groupSearchBase("ou=Groups")
 .groupSearchFilter("(uniqueMember={0})")
 .userDetailsContextMapper(new InetOrgPersonContextMapper())
 .contextSource(contextSource())
 .passwordCompare()
 .passwordAttribute("telephoneNumber");
 }

We can restart the server and attempt to log in with hasphone@example.com as the
username and 0123456789 as the password (telephone number) attributes.

Your code should look like chapter05.04-calendar.

Of course, this type of authentication has all of the perils we discussed earlier regarding
authentication based on PasswordComparisonAuthenticator; however, it's good to be
aware of it on the off-chance that it comes up with an LDAP implementation.

LDAP Directory Services Chapter 6

[163]

Using LDAP as UserDetailsService
One thing to note is that LDAP may also be used as UserDetailsService. As we will
discuss later in the book, UserDetailsService is required to enable various other bits of
functionality in the Spring Security infrastructure, including the remember-me and OpenID
authentication features.

We will modify our AccountController object to use the LdapUserDetailsService
interface to obtain the user. Before doing this, make sure to remove the passwordCompare
method, as shown in the following code snippet:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va

 @Override
 public void configure(AuthenticationManagerBuilder auth)
 throws Exception {
 auth
 .ldapAuthentication()
 .userSearchFilter("(uid={0})")
 .groupSearchBase("ou=Groups")
 .userDetailsContextMapper(new InetOrgPersonContextMapper())
 .contextSource(contextSource());
 }

Configuring LdapUserDetailsService
The configuration of LDAP as a UserDetailsService function is very similar to the
configuration of an LDAP AuthenticationProvider. Like the JDBC
UserDetailsService, an LDAP UserDetailsService interface is configured as a sibling
to the <http> declaration. Make the following updates to the SecurityConfig.java file:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va

 @Bean
 @Override
 public UserDetailsService userDetailsService() {
 return super.userDetailsService();
 }

Functionally, o.s.s.ldap.userdetails.LdapUserDetailsService is configured in
almost exactly the same way as LdapAuthenticationProvider, with the exception that
there is no attempt to use the principal's username to bind to LDAP. Instead, the credentials

LDAP Directory Services Chapter 6

[164]

supplied by the DefaultSpringSecurityContextSource reference itself, and are used to
perform the user lookup.

Do not make the very common mistake of configuring
AuthenticationManagerBuilder with the
UserDetailsService referring to LdapUserDetailsService if you
intend to authenticate the user against LDAP itself! As discussed
previously, the password attribute often cannot be retrieved from LDAP
due to security reasons, which makes UserDetailsService useless for
authenticating. As noted previously, LdapUserDetailsService uses the
baseDn attribute supplied with the
DefaultSpringSecurityContextSource declaration to get its
information—this means that it does not attempt to bind the user to LDAP
and, as such, may not behave as you expect.

Updating AccountController to use
LdapUserDetailsService
We will now update the AccountController object to use the
LdapDetailsUserDetailsService interface to look up the user that it displays:

//src/main/java/com/packtpub/springsecurity/web/controllers/AccountControll
er.java

 @Controller
 public class AccountController {
 private final UserDetailsService userDetailsService;
 @Autowired
 public AccountController(UserDetailsService userDetailsService) {
 this.userDetailsService = userDetailsService;
 }
 @RequestMapping("/accounts/my")
 public String view(Model model) {
 Authentication authentication = SecurityContextHolder.
 getContext().getAuthentication();
 // null check omitted
 String principalName = authentication.getName();
 Object principal = userDetailsService.
 loadUserByUsername(principalName);
 ...
 }
 }

LDAP Directory Services Chapter 6

[165]

Obviously, this example is a bit silly, but it demonstrates the use of
LdapUserDetailsService. Go ahead and restart the application and give this a try with
the username as admin1@example.com and the password as admin1. Can you figure out
how to modify the controller to display an arbitrary user's information?

Can you figure out how you should modify the security settings to restrict access to an
administrator?

Your code should look like chapter05.05-calendar.

Integrating Spring Security with an external LDAP
server
It is likely that once you test basic integration with the embedded LDAP server, you will
want to interact with an external LDAP server. Fortunately, this is very straightforward and
can be done using a slightly different syntax along with the same
DefaultSpringSecurityContextSource instructions we provided to set up the
embedded LDAP server.

Update the Spring Security configuration to connect to an external LDAP server on port
33389, as follows:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va

 @Override
 public void configure(AuthenticationManagerBuilder auth)
 throws Exception {
 auth
 .ldapAuthentication()
 .userSearchFilter("(uid={0})")
 .groupSearchBase("ou=Groups")
 .userDetailsContextMapper(new InetOrgPersonContextMapper())
 //.contextSource(contextSource())
 .contextSource()
 .managerDn("uid=admin,ou=system")
 .managerPassword("secret")
 .url("ldap://localhost:33389/dc=jbcpcalendar,dc=com");
 }

LDAP Directory Services Chapter 6

[166]

The notable differences here (aside from the LDAP URL) are that the DN and password for
an account are provided. The account (which is actually optional) should be allowed to bind
to the directory and perform searches across all relevant DNs for user and group
information. The binding resulting from the application of these credentials against the
LDAP server URL is used for the remaining LDAP operations across the LDAP-secured
system.

Be aware that many LDAP servers also support SSL-encrypted LDAP (LDAPS)—this is, of
course, preferred for security purposes and is supported by the Spring LDAP stack. Simply
use ldaps:// at the beginning of the LDAP server URL. LDAPS typically runs on TCP port
636. Note that there are many commercial and non-commercial implementations of LDAP.
The exact configuration parameters that you will use for connectivity, user binding, and
the population of GrantedAuthoritys will wholly depend on both the vendor and the
structure of the directory. We will cover one very common LDAP implementation,
Microsoft AD, in the next section.

If you do not have an LDAP server handy and would like to give this a try, go ahead and
add the following code to your SecurityConfig.java file, which starts up the embedded
LDAP server we have been using:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va

 @Override
 public void configure(AuthenticationManagerBuilder auth)
 throws Exception {
 auth
 .ldapAuthentication()
 .userSearchBase("")
 .userSearchFilter("(uid={0})")
 .groupSearchBase("ou=Groups")
 .groupSearchFilter("(uniqueMember={0})")
 .userDetailsContextMapper(new InetOrgPersonContextMapper())
 .contextSource()
 .managerDn("uid=admin,ou=system")
 .managerPassword("secret")
 .url("ldap://localhost:10389/dc=jbcpcalendar,dc=com")
 .root("dc=jbcpcalendar,dc=com")
 .ldif("classpath:/ldif/calendar.ldif")
 .and()
 .passwordCompare()
 .passwordEncoder(new LdapShaPasswordEncoder())
 .passwordAttribute("userPassword")
 ;
 }

LDAP Directory Services Chapter 6

[167]

If this isn't convincing, start up an LDAP server using Apache Directory Studio and import
calendar.ldif into it. You can then connect to the external LDAP server. Go ahead and
restart the application and give this a try with the username as shauser@example.com
and the password as shauser.

Your code should look like chapter05.06-calendar.

Explicit LDAP bean configuration
In this section, we'll lead you through the set of bean configurations required to explicitly
configure both a connection to an external LDAP server and the
LdapAuthenticationProvider interface required to support authentication against an
external server. As with other explicit bean-based configurations, you really want to avoid
doing this unless you find yourself in a situation where the capabilities of the security
namespace style of configuration will not support your business or your technical
requirements. In which case, read on!

Configuring an external LDAP server reference
To implement this configuration, we'll assume that we have a local LDAP server running on
port 10389, with the same configuration corresponding to the
DefaultSpringSecurityContextSource interface example provided in the previous
section. The required bean definition is already provided in the SecurityConfig.java
file. In fact, to keep things simple, we have provided the entire SecurityConfig.java file.
Review the LDAP server reference in the following code snippet:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va

 @Bean
 public DefaultSpringSecurityContextSource contextSource() {return new
 DefaultSpringSecurityContextSource(
 Arrays.asList("ldap://localhost:10389/"),
 "dc=jbcpcalendar,dc=com"){{
 setUserDn("uid=admin,ou=system");
 setPassword("secret");
 }};
 }

LDAP Directory Services Chapter 6

[168]

Next, we'll need to configure LdapAuthenticationProvider, which is a bit more
complex.

Configuring the LdapAuthenticationProvider
interface
If you've read and understood the explanations throughout this chapter, describing how
Spring Security LDAP authentication works behind the scenes, this bean configuration will
be perfectly understandable, albeit a bit complex. We'll configure
LdapAuthenticationProvider with the following characteristics:

User credential binding authentication (not password comparison)
Use of InetOrgPerson in UserDetailsContextMapper

Take a look at the following steps:

Let's get to it—we'll explore the already configured1.
LdapAuthenticationProvider interface first, as follows:

 //src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java

 @Bean
 public LdapAuthenticationProvider authenticationProvider
 (BindAuthenticator ba,LdapAuthoritiesPopulator lap,
 \UserDetailsContextMapper cm){
 return new LdapAuthenticationProvider(ba, lap){{
 setUserDetailsContextMapper(cm);
 }};
 }

The next bean provided for us is BindAuthenticator, and the supporting2.
FilterBasedLdapUserSearch bean is used to locate the user's DN in the LDAP
directory prior to binding, as follows:

 //src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java

 @Bean
 public BindAuthenticator bindAuthenticator
 (FilterBasedLdapUserSearch userSearch)
 {
 return new BindAuthenticator(contextSource()){{

LDAP Directory Services Chapter 6

[169]

 setUserSearch(userSearch);
 }};
 }
 @Bean
 public FilterBasedLdapUserSearch filterBasedLdapUserSearch(){
 return new FilterBasedLdapUserSearch("",
 //user-search-base "(uid={0})", //user-search-filter
 contextSource()); //ldapServer
 }

Finally, LdapAuthoritiesPopulator and UserDetailsContextMapper
perform the roles we examined earlier in the chapter:

 //src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java

 @Bean
 public LdapAuthoritiesPopulator authoritiesPopulator(){
 return new DefaultLdapAuthoritiesPopulator(contextSource(),
 "ou=Groups"){{
 setGroupSearchFilter("(uniqueMember={0})");
 }};
 }
 @Bean
 public userDetailsContextMapper userDetailsContextMapper(){
 return new InetOrgPersonContextMapper();
 }

In the next step, we must update Spring Security to utilize our explicitly3.
configured LdapAuthenticationProvider interface. Update the
SecurityConfig.java file to use our new configuration, ensuring you remove
the old ldapAuthentication method, as follows:

 //src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java

 @Autowired
 private LdapAuthenticationProvider authenticationProvider;
 @Override
 public void configure(AuthenticationManagerBuilder auth)
 throws Exception {
 auth.authenticationProvider(authenticationProvider);
 }

LDAP Directory Services Chapter 6

[170]

At this point, we have fully configured LDAP authentication with explicit Spring
bean notation. Employing this technique in the LDAP integration is useful in a
few cases, such as when the security namespace does not expose certain
configuration attributes, or when custom implementation classes are required to
provide functionality tailored to a particular business scenario. We'll explore one
such scenario later in this chapter when we examine how to connect to Microsoft
AD via LDAP.

Go ahead and start the application and give the configuration a try with4.
the username as shauser@example.com and the password as shauser.
Assuming you have an external LDAP server running, or you have kept the
configured in-memory DefaultSpringSecurityContextSource object,
everything should still be working.

Your code should look like chapter05.07-calendar.

Delegating role discovery to UserDetailsService
One technique for populating user roles that are available to use with explicit bean
configuration is implementing the support for looking up a user by username
in UserDetailsService, and getting the GrantedAuthority objects from this source.
The configuration is as simple as replacing the bean with
the ldapAuthoritiesPopulator ID bean with an updated
UserDetailsServiceLdapAuthoritiesPopulator object, with a reference to
UserDetailsService. Make the following updates to the SecurityConfig.java file,
ensuring you remove the previous ldapAuthoritiesPopulator bean definition:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va

 //@Bean
 //public LdapAuthoritiesPopulator authoritiesPopulator(){
 //return new DefaultLdapAuthoritiesPopulator(contextSource(),
 //"ou=Groups"){{
 //setGroupSearchFilter("(uniqueMember={0})");
 // }};
 //}
 @Bean
 public LdapAuthoritiesPopulator authoritiesPopulator(

LDAP Directory Services Chapter 6

[171]

 UserDetailsService userDetailsService){
 return new UserDetailsServiceLdapAuthoritiesPopulator
 (userDetailsService);
 }

We will also need to ensure that we have defined userDetailsService. To keep things
simple, add an in-memory UserDetailsService interface, as follows:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va

 @Bean
 @Override
 public UserDetailsManager userDetailsService() {
 InMemoryUserDetailsManager manager = new
 InMemoryUserDetailsManager();
 manager.createUser(User.withUsername("user1@example.com")
 .password("user1").roles("USER").build());
 manager.createUser(
 User.withUsername("admin1@example.com")
 .password("admin1").roles("USER", "ADMIN").build());
 return manager;
 }

You should now be able to authenticate with admin1@example.com as the username and
admin1 as the password. Naturally, we could also substitute this in-memory
UserDetailsService interface for the JDBC or JPA-based one we discussed in Chapter 4,
JDBC-Based Authentication, and in Chapter 5, Authentication with Spring Data.

Your code should look like chapter05.08-calendar.

The logistical and managerial problem you may notice with this is that the usernames and
roles must be managed both in the LDAP server and the repository used by
UserDetailsService—this is probably not a scalable model for a large user base.

The more common use of this scenario is when LDAP authentication is required to ensure
that users of the secured application are valid corporate users, but the application itself
wants to store authorization information. This keeps potentially application-specific data
out of the LDAP directory, which can be a beneficial separation of concerns.

LDAP Directory Services Chapter 6

[172]

Integrating with Microsoft Active Directory
via LDAP
One of the convenient features of Microsoft AD is not only its seamless integration with
Microsoft Windows-based network architectures, but also that it can be configured to
expose the contents of AD using the LDAP protocol. If you are working in a company that
is heavily leveraging Microsoft Windows, it is probable that any LDAP integration you do
will be against your AD instance.

Depending on your configuration of Microsoft AD (and the directory administrator's
willingness to configure it to support Spring Security LDAP), you may have a difficult time,
not with the authentication and binding process, but with the mapping of AD information
to the user's GrantedAuthority objects within the Spring Security system.

The sample AD LDAP tree for JBCP calendar corporate within our LDAP browser looks
similar to the following screenshot:

LDAP Directory Services Chapter 6

[173]

What you do not see here is ou=Groups, which we saw in our sample LDAP structure
earlier; this is because AD stores group membership as attributes on the LDAP entries of the
users themselves.

Let's use our recently acquired knowledge of explicit bean configuration to write
an LdapAuthoritiesPopulator implementation that obtains GrantedAuthority from
the user's memberOf attribute. In the following section, you will find the
ActiveDirectoryLdapAuthoritiesPopulator.java file that is provided in this
chapter's sample code:

 //src/main/java/com/packtpub/springsecurity/ldap/userdetails/ad/
 ActiveDirectoryLdapAuthoritiesPopulator.java

 public final class ActiveDirectoryLdapAuthoritiesPopulator
 implements LdapAuthoritiesPopulator {
 public Collection<? extends GrantedAuthority>
 getGrantedAuthorities(DirContextOperations userData, String
 username) {
 String[] groups = userData.getStringAttributes("memberOf");
 List<GrantedAuthority> authorities = new
 ArrayList<GrantedAuthority>();
 for (String group : groups) {
 LdapRdn authority = new DistinguishedName(group).removeLast();
 authorities.add(new SimpleGrantedAuthority
 (authority.getValue()));
 }
 return authorities;
 }
 }

Now, we need to alter our configuration to support our AD structure. Assuming we are
starting with the bean configuration detailed in the previous section, make the following
updates:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va

 @Bean
 public DefaultSpringSecurityContextSource contextSource() {
 return new DefaultSpringSecurityContextSource(Arrays.asList
 ("ldap://corp.jbcpcalendar.com/"), "dc=corp,dc=jbcpcalendar,
 dc=com"){{
 setUserDn("CN=Administrator,CN=Users," +
 "DC=corp,DC=jbcpcalendar,DC=com");
 setPassword("admin123!");
 }};
 }

LDAP Directory Services Chapter 6

[174]

 @Bean
 public LdapAuthenticationProvider authenticationProvider(
 BindAuthenticator ba, LdapAuthoritiesPopulator lap){
 // removed UserDetailsContextMapper
 return new LdapAuthenticationProvider(ba, lap);
 }
 @Bean
 public FilterBasedLdapUserSearch filterBasedLdapUserSearch(){
 return new FilterBasedLdapUserSearch("CN=Users", //user-search-base
 "(sAMAccountName={0})", //user-search-filter
 contextSource()); //ldapServer
 }
 @Bean
 public LdapAuthoritiesPopulator authoritiesPopulator(){
 return new ActiveDirectoryLdapAuthoritiesPopulator();
 }

If you have it defined, you will want to remove the UserDetailsService declaration in
the SecurityConfig.java file. Finally, you will want to remove the references to
UserDetailsService from AccountController.

The sAMAccountName attribute is the AD equivalent of the uid attribute we use in a
standard LDAP entry. Although most AD LDAP integrations are likely to be more complex
than this example, this should give you a starting point to jump off and explore your
conceptual understanding of the inner workings of Spring Security LDAP integration;
supporting even a complex integration will be much easier.

If you want to run this sample, you will need an instance of AD up and
running that matches the schema displayed in the screenshot. The
alternative is to adjust the configuration to match your AD schema. A
simple way to play around with AD is to install Active Directory
Lightweight Directory Services, which can be found at http:/ ​/​www.
microsoft. ​com/ ​download/ ​en/ ​details. ​aspx? ​id= ​14683. Your code should
look like chapter05.09-calendar.

Built-in AD support in Spring Security 4.2
Spring Security added AD support in Spring Security 3.1. In fact,
the ActiveDirectoryLdapAuthoritiesPopulator class from the previous section is
based on the newly-added support. To utilize the built-in support in Spring Security 4.2, we
can replace our entire SecurityConfig.java file with the following configuration:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja

http://www.microsoft.com/download/en/details.aspx?id=14683
http://www.microsoft.com/download/en/details.aspx?id=14683
http://www.microsoft.com/download/en/details.aspx?id=14683
http://www.microsoft.com/download/en/details.aspx?id=14683
http://www.microsoft.com/download/en/details.aspx?id=14683
http://www.microsoft.com/download/en/details.aspx?id=14683
http://www.microsoft.com/download/en/details.aspx?id=14683
http://www.microsoft.com/download/en/details.aspx?id=14683
http://www.microsoft.com/download/en/details.aspx?id=14683
http://www.microsoft.com/download/en/details.aspx?id=14683
http://www.microsoft.com/download/en/details.aspx?id=14683
http://www.microsoft.com/download/en/details.aspx?id=14683
http://www.microsoft.com/download/en/details.aspx?id=14683
http://www.microsoft.com/download/en/details.aspx?id=14683
http://www.microsoft.com/download/en/details.aspx?id=14683
http://www.microsoft.com/download/en/details.aspx?id=14683
http://www.microsoft.com/download/en/details.aspx?id=14683
http://www.microsoft.com/download/en/details.aspx?id=14683
http://www.microsoft.com/download/en/details.aspx?id=14683
http://www.microsoft.com/download/en/details.aspx?id=14683

LDAP Directory Services Chapter 6

[175]

va

 @Bean
 public AuthenticationProvider authenticationProvider(){
 ActiveDirectoryLdapAuthenticationProvider ap = new
 ActiveDirectoryLdapAuthenticationProvider("corp.jbcpcalendar.com",
 "ldap://corp.jbcpcalendar.com/");
 ap.setConvertSubErrorCodesToExceptions(true);
 return ap;
 }

Of course, if you are going to use it, you need to ensure that you wire it to
AuthenticationManager. We have already done this, but a reminder of what the
configuration looks like can be found in the following code snippet:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va

 @Autowired
 private AuthenticationProvider authenticationProvider;
 @Override
 public void configure(AuthenticationManagerBuilder auth)
 throws Exception {
 auth.authenticationProvider(authenticationProvider);
 }

There are a few things that should be noted about the provided
ActiveDirectoryLdapAuthenticationProvider class, as follows:

The users that need to be authenticated must be able to bind to AD (there is no
manager user.
The default method for populating users' authorities is to search the users'
memberOf attributes.
Users must contain an attribute named userPrincipalName, which is in the
username@<domain> format. Here, <domain> is the first constructor argument
to ActiveDirectoryLdapAuthenticationProvider. This is due to the fact
that, after the bind occurs, this is how the context for the memberOf lookup is
found.

Due to the complex LDAP deployments that occur in the real world, the built-in support
will most likely provide a guide to as how you can integrate with your custom LDAP
schema.

LDAP Directory Services Chapter 6

[176]

Summary
We have seen that LDAP servers can be relied on to provide authentication and
authorization information, as well as rich user profile information when requested. In this
chapter, we covered the LDAP terminology and concepts, and how LDAP directories might
be commonly organized to work with Spring Security. We also explored the configuration
of both standalone (embedded) and external LDAP servers from a Spring Security
configuration file.

We covered authentication and authorization of users against LDAP repositories, and
subsequent mapping to Spring Security actors. We also saw the differences in
authentication schemes, password storage, and security mechanisms in LDAP, and how
they are treated in Spring Security. We also learned to map user detail attributes from the
LDAP directory to the UserDetails object for rich information exchange between LDAP
and the Spring-enabled application. We also explicited bean configuration for LDAP, and
the pros and cons of this approach.

We also covered integration with AD.

In the next chapter, we will discuss Spring Security's remember-me feature, which allows a
user's session to securely persist even after closing the browser.

7
Remember-Me Services

In this chapter, we'll add the ability for an application to remember a user even after their
session has expired and the browser is closed. The following topics will be covered in this
chapter:

Discussing what remember-me is
Learning how to use the token-based remember-me feature
Discussing how secure remember-me is, and various ways of making it more
secure
Enabling the persistent-based remember-me feature, and how to handle
additional considerations for using it
Presenting the overall remember-me architecture
Learning how to create a custom remember-me implementation that is restricted
to the user's IP address

What is remember-me?
A convenient feature to offer frequent users of a website is the remember-me feature. This
feature allows a user to elect to be remembered even after their browser is closed. In Spring
Security, this is implemented through the use of a remember-me cookie that is stored in the
user's browser. If Spring Security recognizes that the user is presenting a remember-me
cookie, then the user will automatically be logged into the application, and will not need to
enter a username or password.

Remember-Me Services Chapter 7

[178]

What is a cookie?
A cookie is a way for a client (that is, a web browser) to persist the state.
For more information about cookies, refer to additional online resources,
such as Wikipedia (http:/ ​/ ​en.​wikipedia. ​org/ ​wiki/ ​HTTP_ ​cookie).

Spring Security provides the following two different strategies that we will discuss in this
chapter:

The first is the token-based remember-me feature, which relies on a
cryptographic signature
The second method, the persistent-based remember-me feature, requires a
datastore (a database)

As we previously mentioned, we will discuss these strategies in much greater detail
throughout this chapter. The remember-me feature must be explicitly configured in order to
enable it. Let's start off by trying the token-based remember-me feature and see how it
affects the flow of the login experience.

Dependencies
The token-based remember-me section does not need any additional dependencies other
than the basic setup from Chapter 2, Getting Started with Spring Security. However, you will
want to ensure you include the following additional dependencies in your pom.xml file if
you are leveraging the persistent-based remember-me feature. We have already included
these dependencies in the chapter's sample, so there is no need to update the sample
application:

 //build.gradle

 dependencies {
 // JPA / ORM / Hibernate:
 compile('org.springframework.boot:spring-boot-starter-data-jpa')
 // H2 RDBMS
 runtime('com.h2database:h2')
 ...
 }

http://en.wikipedia.org/wiki/HTTP_cookie
http://en.wikipedia.org/wiki/HTTP_cookie
http://en.wikipedia.org/wiki/HTTP_cookie
http://en.wikipedia.org/wiki/HTTP_cookie
http://en.wikipedia.org/wiki/HTTP_cookie
http://en.wikipedia.org/wiki/HTTP_cookie
http://en.wikipedia.org/wiki/HTTP_cookie
http://en.wikipedia.org/wiki/HTTP_cookie
http://en.wikipedia.org/wiki/HTTP_cookie
http://en.wikipedia.org/wiki/HTTP_cookie
http://en.wikipedia.org/wiki/HTTP_cookie
http://en.wikipedia.org/wiki/HTTP_cookie
http://en.wikipedia.org/wiki/HTTP_cookie
http://en.wikipedia.org/wiki/HTTP_cookie
http://en.wikipedia.org/wiki/HTTP_cookie

Remember-Me Services Chapter 7

[179]

The token-based remember-me feature
Spring Security provides two different implementations of the remember-me feature. We
will start off by exploring how to set up token-based remember-me services.

Configuring the token-based remember-me feature
Completing this exercise will allow us to provide a simple and secure method to keep users
logged in for extended periods of time. To start, perform the following steps:

Modify the SecurityConfig.java configuration file and add the rememberMe1.
method.

Take a look at the following code snippet:

 //src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 ...
 http.rememberMe().key("jbcpCalendar")
 ...
 }

You should start with chapter07.00-calendar.

If we try running the application now, we'll see nothing different in the flow. This2.
is because we also need to add a field to the login form that allows the user to opt
for this functionality. Edit the login.html file and add a checkbox, as shown in
the following code snippet:

 //src/main/resources/templates/login.html

 <input type="password" id="password" name="password"/>
 <label for="remember-me">Remember Me?</label>
 <input type="checkbox" id="remember-me" name="remember_me"
 value="true"/>
 <div class="form-actions">
 <input id="submit" class="btn" name="submit" type="submit"
 value="Login"/>
 </div>

Remember-Me Services Chapter 7

[180]

Your code should look like chapter07.01-calendar.

When we next log in, if the remember-me box is selected, a remember-me cookie3.
is set in the user's browser.

Spring Security understands that it should remember the user by inspecting the
HTTP parameter remember_me.

In Spring Security 3.1 and earlier versions, the default parameter for the
remember-me form field was spring_security_remember_me. Now, in
Spring Security 4.x, the default remember-me form field is remember-me.
This can be overridden with the rememberMeParameter method.

If the user then closes his/her browser and reopens it to an authenticated page on4.
the JBCP calendar website, he/she won't be presented with the login page a
second time. Try it yourself now—log in with the remember-me option selected,
bookmark the home page, then restart the browser and access the home page.
You'll see that you're immediately logged in successfully without needing to
supply your login credentials again. If this appears to be happening to you, it
means that your browser or a browser plugin is restoring the session.

Try closing the tab first and then close the browser.

One more effective solution is to use a browser plugin, such as Firebug (https:/ ​/​addons.
mozilla.​org/​en-​US/ ​firefox/ ​addon/ ​firebug/ ​), to remove the JSESSIONID cookie. This
can often save time and annoyance during the development and verification of this type of
feature on your site.

https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://addons.mozilla.org/en-US/firefox/addon/firebug/

Remember-Me Services Chapter 7

[181]

After logging in and selecting remember-me, you should see two cookies have been
set, JSESSIONID and remember-me, as shown in the following screenshot:

How the token-based remember-me feature works
The remember-me feature sets a cookie in the user's browser containing a Base64-encoded
string with the following pieces:

The username
An expiration date/time
An MD5 hash value of the expiration date/time, username, password, and the
key attribute of the rememberMe method

These are combined into a single cookie value that is stored in the browser for later use.

MD5
MD5 is one of the several well-known cryptographic hash algorithms. Cryptographic hash
algorithms compute a compact and unique text representation of input data with arbitrary
length, called a digest. This digest can be used to determine if an untrusted input should be
trusted by comparing the digest of the untrusted input to a known valid digest of the
expected input.

Remember-Me Services Chapter 7

[182]

The following diagram illustrates how this works:

For example, many open source software sites allow mirrors to distribute their software to
help increase download speeds. However, as a user of the software, we would want to be
sure that the software is authentic and doesn't include any viruses. The software distributor
will calculate and publish the expected MD5 checksum on their website with their known,
good version of the software. Then, we can download the file from any location. Before we
install the software, we calculate the untrusted MD5 checksum on the file we downloaded.
We then compare the untrusted MD5 checksum to the expected MD5 checksum. If the two
values match, we know that we can safely install the file we downloaded. If the two values
do not match, we should not trust the downloaded file and delete it.

Although it is impossible to obtain the original data from the hash value, MD5 is vulnerable
to several types of attack, including the exploitation of weaknesses in the algorithm itself
and rainbow table attacks. Rainbow tables typically contain the pre-computed hash values
of millions of input values. This allows attackers to look for the hash value in the rainbow
table and determine the actual (unhashed) value. Spring Security combats this by including
the expiration date, the user's password, and the remember-me key in the hashed value.

Remember-me signature
We can see how MD5 can ensure that we have downloaded the correct file, but how does
this apply to Spring Security's remember-me service? Much like the file we downloaded,
the cookie is untrusted, but we can trust it if we can validate the signature that originated
from our application. When a request comes in with the remember-me cookie, its contents
are extracted and the expected signature is compared to the signature found in the cookie.
The steps in calculating the expected signature are illustrated in the following diagram:

Remember-Me Services Chapter 7

[183]

The remember-me cookie contains the username, expiration, and a signature. Spring
Security will extract the username and expiration from the cookie. It will then utilize the
username from the cookie to look up the password using UserDetailsService. The key
is already known because it was provided using the rememberMe method. Now that all of
the arguments are known, Spring Security can calculate the expected signature using the
username, expiration, password, and key. It then compares the expected signature against
the cookie's signature.

If the two signatures match, we can trust that the username and expiration date are valid.
Forging a signature is next to impossible without knowing the remember-me key (which
only the application knows) and the user's password (which only this user knows). This
means if the signatures match and if the token is not expired, the user can be logged in.

You have anticipated that if the user changes their username or password,
any remember-me token set will no longer be valid. Make sure that you
provide appropriate messaging to users if you allow them to change these
bits of their account. Later in this chapter, we will look at an alternative
remember-me implementation that is reliant only on the username and not
on the password.

Note that it is still possible to differentiate between users who have been authenticated with
a remember-me cookie and users who have presented the username and password (or
equivalent) credentials. We'll experiment with this shortly when we investigate the security
of the remember-me feature.

Remember-Me Services Chapter 7

[184]

Token-based remember-me configuration directives
The following two configuration changes are commonly made to alter the default behavior
of the remember-me functionality:

Attribute Description

key Defines a unique key used when producing the remember-me
cookie's signature.

tokenValiditySeconds Defines the length of time (in seconds). The remember-me
cookie will be considered valid for authentication. It is also
used to set the cookie expiration timestamp.

As you may infer from the discussion of how the cookie contents are hashed, the key
attribute is critical for the security of the remember-me feature. Make sure that the key you
choose is likely to be unique to your application and long enough so that it can't be easily
guessed.

Keeping in mind the purpose of this book, we've kept the key values relatively simple, but
if you're using remember-me in your own application, it's suggested that your key contains
the unique name of your application and is at least 36 random characters long. Password
generator tools (search Google for "online password generator") are a great way to get a
pseudo-random mix of alphanumeric and special characters to compose your remember-me
key. For applications that exist in multiple environments (such as development, test, and
production), the remember-me cookie value should include this fact as well. This will
prevent remember-me cookies from inadvertently being used in the wrong environment
during testing!

An example key value in a production application might be similar to the following:

 prodJbcpCalendar-rmkey-paLLwApsifs24THosE62scabWow78PEaCh99Jus

The tokenValiditySeconds method is used to set the number of seconds after which the
remember-me token will not be accepted for the automatic login function, even if it is
otherwise a valid token. The same attribute is also used to set the maximum lifetime of the
remember-me cookie on the user's browser.

Remember-Me Services Chapter 7

[185]

Configuration of the remember-me session cookies
If tokenValiditySeconds is set to -1, the login cookie will be set to a
session cookie, which does not persist after the browser is closed by the
user. The token will be valid (assuming the user doesn't close the browser)
for a non-configurable length of two weeks. Don't confuse this with the
cookie that stores your user's session ID—they're two different things with
similar names!

You may have noticed that we listed very few attributes. Don't worry, we will spend time
covering some of the other configuration attributes throughout this chapter.

Is remember-me secure?
Any feature related to security that has been added for user convenience has the potential to
expose our carefully-protected site to a security risk. The remember-me feature, in its
default form, runs the risk of the user's cookie being intercepted and reused by a malicious
user. The following diagram illustrates how this might happen:

The use of SSL (covered in the Appendix, Additional Reference Material) and other network
security techniques can mitigate this type of attack, but be aware that there are other
techniques, such as cross-site scripting (XSS), that can steal or compromise a remembered
user session. While convenient for the user, we don't want to risk financial or other personal
information being inadvertently changed or possibly stolen if the remembered session is
misused.

Remember-Me Services Chapter 7

[186]

Although we don't cover malicious user behavior in detail in this book,
when implementing any secured system, it is important to understand the
techniques employed by users who may be trying to hack your customers
or employees. XSS is one such technique, but many others exist. It's highly
recommended that you review the OWASP Top Ten article (http:/ ​/​www.
owasp. ​org/ ​index. ​php/ ​Category:OWASP_ ​Top_ ​Ten_ ​Project) for a good list,
and also pick up a web application security reference book in which many
of the techniques demonstrated are illustrated to apply to any technology.

One common approach for maintaining the balance between convenience and security is
identifying the functional locations on the site where personal or sensitive information
could be present. You can then use the fullyAuthenticated expression to ensure these
locations are protected using an authorization that checks not just the user's role, but that
they have been authenticated with a full username and password. We will explore this
feature in greater detail in the next section.

Authorization rules for remember-me
We'll fully explore the advanced authorization techniques later in Chapter 11, Fine-Grained
Access Control, however, it's important to realize that it's possible to differentiate access rules
based on whether or not an authenticated session was remembered.

Let's assume we want to limit users trying to access the H2 admin console to administrators
who have been authenticated using a username and password. This is similar to the
behavior found in other major consumer-focused commerce sites, which restrict access to
the elevated portions of the site until a password is entered. Keep in mind that every site is
different, so don't blindly apply such rules to your secure site. For our sample application,
we'll concentrate on protecting the H2 database console. Update the
SecurityConfig.java file to use the keyword fullyAuthenticated, which ensures that
remembered users who try to access the H2 database are denied access. This is shown in the
following code snippet:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 ...
 http.authorizeRequests()
 .antMatchers("/admin/*")
 .access("hasRole(ADMIN) and isFullyAuthenticated()")
 ...

http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

Remember-Me Services Chapter 7

[187]

 http.rememberMe().key("jbcpCalendar")
 }

The existing rules remain unchanged. We've added a rule that requires requests for account
information to have the appropriate GrantedAuthority of ROLE_ADMIN, and that the user
is fully authenticated; that is, during this authenticated session, they have actually
presented a username and password or other suitable credentials. Note the syntax of the
SpEL logical operators here—AND, OR, and NOT are used for logical operators in SpEL. This
was thoughtful of the SpEL designers, as the && operator would be awkward to represent in
XML, even though the preceding example is using Java-based configuration!

Your code should look like chapter07.02-calendar.

Go ahead and log in with the username admin1@example.com and the password admin1,
ensuring you select the remember-me feature. Access the H2 database console and you will
see that the access is granted. Now, delete the JSESSIONID cookie (or close the tab and then
all of the browser instances), and ensure that access is still granted to the All Events page.
Now, navigate to the H2 console and observe that the access is denied.

This approach combines the usability enhancements of the remember-me feature with an
additional level of security by requiring a user to present a full set of credentials to access
sensitive information. Throughout the rest of the chapter, we will explore other ways of
making the remember-me feature more secure.

Persistent remember-me
Spring Security provides the capability to alter the method for validating the remember-me
cookie by leveraging different implementations of the RememberMeServices interface. In
this section, we will discuss how we can use persistent remember-me tokens using a
database, and how this can increase the security of our application.

Remember-Me Services Chapter 7

[188]

Using the persistent-based remember-me feature
Modifying our remember-me configuration at this point to persist to the database is
surprisingly trivial. The Spring Security configuration parser will recognize a new
tokenRepository method on the rememberMe method, and simply switch
implementation classes for RememberMeServices. Let's now review the steps required to
accomplish this.

Adding SQL to create the remember-me schema
We have placed the SQL file containing the expected schema in our resources folder in
the same place we did in Chapter 3, Custom Authentication. You can view the schema
definition in the following code snippet:

 //src/main/resources/schema.sql

 ...
 create table persistent_logins (
 username varchar_ignorecase(100) not null,
 series varchar(64) primary key,
 token varchar(64) not null,
 last_used timestamp not null
);
 ...

Initializing the data source with the remember-me
schema
Spring Data will automatically initialize the embedded database with the schema.sql, as
described in the preceding section. Note, however, that with JPA, in order for the schema to
be created and the data.sql file used to seed the database, we must ensure we set ddl-
auto to none, as shown in the following code:

 //src/main/resources/application.yml

 spring:
 jpa:
 database-platform: org.hibernate.dialect.H2Dialect
 hibernate:
 ddl-auto: none

Remember-Me Services Chapter 7

[189]

Configuring the persistent-based remember-
me feature
Finally, we'll need to make some brief configuration changes to the rememberMe declaration
to point it to the data source we're using, as shown in the following code snippet:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityC
onfig.java

 @Autowired
 @SuppressWarnings("SpringJavaAutowiringInspection")
 private DataSource dataSource;
 @Autowired
 private PersistentTokenRepository persistentTokenRepository;
 @Override
 protected void configure(HttpSecurity http) throws Exception {
 ...
 http.rememberMe()
 .key("jbcpCalendar")
 .tokenRepository(persistentTokenRepository)
 ...
 }
 @Bean
 public PersistentTokenRepository persistentTokenRepository() {
 JdbcTokenRepositoryImpl db = new JdbcTokenRepositoryImpl();
 db.setDataSource(dataSource);
 return db;
 }

This is all we need to do to switch over to using persistent-based remember-me
authentication. Go ahead and start up the application and give it a try. From a user
standpoint, we do not notice any differences, but we know that the implementation backing
this feature has changed.

Your code should look like chapter07.03-calendar.

Remember-Me Services Chapter 7

[190]

How does the persistent-based remember-me
feature work?
Instead of validating a signature present in the cookie, the persistent-based remember-me
service validates if the token exists in a database. Each persistent remember-me cookie
consists of the following:

Series identifier: This identifies the initial login of a user and remains consistent
each time the user is automatically logged in to the original session
Token value: A unique value that changes each time a user is authenticated using
the remember-me feature

Take a look at the following diagram:

When the remember-me cookie is submitted, Spring Security will use an
o.s.s.web.authentication.rememberme.PersistentTokenRepository

implementation to look up the expected token value and an expiration using the submitted
series identifier. It will then compare the token value in the cookie to the expected token
value. If the token is not expired and the two tokens match, the user is considered
authenticated. A new remember-me cookie with the same series identifier, a new token
value, and an updated expiration date will be generated.

Remember-Me Services Chapter 7

[191]

If the series token submitted is found in the database, but the tokens do not match, it can be
assumed that someone stole the remember-me cookie. In this case, Spring Security will
terminate these series of remember-me tokens and warn the user that their login has been
compromised.

The persisted tokens can be found in the database and viewed with the H2 console, as
shown in the following screenshot:

JPA-based PersistentTokenRepository
As we have seen in the earlier chapters, using a Spring Data project for our database
mapping can greatly simplify our work. So, to keep things consistent, we are going to
refactor our JDBC-based PersistentTokenRepository interface that
uses JdbcTokenRepositoryImpl to one that is JPA-based. We will do so by performing
the following steps:

First, let's create a domain object to hold the persistent logins, as shown in the1.
following code snippet:

 //src/main/java/com/packtpub/springsecurity/domain/
 PersistentLogin.java

 import org.springframework.security.web.authentication.rememberme.
 PersistentRememberMeToken;
 import javax.persistence.*;
 import java.io.Serializable;
 import java.util.Date;
 @Entity
 @Table(name = "persistent_logins")
 public class PersistentLogin implements Serializable {
 @Id
 private String series;
 private String username;
 private String token;

Remember-Me Services Chapter 7

[192]

 private Date lastUsed;
 public PersistentLogin(){}
 public PersistentLogin(PersistentRememberMeToken token){
 this.series = token.getSeries();
 this.username = token.getUsername();
 this.token = token.getTokenValue();
 this.lastUsed = token.getDate();
 }
 ...

Next, we need to create a o.s.d.jpa.repository.JpaRepository repository2.
instance, as shown in the following code snippet:

 //src/main/java/com/packtpub/springsecurity/repository/
 RememberMeTokenRepository.java

 import com.packtpub.springsecurity.domain.PersistentLogin;
 import org.springframework.data.jpa.repository.JpaRepository;
 import java.util.List;
 public interface RememberMeTokenRepository extends
 JpaRepository<PersistentLogin, String> {
 PersistentLogin findBySeries(String series);
 List<PersistentLogin> findByUsername(String username);
 }

Now, we need to create a custom PersistentTokenRepository interface to3.
replace the Jdbc implementation. We have four methods we must override, but
the code should look fairly familiar as we will be using JPA for all of the
operations:

 //src/main/java/com/packtpub/springsecurity/web/authentication/
 rememberme/JpaPersistentTokenRepository.java:

 ...
 public class JpaPersistentTokenRepository implements
 PersistentTokenRepository {
 private RememberMeTokenRepository rememberMeTokenRepository;
 public JpaPersistentTokenRepository
 (RememberMeTokenRepository rmtr) {
 this.rememberMeTokenRepository = rmtr;
 }
 @Override
 public void createNewToken(PersistentRememberMeToken token) {
 PersistentLogin newToken = new PersistentLogin(token);
 this.rememberMeTokenRepository.save(newToken);
 }
 @Override

Remember-Me Services Chapter 7

[193]

 public void updateToken(String series, String tokenValue,
 Date lastUsed) {
 PersistentLogin token = this.rememberMeTokenRepository
 .findBySeries(series);
 if (token != null) {
 token.setToken(tokenValue);
 token.setLastUsed(lastUsed);
 this.rememberMeTokenRepository.save(token);
 }
 }
 @Override
 public PersistentRememberMeToken
 getTokenForSeries(String seriesId) {
 PersistentLogin token = this.rememberMeTokenRepository
 .findBySeries(seriesId);
 return new PersistentRememberMeToken(token.getUsername(),
 token.getSeries(), token.getToken(), token.getLastUsed());
 }
 @Override
 public void removeUserTokens(String username) {
 List<PersistentLogin> tokens = this.rememberMeTokenRepository
 .findByUsername(username);
 this.rememberMeTokenRepository.delete(tokens);
 }
 }

Now, we need to make a few changes in the SecurityConfig.java file to4.
declare the new PersistentTokenTokenRepository interface, but the rest of
the configuration from the last section does not change, as shown in the following
code snippet:

 //src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java

 //@Autowired
 //@SuppressWarnings("SpringJavaAutowiringInspection")
 //private DataSource dataSource;
 @Autowired
 private PersistentTokenRepository persistentTokenRepository;
 ...
 @Bean
 public PersistentTokenRepository persistentTokenRepository(
 RememberMeTokenRepository rmtr) {
 return new JpaPersistentTokenRepository(rmtr);
 }

Remember-Me Services Chapter 7

[194]

This is all we need to do to switch JDBC to JPA persistent-based remember-me5.
authentication. Go ahead and start up the application and give it a try. From a
user standpoint, we do not notice any differences, but we know that the
implementation backing this feature has changed.

Your code should look like chapter07.04-calendar.

Custom RememberMeServices
Up to this point, we have used a fairly simple implementation of
PersistentTokenRepository. We have used a JDBC-backed and JPA-backed
implementation. This provided limited control over the cookie persistence; if we want more
control, we wrap our PersistentTokenRepository interface in RememberMeServices.
Barry Jaspan has a great article on Improved Persistent Login Cookie Best Practice (http:/ ​/
jaspan.​com/​improved_ ​persistent_ ​login_ ​cookie_ ​best_ ​practice). Spring Security has a
slightly modified version, as previously described, called
PersistentTokenBasedRememberMeServices, which we can wrap our custom
PersistentTokenRepository interface in and use in our remember-me service.

In the following section, we are going to wrap our existing PersistentTokenRepository
interface with PersistentTokenBasedRememberMeServices and the use of the
rememberMeServices method to wire it into our remember-me declaration:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va

 //@Autowired
 //private PersistentTokenRepository persistentTokenRepository;
 @Autowired
 private RememberMeServices rememberMeServices;
 @Override
 protected void configure(HttpSecurity http) throws Exception {
 ...
 http.rememberMe()
 .key("jbcpCalendar")
 .rememberMeServices(rememberMeServices)
 ...
 }
 @Bean
 public RememberMeServices rememberMeServices

http://jaspan.com/improved_persistent_login_cookie_best_practice
http://jaspan.com/improved_persistent_login_cookie_best_practice
http://jaspan.com/improved_persistent_login_cookie_best_practice
http://jaspan.com/improved_persistent_login_cookie_best_practice
http://jaspan.com/improved_persistent_login_cookie_best_practice
http://jaspan.com/improved_persistent_login_cookie_best_practice
http://jaspan.com/improved_persistent_login_cookie_best_practice
http://jaspan.com/improved_persistent_login_cookie_best_practice
http://jaspan.com/improved_persistent_login_cookie_best_practice
http://jaspan.com/improved_persistent_login_cookie_best_practice
http://jaspan.com/improved_persistent_login_cookie_best_practice
http://jaspan.com/improved_persistent_login_cookie_best_practice
http://jaspan.com/improved_persistent_login_cookie_best_practice
http://jaspan.com/improved_persistent_login_cookie_best_practice
http://jaspan.com/improved_persistent_login_cookie_best_practice
http://jaspan.com/improved_persistent_login_cookie_best_practice
http://jaspan.com/improved_persistent_login_cookie_best_practice
http://jaspan.com/improved_persistent_login_cookie_best_practice

Remember-Me Services Chapter 7

[195]

 (PersistentTokenRepository ptr){
 PersistentTokenBasedRememberMeServices rememberMeServices = new
 PersistentTokenBasedRememberMeServices("jbcpCalendar",
 userDetailsService, ptr);
 rememberMeServices.setAlwaysRemember(true);
 return rememberMeServices;
 }

Your code should look like chapter07.05-calendar.

Are database-backed persistent tokens more secure?

Just like TokenBasedRememberMeServices, persistent tokens may be compromised by
cookie theft or other man-in-the-middle techniques. The use of SSL, as covered in the
Appendix, Additional Reference Material can circumvent man-in-the-middle techniques. If you
are using a Servlet 3.0 environment (that is, Tomcat 7+), Spring Security will mark the
cookie as HttpOnly, which will help to mitigate against the cookie being stolen in the event
of an XSS vulnerability in the application. To learn more about the HttpOnly attribute, refer
to the external resource on cookies provided earlier in the chapter.

One of the advantages of using the persistent-based remember-me feature is that we can
detect if the cookie is compromised. If the correct series token and an incorrect token is
presented, we know that any remember-me feature using that series token should be
considered compromised, and we should terminate any sessions associated with it. Since
the validation is stateful, we can also terminate the specific remember-me feature without
needing to change the user's password.

Cleaning up the expired remember-me sessions
The downside of using the persistent-based remember-me feature is that there is no built-in
support for cleaning up the expired sessions. In order to do this, we need to implement a
background process that cleans up the expired sessions. We have included code in the
chapter's sample code to perform the cleanup.

Remember-Me Services Chapter 7

[196]

For conciseness, we display a version that does not do validation or error handling in the
following code snippet. You can view the full version in the sample code of this chapter:

//src/main/java/com/packtpub/springsecurity/web/authentication/rememberme/
 JpaTokenRepositoryCleaner.java

 public class JpaTokenRepositoryImplCleaner
 implements Runnable {
 private final RememberMeTokenRepository repository;
 private final long tokenValidityInMs;
 public JpaTokenRepositoryImplCleaner(RememberMeTokenRepository
 repository, long tokenValidityInMs) {
 if (rememberMeTokenRepository == null) {
 throw new IllegalArgumentException("jdbcOperations cannot
 be null");
 }
 if (tokenValidityInMs < 1) {
 throw new IllegalArgumentException("tokenValidityInMs
 must be greater than 0. Got " + tokenValidityInMs);
 }
 this. repository = repository;
 this.tokenValidityInMs = tokenValidityInMs;
 }
 public void run() {
 long expiredInMs = System.currentTimeMillis()
 - tokenValidityInMs;
 try {
 Iterable<PersistentLogin> expired =
 rememberMeTokenRepository
 .findByLastUsedAfter(new Date(expiredInMs));
 for(PersistentLogin pl: expired){
 rememberMeTokenRepository.delete(pl);
 }
 } catch(Throwable t) {...}
 }
 }

The sample code for this chapter also includes a simple Spring configuration that will
execute the cleaner every ten minutes. If you are unfamiliar with Spring's task abstraction
and want to learn it, then you may want to read more about it in the Spring Reference at
https:/​/​docs.​spring. ​io/ ​spring/ ​docs/ ​current/ ​spring- ​framework- ​reference/ ​html/
scheduling.​html. You can find the relevant configuration in the following code snippet.
For clarity, we are putting this scheduler in the JavaConfig.java file:

 //src/main/java/com/packtpub/springsecurity/configuration/
 JavaConfig.java@Configuration

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html

Remember-Me Services Chapter 7

[197]

 @Import({SecurityConfig.class})
 @EnableScheduling
 public class JavaConfig {
 @Autowired
 private RememberMeTokenRepository rememberMeTokenRepository;
 @Scheduled(fixedRate = 10_000)
 public void tokenRepositoryCleaner(){
 Thread trct = new Thread(new JpaTokenRepositoryCleaner(
 rememberMeTokenRepository, 60_000L));
 trct.start();
 }
 }

Keep in mind that this configuration is not cluster-aware. Therefore, if this
is deployed to a cluster, the cleaner will execute once for every JVM that
the application is deployed to.

Start up the application and give the updates a try. The configuration that was provided
will ensure that the cleaner is executed every ten minutes. You may want to change the
cleaner task to run more frequently and to clean up the more recently used remember-me
tokens by modifying the @Scheduled declaration. You can then create a few remember-me
tokens and see that they get deleted by querying for them in the H2 database console.

Your code should look like chapter07.06-calendar.

The remember-me architecture
We have gone over the basic architecture of both TokenBasedRememberMeServices and
PersistentTokenBasedRememberMeServices, but we have not described the overall
architecture. Let's see how all of the remember-me pieces fit together.

Remember-Me Services Chapter 7

[198]

The following diagram illustrates the different components involved in the process of
validating a token-based remember-me token:

Remember-Me Services Chapter 7

[199]

As with any of the Spring Security filters, RememberMeAuthenticationFilter is invoked
from within FilterChainProxy. The job of RememberMeAuthenticationFilter is to
inspect the request, and if it is of interest, an action is taken. The
RememberMeAuthenticationFilter interface will use the RememberMeServices
implementation to determine if the user is already logged in. The RememberMeServices
interface does this by inspecting the HTTP request for a remember-me cookie that is then
validated using either the token-based validation or the persistent-based validation we
previously discussed. If the token checks out, the user will be logged in.

Remember-me and the user life cycle
The implementation of RememberMeServices is invoked at several points in the user life
cycle (the life cycle of an authenticated user's session). To assist you in your understanding
of the remember-me functionality, it can be helpful to be aware of the points in time when
remember-me services are informed of life cycle functions:

Action What should happen? The RememberMeServices
method invoked

Successful
login

Implementation sets a remember-me
cookie (if the form parameter has been
sent)

loginSuccess

Failed login Implementation should cancel the
cookie, if it's present

loginFailed

User logout Implementation should cancel the
cookie, if it's present

logout

The logout method is not present on the RememberMeServices
interface. Instead, each RememberMeServices implementation also
implements the LogoutHandler interface, which contains the logout
method. By implementing the LogoutHandler interface, each
RememberMeServices implementation can perform the necessary
cleanup when the user logs out.

Knowing where and how RememberMeServices ties into the user's life cycle will be
important when we begin to create custom authentication handlers, because we need to
ensure that any authentication processor treats RememberMeServices consistently to
preserve the usefulness and security of this functionality.

Remember-Me Services Chapter 7

[200]

Restricting the remember-me feature to an IP
address
Let's put our understanding of the remember-me architecture to use. A common
requirement is that any remember-me token should be tied to the IP address of the user that
created it. This adds additional security to the remember-me feature. To do this, we only
need to implement a custom PersistentTokenRepository interface. The configuration
changes that we will make will illustrate how to configure a custom RememberMeServices.
Throughout this section, we will take a look at IpAwarePersistentTokenRepository,
which is included in the chapter's source code. The IpAwarePersistenTokenRepository
interface ensures that the series identifier is internally combined with the current user's IP
address, and the series identifier includes only the identifier externally. This means that
whenever a token is looked up or saved, the current IP address is used to lookup or persist
the token. In the following code snippets, you can see
how IpAwarePersistentTokenRepository works. If you want to dig in even deeper, we
encourage you to view the source code included with the chapter.

The trick to looking up the IP address is using RequestContextHolder of Spring Security.
The relevant code is as follows:

It should be noted that in order to use RequestContextHolder, you need
to ensure you have set up your web.xml file to use
RequestContextListener. We have already performed this setup for
our sample code. However, this can be useful when utilizing the example
code in an external application. Refer to the Javadoc of
IpAwarePersistentTokenRepository for details on how to set this up.

Take a look at the following code snippet:

//src/main/java/com/packtpub/springsecurity/web/authentication/rememberme/
 IpAwarePersistentTokenRepository.java

 private String ipSeries(String series) {
 ServletRequestAttributes attributes = (ServletRequestAttributes)
 RequestContextHolder.getRequestAttributes();
 return series + attributes.getRequest().getRemoteAddr();
 }

Remember-Me Services Chapter 7

[201]

We can build on this method to force tokens that are saved to include the IP address in the
series identifier, as follows:

 public void createNewToken(PersistentRememberMeToken token) {
 String ipSeries = ipSeries(token.getSeries());
 PersistentRememberMeToken ipToken = tokenWithSeries(token, ipSeries);
 this.delegateRepository.createNewToken(ipToken);
 }

You can see that we first created a new series with the IP address concatenated to it.
The tokenWithSeries method is just a helper that creates a new token with all of the same
values, except a new series. We then submit the new token with a series identifier that
includes the IP address to delegateRepsository, which is the original implementation of
PersistentTokenRepository.

Whenever the tokens are looked up, we require that the current user's IP address is
appended to the series identifier. This means that there is no way for a user to obtain a
token for a user with a different IP address:

 public PersistentRememberMeToken getTokenForSeries(String seriesId) {
 String ipSeries = ipSeries(seriesId);
 PersistentRememberMeToken ipToken = delegateRepository.
 getTokenForSeries(ipSeries);
 return tokenWithSeries(ipToken, seriesId);
 }

The remainder of the code is quite similar. Internally, we construct the series identifier to be
appended to the IP address, and externally, we present only the original series identifier. By
doing this, we enforce the constraint that only the user who created the remember-me token
can use it.

Let's review the Spring configuration included in this chapter's sample code for
IpAwarePersistentTokenRepository. In the following code snippet, we first create the
IpAwarePersistentTokenRepository declaration that wraps a new
JpaPersistentTokenRepository declaration. We then initialize
a RequestContextFilter class by instantiating an OrderedRequestContextFilter
interface:

//src/main/java/com/packtpub/springsecurity/web/configuration/WebMvcConfig.
java

 @Bean
 public IpAwarePersistentTokenRepository
 tokenRepository(RememberMeTokenRepository rmtr) {
 return new IpAwarePersistentTokenRepository(

Remember-Me Services Chapter 7

[202]

 new JpaPersistentTokenRepository(rmtr)
);
 }
 @Bean
 public OrderedRequestContextFilter requestContextFilter() {
 return new OrderedRequestContextFilter();
 }

In order for Spring Security to utilize our custom RememberMeServices, we need to
update our security configuration to point to it. Go ahead and make the following updates
to SecurityConfig.java:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 ...
 // remember me configuration
 http.rememberMe()
 .key("jbcpCalendar")
 .rememberMeServices(rememberMeServices);
 }
 @Bean
 public RememberMeServices rememberMeServices
 (PersistentTokenRepository ptr){
 PersistentTokenBasedRememberMeServices rememberMeServices = new
 PersistentTokenBasedRememberMeServices("jbcpCalendar",
 userDetailsService, ptr);
 return rememberMeServices;
 }

Now, go ahead and start up the application. You can use the second computer along with a
plugin, such as Firebug, to manipulate your remember-me cookie. If you try to use the
remember-me cookie from one computer on another computer, Spring Security will now
ignore the remember-me request and delete the associated cookie.

Your code should look like chapter07.07-calendar.

Note that the IP-based remember-me tokens may behave unexpectedly if the user is behind
a shared or load balanced network infrastructure, such as a multi-WAN corporate
environment. In most scenarios, however, the addition of an IP address to the remember-me
function provides an additional, welcome layer of security to a helpful user feature.

Remember-Me Services Chapter 7

[203]

Custom cookie and HTTP parameter names
Curious users may wonder if the expected value of the remember-me form field checkbox
to be remember-me, or the cookie name to be remember-me, can be changed to obscure the
use of Spring Security. This change can be made in one of two locations. Take a look at the
following steps:

First, we can add additional methods to the rememberMe method, as follows:1.

 //src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java

 http.rememberMe()
 .key("jbcpCalendar")
 .rememberMeParameter("jbcpCalendar-remember-me")
 .rememberMeCookieName("jbcpCalendar-remember-me");

Additionally, now that we've declared our own RememberMeServices2.
implementation as a Spring bean, we can simply define more properties to
change the checkbox and cookie names, as follows:

 //src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java

 @Bean
 public RememberMeServices rememberMeServices
 (PersistentTokenRepository ptr){
 PersistentTokenBasedRememberMeServices rememberMeServices = new
 PersistentTokenBasedRememberMeServices("jbcpCalendar",
 userDetailsService, ptr);
 rememberMeServices.setParameter("obscure-remember-me");
 rememberMeServices.setCookieName("obscure-remember-me");
 return rememberMeServices;
 }

Don't forget to change the login.html page to set the name of the checkbox3.
form field and to match the parameter value we declared. Go ahead and make
the updates to login.html, as follows:

 //src/main/resources/templates/login.html

 <input type="checkbox" id="remember" name=" obscure-remember-me"
 value="true"/>

Remember-Me Services Chapter 7

[204]

We'd encourage you to experiment here to ensure you understand how these4.
settings are related. Go ahead and start up the application and give it a try.

Your code should look like chapter07.08-calendar.

Summary
This chapter explained and demonstrated the use of the remember-me feature in Spring
Security. We started with the most basic setup and learned how to gradually make the
feature more secure. Specifically, we learned about a token-based remember-me service and
how to configure it. We also explore how persistent-based remember-me services can
provide additional security, how it works, and the additional considerations necessary
when using them.

We also covered the creation of a custom remember-me implementation that restricts the
remember-me token to a specific IP address. We saw various other ways to make the
remember-me feature more secure.

Up next is certificate-based authentication, and we will discuss how to use trusted client-
side certificates to perform authentication.

8
Client Certificate Authentication

with TLS
Although username and password authentication is extremely common, as we discussed in
Chapter 1, Anatomy of an Unsafe Application, and in Chapter 2, Getting Started with Spring
Security, forms of authentication exist that allow users to present different types of
credentials. Spring Security caters to these requirements as well. In this chapter, we'll move
beyond form-based authentication to explore authentication using trusted client-side
certificates.

During the course of this chapter, we will cover the following topics:

Learning how client certificate authentication is negotiated between the user's
browser and a compliant server
Configuring Spring Security to authenticate users with client certificates
Understanding the architecture of client certificate authentication in Spring
Security
Exploring advanced configuration options related to client certificate
authentication
Reviewing pros, cons, and common troubleshooting steps when dealing with
client certificate authentication

Client Certificate Authentication with TLS Chapter 8

[206]

How does client certificate authentication
work?
Client certificate authentication requires a request for information from the server and a
response from the browser to negotiate a trusted authentication relationship between the
client (that is, a user's browser) and the server application. This trusted relationship is built
through the use of the exchange of trusted and verifiable credentials, known as certificates.

Unlike much of what we have seen up to this point, with client certificate authentication,
the servlet container or application server itself is typically responsible for negotiating the
trust relationship between the browser and server by requesting a certificate, evaluating it,
and accepting it as valid.

Client certificate authentication is also known as mutual authentication and is part of the
Secure Sockets Layer (SSL) protocol and its successor, Transport Layer Security (TLS). As
mutual authentication is part of the SSL and TLS protocols, it follows that an HTTPS
connection (secured with SSL or TLS) is required in order to make use of client certificate
authentication. For more details on SSL/TLS support in Spring Security, please refer to our
discussion and the implementation of SSL/TLS in the Appendix, Additional Reference Material.
Setting up SSL/TLS in Tomcat (or the application server you have been using to follow
along with the examples) is required to implement client certificate authentication. As in the
Appendix, Additional Reference Material we will refer to SSL/TLS as SSL for the remainder of
this chapter.

The following sequence diagram illustrates the interaction between the client browser and
the web server when negotiating an SSL connection and validating the trust of a client
certificate used for mutual authentication:

Client Certificate Authentication with TLS Chapter 8

[207]

We can see that the exchange of two certificates, the server and client certificates, provides
the authentication that both parties are known and can be trusted to continue their
conversation securely. In the interest of clarity, we omit some details of the SSL handshake
and trust the checking of the certificates themselves; however, you are encouraged to do
further reading in the area of the SSL and TLS protocols, and certificates in general, as many
good reference guides on these subjects exist. RFC 5246, The Transport Layer Security (TLS)
Protocol Version 1.2 (http:/ ​/ ​tools. ​ietf. ​org/ ​html/ ​rfc5246), is a good place to begin
reading about client certificate presentation, and if you'd like to get into more detail, SL and
TLS: Designing and Building Secure Systems, Eric Rescorla, Addison-Wesley (https:/ ​/ ​www.
amazon.​com/​SSL-​TLS- ​Designing- ​Building- ​Systems/ ​dp/ ​0201615983) has an incredibly
detailed review of the protocol and its implementation.

An alternative name for client certificate-based authentication is X.509 authentication. The
term X.509 is derived from the X.509 standard, originally published by the ITU-T
organization for use in directories based on the X.500 standard (the origins of LDAP, as you
may recall from Chapter 6, LDAP Directory Services). Later, this standard was adapted for
use in securing internet communications.

We mention this here because many of the classes in Spring Security related to this subject
refer to X.509. Remember that X.509 doesn't define the mutual authentication protocol itself,
but defines the format and structure of the certificates and the encompassing trusted
certificate authorities instead.

Setting up the client certificate authentication
infrastructure
Unfortunately for you as an individual developer, being able to experiment with client
certificate authentication requires some non-trivial configuration and setup prior to the
relatively easy integration with Spring Security. As these setup steps tend to cause a lot of
problems for first-time developers, we felt it was important to walk you through them.

We assume that you are using a local, self-signed server certificate, self-signed client
certificates, and Apache Tomcat. This is typical of most development environments;
however, it's possible that you may have access to a valid server certificate, a certificate
authority (CA), or another application server. If this is the case, you may use these setup
instructions as guidelines and configure your environment in an analogous manner. Please
refer to the SSL setup instructions in the Appendix, Additional Reference Material for
assistance on configuring Tomcat and Spring Security to work with SSL in a standalone
environment.

http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
https://www.amazon.com/SSL-TLS-Designing-Building-Systems/dp/0201615983
https://www.amazon.com/SSL-TLS-Designing-Building-Systems/dp/0201615983
https://www.amazon.com/SSL-TLS-Designing-Building-Systems/dp/0201615983
https://www.amazon.com/SSL-TLS-Designing-Building-Systems/dp/0201615983
https://www.amazon.com/SSL-TLS-Designing-Building-Systems/dp/0201615983
https://www.amazon.com/SSL-TLS-Designing-Building-Systems/dp/0201615983
https://www.amazon.com/SSL-TLS-Designing-Building-Systems/dp/0201615983
https://www.amazon.com/SSL-TLS-Designing-Building-Systems/dp/0201615983
https://www.amazon.com/SSL-TLS-Designing-Building-Systems/dp/0201615983
https://www.amazon.com/SSL-TLS-Designing-Building-Systems/dp/0201615983
https://www.amazon.com/SSL-TLS-Designing-Building-Systems/dp/0201615983
https://www.amazon.com/SSL-TLS-Designing-Building-Systems/dp/0201615983
https://www.amazon.com/SSL-TLS-Designing-Building-Systems/dp/0201615983
https://www.amazon.com/SSL-TLS-Designing-Building-Systems/dp/0201615983
https://www.amazon.com/SSL-TLS-Designing-Building-Systems/dp/0201615983
https://www.amazon.com/SSL-TLS-Designing-Building-Systems/dp/0201615983
https://www.amazon.com/SSL-TLS-Designing-Building-Systems/dp/0201615983
https://www.amazon.com/SSL-TLS-Designing-Building-Systems/dp/0201615983
https://www.amazon.com/SSL-TLS-Designing-Building-Systems/dp/0201615983
https://www.amazon.com/SSL-TLS-Designing-Building-Systems/dp/0201615983
https://www.amazon.com/SSL-TLS-Designing-Building-Systems/dp/0201615983
https://www.amazon.com/SSL-TLS-Designing-Building-Systems/dp/0201615983

Client Certificate Authentication with TLS Chapter 8

[208]

Understanding the purpose of a public key
infrastructure
This chapter focuses on setting up a self-contained development environment for the
purposes of learning and education. However, in most cases where you are integrating
Spring Security into an existing client certificate-secured environment, there will be a
significant amount of infrastructure (usually a combination of hardware and software) in
place to provide functionality, such as certificate granting and management, user self-
service, and revocation. Environments of this type define a public key infrastructure—a
combination of hardware, software, and security policies that result in a highly secure
authentication-driven network ecosystem.

In addition to being used for web application authentication, certificates or hardware
devices in these environments can be used for secure, non-repudiated email (using
S/MIME), network authentication, and even physical building access (using PKCS 11-based
hardware devices).

While the management overhead of such an environment can be high (and requires both IT
and process excellence to implement well), it is arguably one of the most secure operating
environments possible for technology professionals.

Creating a client certificate key pair
The self-signed client certificate is created in the same way as the self-signed server
certificate is created—by generating a key pair using the keytool command. A client
certificate key pair differs in that it requires the key store to be available to the web browser
and requires the client's public key to be loaded into the server's trust store (we'll explain
what this is in a moment).

If you do not wish to generate your own key right now, you may skip to the next section
and use the sample certificates in the ./src/main/resources/keys folder in the sample
chapter. Otherwise, create the client key pair, as follows:

keytool -genkeypair -alias jbcpclient -keyalg RSA -validity 365 -keystore
jbcp_clientauth.p12 -storetype PKCS12

You can find additional information about keytool, along with all of the
configuration options, at Oracle's site, here http:/ ​/​docs. ​oracle. ​com/
javase/ ​8/​docs/ ​technotes/ ​tools/ ​unix/ ​keytool. ​html/ ​keytool. ​html.

http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html/keytool.html

Client Certificate Authentication with TLS Chapter 8

[209]

Most of the arguments to keytool are fairly arbitrary for this use case. However, when
prompted to set up the first and last name (the common name, or CN, the portion of the
owner's DN) for the client certificate, ensure that the answer to the first prompt matches a
user that we have set up in our Spring Security JDBC store. For example,
admin1@example.com is an appropriate value since we have the admin1@example.com
user setup in Spring Security. An example of the command-line interaction is as follows:

What is your first and last name?
[Unknown]: admin1@example.com
... etc
Is CN=admin1@example.com, OU=JBCP Calendar, O=JBCP, L=Park City, ST=UT,
C=US correct?
[no]: yes

We'll see why this is important when we configure Spring Security to access the information
from the certificate-authenticated user. We have one final step before we can set up
certificate authentication within Tomcat, which is explained in the next section.

Configuring the Tomcat trust store
Recall that the definition of a key pair includes both a private and public key. Similar to
SSL certificates verifying and securing server communication, the validity of the client
certificate needs to be verified by the certifying authority that created it.

As we have created our own self-signed client certificate using the keytool command, the
Java VM will not implicitly trust it as having been assigned by a trusted certificate
authority.

Let's take a look at the following steps:

We will need to force Tomcat to recognize the certificate as a trusted certificate.1.
We do this by exporting the public key from the key pair and adding it to the
Tomcat trust store.
Again, if you do not wish to perform this step now, you can use the existing trust2.
store in .src/main/resources/keys and skip to where we configure
server.xml later in this section.

Client Certificate Authentication with TLS Chapter 8

[210]

We'll export the public key to a standard certificate file named3.
jbcp_clientauth.cer, as follows:

 keytool -exportcert -alias jbcpclient -keystore jbcp_clientauth.p12
 -storetype PKCS12 -storepass changeit -file jbcp_clientauth.cer

Next, we'll import the certificate into the trust store (this will create the trust4.
store, but in a typical deployment scenario you'd probably already have some
other certificates in the trust store):

 keytool -importcert -alias jbcpclient -keystore tomcat.truststore
 -file jbcp_clientauth.cer

The preceding command will create the trust store called tomcat.truststore
and prompt you for a password (we chose the password changeit). You'll also
see some information about the certificate and will finally be asked to confirm that
you do trust the certificate, as follows:

 Owner: CN=admin1@example.com, OU=JBCP Calendar, O=JBCP, L=Park City,
 ST=UT, C=US
 Issuer: CN=admin1@example.com, OU=JBCP Calendar, O=JBCP, L=Park City,
 ST=UT, C=US
 Serial number: 464fc10c
 Valid from: Fri Jun 23 11:10:19 MDT 2017 until: Thu Feb 12 10:10:19
 MST 2043

 //Certificate fingerprints:

 MD5: 8D:27:CE:F7:8B:C3:BD:BD:64:D6:F5:24:D8:A1:8B:50
 SHA1: C1:51:4A:47:EC:9D:01:5A:28:BB:59:F5:FC:10:87:EA:68:24:E3:1F
 SHA256: 2C:F6:2F:29:ED:09:48:FD:FE:A5:83:67:E0:A0:B9:DA:C5:3B:
 FD:CF:4F:95:50:3A:
 2C:B8:2B:BD:81:48:BB:EF
 Signature algorithm name: SHA256withRSA
 Version: 3

 //Extensions

 #1: ObjectId: 2.5.29.14 Criticality=false
 SubjectKeyIdentifier [
 KeyIdentifier [
 0000: 29 F3 A7 A1 8F D2 87 4B EA 74 AC 8A 4B BC 4B 5D
)......K.t..K.K]
 0010: 7C 9B 44 4A ..DJ
]
]
 Trust this certificate? [no]: yes

Client Certificate Authentication with TLS Chapter 8

[211]

Remember the location of the new tomcat.truststore file, as we will need to reference it
in our Tomcat configuration.

What's the difference between a key store and a trust store?

The Java Secure Socket Extension (JSSE) documentation defines a key
store as a storage mechanism for private keys and their corresponding
public keys. The key store (containing key pairs) is used to encrypt or
decrypt secure messages, and so on. The trust store is intended to store
only public keys for trusted communication partners when verifying an
identity (similar to how the trust store is used in certificate authentication).
In many common administration scenarios, however, the key store and
trust store are combined into a single file (in Tomcat, this would be done
through the use of the keystoreFile and truststoreFile attributes of
the connector). The format of the files themselves can be exactly the same.
Really, each file can be any JSSE-supported keystore format, including
Java KeyStore (JKS), PKCS 12, and so on.

As previously mentioned, we assume you have already configured the SSL5.
Connector, as outlined in the Appendix, Additional Reference Material. If you do not
see the keystoreFile or keystorePass attributes in server.xml, it means you
should visit the Appendix, Additional Reference Material to get SSL set up.
Finally, we'll need to point Tomcat at the trust store and enable client certificate6.
authentication. This is done by adding three additional attributes to the SSL
connector in the Tomcat server.xml file, as follows:

//sever.xml

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"
maxThreads="150" scheme="https" secure="true"
sslProtocol="TLS"
keystoreFile="<KEYSTORE_PATH>/tomcat.keystore"
keystorePass="changeit"
truststoreFile="<CERT_PATH>/tomcat.truststore"
truststorePass="changeit"
clientAuth="true"
/>

Client Certificate Authentication with TLS Chapter 8

[212]

The server.xml file can be found at TOMCAT_HOME/conf/server.xml.
If you are interacting with Tomcat using Eclipse or Spring Tool Suite, you
will find a project named Servers that contains server.xml. For
example, if you are using Tomcat 8, the path in your Eclipse workspace
might look something similar to /Servers/Tomcat v7.0 Server at
localhost-config/server.xml.

This should be the remaining configuration required to trigger Tomcat to request7.
a client certificate when an SSL connection is made. Of course, you will want to
ensure you replace both <CERT_PATH> and <KEYSTORE_PATH> with the full
paths. For example, on a Unix-based operating system, the path might look like
this: /home/mickknutson/packt/chapter8/keys/tomcat.keystore.
Go ahead and try to start up Tomcat to ensure that the server starts up without8.
any errors in the logs.

There's also a way to configure Tomcat to optionally use client certificate
authentication—we'll enable this later in the chapter. For now, we require
the use of client certificates to even connect to the Tomcat server in the
first place. This makes it easier to diagnose whether or not you have set
this up correctly!

Configuring Tomcat in Spring Boot
We can also configure the embedded Tomcat instance within Spring Boot, which is how we
will be working with Tomcat for the rest of this chapter.

Configuring Spring Boot to use our newly created certificates is as straightforward as
properties of the YAML entry, as shown in the following code snippet:

 server:
 port: 8443
 ssl:
 key-store: "classpath:keys/jbcp_clientauth.p12"
 key-store-password: changeit
 keyStoreType: PKCS12
 keyAlias: jbcpclient
 protocol: TLS

The final step is to import the certificate into the client browser.

Client Certificate Authentication with TLS Chapter 8

[213]

Importing the certificate key pair into a browser
Depending on what browser you are using, the process of importing a certificate may differ.
We will provide instructions for installations of Firefox, Chrome, and Internet Explorer
here, but if you are using another browser, please consult its help section or your favorite
search engine for assistance.

Using Firefox
Perform the following steps to import the key store containing the client certificate key pair
in Firefox:

Click on Edit | Preferences.1.
Click on the Advanced button.2.
Click on the Encryption tab.3.
Click on the View Certificates button. The Certificate Manager window should4.
open up.
Click on the Your Certificates tab.5.
Click on the Import... button.6.
Browse to the location where you saved the jbcp_clientauth.p12 file and7.
select it. You will need to enter the password (that is, changeit) that you used
when you created the file.

The client certificate should be imported, and you should see it on the list.

Using Chrome
Perform the following steps to import the key store containing the client certificate key pair
in Chrome:

Click on the wrench icon on the browser toolbar.1.
Select Settings.2.
Click on Show advanced settings....3.
In the HTTPS/SSL section, click on the Manage certificates... button.4.
In the Your Certificates tab, click on the Import... button.5.

Client Certificate Authentication with TLS Chapter 8

[214]

Browse to the location where you saved the jbcp_clientauth.p12 file and6.
select it.
You will need to enter the password (that is, changeit) that you used when you7.
created the file.
Click on OK.8.

Using Internet Explorer
As Internet Explorer is tightly integrated into the Windows OS, it's a bit easier to import the
key store. Let's take a look at the following steps:

Double-click on the jbcp_clientauth.p12 file in Windows Explorer. The1.
Certificate Import Wizard window should open.
Click on Next and accept the default values until you are prompted for the2.
certificate password.
Enter the certificate password (that is, changeit) and click Next.3.
Accept the default Automatically select the certificate store option and click4.
Next.
Click on Finish.5.

To verify that the certificate was installed correctly, you will need to perform another series
of steps:

Open the Tools menu (Alt + X) in Internet Explorer.1.
Click on the Internet Options menu item.2.
Click on the Content tab.3.
Click on the Certificates button.4.
Click on the Personal tab, if it is not already selected. You should see the5.
certificate listed here.

Wrapping up testing
You should now be able to connect to the JBCP calendar site using the client certificate.
Navigate to https://localhost:8443/, taking care to use HTTPS and 8443. If all is set
up correctly, you should be prompted for a certificate when you attempt to access the
site—in Firefox, the certificate is displayed as follows:

Client Certificate Authentication with TLS Chapter 8

[215]

You'll notice, however, that if you attempt to access a protected section of the site, such as
the My Events section, you'll be redirected to the login page. This is because we haven't yet
configured Spring Security to recognize the information in the certificate—at this point, the
negotiation between the client and server has stopped at the Tomcat server itself.

Client Certificate Authentication with TLS Chapter 8

[216]

You should start with the code from chapter08.00-calendar.

Troubleshooting client certificate authentication
Unfortunately, if we said that getting client certificate authentication configured correctly
for the first time—without anything going wrong—was easy, we'd be lying to you. The fact
is, although this is a great and very powerful security apparatus, it is poorly documented by
both the browser and web server manufacturers, and the error messages, when present, can
be confusing at best and misleading at worst.

Remember that, at this point, we have not involved Spring Security in the equation at all, so
a debugger will most likely not help you (unless you have the Tomcat source code handy).
There are some common errors and things to check.

You aren't prompted for a certificate when you access the site. There are many possible
causes for this, and this can be the most puzzling problem to try to solve. Here are some
things to check:

Ensure that the certificate has been installed in the browser client you are using.1.
Sometimes, you need to restart the whole browser (close all windows) if you
attempted to access the site previously and were rejected.
Ensure you are accessing the SSL port for the server (typically 8443 in a2.
development setup), and have selected the HTTPS protocol in your URL. The
client certificates are not presented in insecure browser connections. Make sure
the browser also trusts the server SSL certificate, even if you have to force it to
trust a self-signed certificate.
Ensure you have added the clientAuth directive to your Tomcat configuration3.
(or the equivalent for whatever application server you are using).
If all else fails, use a network analyzer or packet sniffer, such as Wireshark4.
(http:/ ​/​www. ​wireshark. ​org/ ​) or Fiddler2 (http:/ ​/​www. ​fiddler2. ​com/ ​), to
review the traffic and SSL key exchange over the wire (check with your IT
department first—many companies do not allow tools of this kind on their
networks).

http://www.wireshark.org/
http://www.wireshark.org/
http://www.wireshark.org/
http://www.wireshark.org/
http://www.wireshark.org/
http://www.wireshark.org/
http://www.wireshark.org/
http://www.wireshark.org/
http://www.wireshark.org/
http://www.wireshark.org/
http://www.fiddler2.com/
http://www.fiddler2.com/
http://www.fiddler2.com/
http://www.fiddler2.com/
http://www.fiddler2.com/
http://www.fiddler2.com/
http://www.fiddler2.com/
http://www.fiddler2.com/
http://www.fiddler2.com/
http://www.fiddler2.com/

Client Certificate Authentication with TLS Chapter 8

[217]

If you are using a self-signed client certificate, make sure the public key has been5.
imported into the server's trust store. If you are using a CA-assigned certificate,
make sure the CA is trusted by the JVM or that the CA certificate is imported into
the server's trust store.
Internet Explorer, in particular, does not report details of client certificate failures6.
at all (it simply reports a generic Page Cannot be Displayed error). Use
Firefox for diagnosing if an issue you are seeing is related to client certificates or
not.

Configuring client certificate authentication in
Spring Security
Unlike the authentication mechanisms that we have utilized thus far, the use of client
certificate authentication results in the user's request being preauthenticated by the server.
As the server (Tomcat) has already established that the user has provided a valid and
trustworthy certificate, Spring Security can simply trust this assertion of validity.

An important component of the secure login process is still missing, that is, the
authorization of the authenticated user. This is where our configuration of Spring Security
comes in—we must add a component to Spring Security that will recognize the certificate
authentication information from the user's HTTP session (populated by Tomcat), and then
validate the presented credentials against the Spring Security UserDetailsService
invocation. The invocation of UserDetailsService will result in the determination of
whether the user declared in the certificate is known to Spring Security at all, and then it
will assign GrantedAuthority as per the usual login rules.

Configuring client certificate authentication using
the security namespace
With all of the complexity of LDAP configuration, configuring client certificate
authentication is a welcome reprieve. If we are using the security namespace style of
configuration, the addition of client certificate authentication is a simple one-line
configuration change, added within the HttpSecurity declaration. Go ahead and make
the following changes to the provided SecurityConfig.java configuration:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va
 http.x509().userDetailsService(userDetailsService);

Client Certificate Authentication with TLS Chapter 8

[218]

Observe that the .x509() method references our existing
userDetailsService() configuration. For simplicity, we use the
UserDetailsServiceImpl implementation covered in Chapter 5,
Authentication with Spring Data. However, we could easily swap this out
with any other implementation (that is, the LDAP or JDBC-based
implementation covered in Chapter 4, JDBC-Based Authentication).

After restarting the application, you'll again be prompted for a client certificate, but this
time, you should be able to access areas of the site requiring authorization. You can see
from the logs (if you have them enabled) that you have been logged in as the
admin1@example.com user.

Your code should look like chapter08.01-calendar.

How does Spring Security use certificate information?
As previously discussed, Spring Security's involvement in certificate exchange is to pick up
information from the presented certificate and map the user's credentials to a user service.
What we did not see in the use of the .x509() method was the magic that makes this
happen. Recall that when we set the client certificate up, a DN similar to an LDAP DN was
associated with the certificate:

 Owner: CN=admin@example.com, OU=JBCP Calendar, O=JBCP, L=Park City,
ST=UT, C=US

Spring Security uses the information in this DN to determine the actual username of the
principal and it will look for this information in UserDetailsService. In particular, it
allows for the specification of a regular expression, which is used to match a portion of the
DN established with the certificate, and the utilization of this portion of the DN as the
principal name. The implicit, default configuration for the .x509() method would be as
follows:

 http.x509()
 .userDetailsService(userDetailsService)
 .subjectPrincipalRegex("CN=(.*?),");

Client Certificate Authentication with TLS Chapter 8

[219]

We can see that this regular expression would match the admin1@example.com value as
the principal's name. This regular expression must contain a single matching group, but it
can be configured to support the username and DN issuance requirements of your
application. For example, if the DNs for your organization's certificates include the email
or userid fields, the regular expression can be modified to use these values as the
authenticated principal's name.

How Spring Security certificate authentication works
Let's review the various actors involved in the review and evaluation of the client
certificates and translation into a Spring Security-authenticated session, with the help of the
following diagram:

Client Certificate Authentication with TLS Chapter 8

[220]

We can see that
o.s.s.web.authentication.preauth.x509.X509AuthenticationFilter is
responsible for examining the request of an unauthenticated user for the presentation of
client certificates. If it sees that the request includes a valid client certificate, it will extract
the principal using
o.s.s.web.authentication.preauth.x509.SubjectDnX509PrincipalExtractor,
using a regular expression matching the certificate owner's DN, as previously described.

Be aware that although the preceding diagram indicates that examination
of the certificate occurs for unauthenticated users, a check can also be
performed when the presented certificate identifies a different user than
the one that was previously authenticated. This would result in a new
authentication request using the newly provided credentials. The reason
for this should be clear—any time a user presents a new set of credentials,
the application must be aware of this and react in a responsible fashion by
ensuring that the user is still able to access it.

Once the certificate has been accepted (or rejected/ignored), as with other authentication
mechanisms, an Authentication token is built and passed along
to AuthenticationManager for authentication. We can now review the very brief
illustration of the
o.s.s.web.authentication.preauth.PreAuthenticatedAuthenticationProvider

handling of the authentication token:

Client Certificate Authentication with TLS Chapter 8

[221]

Though we will not go over them in detail, there are a number of other preauthenticated
mechanisms supported by Spring Security. Some examples include Java EE role mapping
(J2eePreAuthenticatedProcessingFilter), WebSphere integration
(WebSpherePreAuthenticatedProcessingFilter), and Site Minder-style authentication
(RequestHeaderAuthenticationFilter). If you understand the process flow of client
certificate authentication, understanding these other authentication types is significantly
easier.

Client Certificate Authentication with TLS Chapter 8

[222]

Handling unauthenticated requests with
AuthenticationEntryPoint
Since X509AuthenticationFilter will continue processing the request if authentication
fails, we'll need to handle situations where the user does not authenticate successfully and
has requested a protected resource. The way that Spring Security allows developers to
customize this is by plugging in a custom o.s.s.web.AuthenticationEntryPoint
implementation. In a default form login scenario, LoginUrlAuthenticationEntryPoint
is used to redirect the user to a login page if they have been denied access to a protected
resource and are not authenticated.

In contrast, in typical client certificate authentication environments, alternative methods of
authentication are simply not supported (remember that Tomcat expects the certificate well
before the Spring Security form login takes place anyway). As such, it doesn't make sense to
retain the default behavior of redirection to a form login page. Instead, we'll modify the
entry point to simply return an HTTP 403 Forbidden message, using
the o.s.s.web.authentication.Http403ForbiddenEntryPoint. Go ahead and make
the following updates in your SecurityConfig.java file, as follows:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va

 @Autowired
 private Http403ForbiddenEntryPoint forbiddenEntryPoint;
 http.exceptionHandling()
 .authenticationEntryPoint(forbiddenEntryPoint)
 .accessDeniedPage("/errors/403");
 ...
 @Bean
 public Http403ForbiddenEntryPoint forbiddenEntryPoint(){
 return new Http403ForbiddenEntryPoint();
 }

Now, if a user tries to access a protected resource and is unable to provide a valid
certificate, they will be presented with the following page, instead of being redirected to the
login page:

Client Certificate Authentication with TLS Chapter 8

[223]

Your code should now look like chapter08.02-calendar.

Other configuration or application flow adjustments that are commonly performed with
client certificate authentication are as follows:

Removal of the form-based login page altogether
Removal of the logout link (as there's no reason to log out because the browser
will always present the user's certificate)
Removal of the functionality to rename the user account and change the
password
Removal of the user registration functionality (unless you are able to tie it into the
issuance of a new certificate)

Supporting dual-mode authentication
It is also possible that some environments may support both certificate-based and form-
based authentication. If this is the case in your environment, it is also possible (and trivial)
to support it with Spring Security. We can simply leave the default
AuthenticationEntryPoint interface (redirecting to the form-based login page) intact
and allow the user to log in using the standard login form if they do not supply a client
certificate.

Client Certificate Authentication with TLS Chapter 8

[224]

If you choose to configure your application this way, you'll need to adjust the Tomcat SSL
settings (change as appropriate for your application server). Simply change the
clientAuth directive to want, instead of true:

 <Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"
 maxThreads="150" scheme="https" secure="true"
 sslProtocol="TLS"
 keystoreFile="conf/tomcat.keystore"
 keystorePass="password"
 truststoreFile="conf/tomcat.truststore"
 truststorePass="password"
 clientAuth="want"
 />

We'll also need to remove the authenticationEntryPoint() method that we configured
in the previous exercise, so that the standard form-based authentication workflow takes
over if the user isn't able to supply a valid certificate upon the browser first being queried.

Although this is convenient, there are a few things to keep in mind about dual-mode (form-
based and certificate-based) authentication, as follows:

Most browsers will not reprompt the user for a certificate if they have failed
certificate authentication once, so make sure that your users are aware that they
may need to reenter the browser to present their certificate again.
Recall that a password is not required to authenticate users with certificates;
however, if you are still using UserDetailsService to support your form-
based authenticated users, this may be the same UserDetailsService object
that you use to give the PreAuthenticatedAuthenticationProvider
information about your users. This presents a potential security risk, as users who
you intend to sign in only with certificates could potentially authenticate using
form login credentials.

There are several ways to solve this problem, and they are described in the following list:

Ensure that the users authenticating with certificates have an appropriately
strong password in your user store.
Consider customizing your user store to clearly identify users who are enabled
for form-based login. This can be tracked with an additional field in the table
holding user account information, and with minor adjustments to the SQL
queries used by the JpaDaoImpl object.

Client Certificate Authentication with TLS Chapter 8

[225]

Configure a separate user details store altogether for users who are logging in as
certificate-authenticated users, to completely segregate them from users that are
allowed to use form-based login.
Dual-mode authentication can be a powerful addition to your site and can be
deployed effectively and securely, provided that you keep in mind the situations
under which users will be granted access to it.

Configuring client certificate authentication
using Spring beans
Earlier in this chapter, we reviewed the flow of the classes involved in client certificate
authentication. As such, it should be straightforward for us to configure the JBCP calendar
using explicit beans. By using the explicit configuration, we will have additional
configuration options at our disposal. Let's take a look and see how to use explicit
configuration:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va

 @Bean
 public X509AuthenticationFilter x509Filter(AuthenticationManager
 authenticationManager){
 return new X509AuthenticationFilter(){{
 setAuthenticationManager(authenticationManager);
 }};
 }
 @Bean
 public PreAuthenticatedAuthenticationProvider
 preauthAuthenticationProvider(AuthenticationUserDetailsService
 authenticationUserDetailsService){
 return new PreAuthenticatedAuthenticationProvider(){{
setPreAuthenticatedUserDetailsService(authenticationUserDetailsService);
 }};
 }
 @Bean
 public UserDetailsByNameServiceWrapper
 authenticationUserDetailsService(UserDetailsService
userDetailsService){
 return new UserDetailsByNameServiceWrapper(){{
 setUserDetailsService(userDetailsService);
 }};
 }

Client Certificate Authentication with TLS Chapter 8

[226]

We'll also need to remove the x509() method and add x509Filter to our filter chain, and
add our AuthenticationProvider implementation to AuthenticationManger:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http.x509()
 //.userDetailsService(userDetailsService)
 .x509AuthenticationFilter(x509Filter());
 ...
 }
 @Override
 public void configure(AuthenticationManagerBuilder auth)
 throws Exception {
 auth
 .authenticationProvider(preAuthAuthenticationProvider)
 .userDetailsService(userDetailsService)
 .passwordEncoder(passwordEncoder());
 }

Now, give the application a try. Nothing much has changed from a user perspective, but as
developers, we have opened the door to a number of additional configuration options.

Your code should now look like chapter08.03-calendar.

Additional capabilities of bean-based
configuration
The use of Spring bean-based configuration provides us with additional capabilities
through the exposure of bean properties that aren't exposed via the security namespace
style of configuration.

Client Certificate Authentication with TLS Chapter 8

[227]

Additional properties available on X509AuthenticationFilter are as follows:

Property Description Default

continueFilterChainOn
UnsuccessfulAuthentication

If false, a failed authentication will throw
an exception rather than allow the
request to continue. This would typically
be set in cases where a valid certificate is
expected and required to access the
secured site. If true, the filter chain will
proceed, even if there is a failed
authentication.

true

checkForPrincipalChanges If true, the filter will check to see if the
currently authenticated username differs
from the username presented in the client
certificate. If so, authentication against
the new certificate will be performed and
the HTTP session will be invalidated
(optionally, see the next attribute). If
false, once the user is authenticated, they
will remain authenticated even if they
present different credentials.

false

invalidateSessionOn
PrincipalChange

If true, and the principal in the request
changes, the user's HTTP session will be
invalidated prior to being
reauthenticated. If false, the session will
remain—note that this may introduce
security risks.

true

Client Certificate Authentication with TLS Chapter 8

[228]

The PreAuthenticatedAuthenticationProvider implementation has a couple of
interesting properties available to us, which are listed in the following table:

Property Description Default

preAuthenticatedUser
DetailsService

This property is used to build a full UserDetails
object from the username extracted from the
certificate.

None

throwExceptionWhen
TokenRejected

If true, a BadCredentialsException exception will
be thrown when the token is not constructed properly
(does not contain a username or certificate). It is
typically set to true in environments where
certificates are used exclusively.

None

In addition to these properties, there are a number of other opportunities for implementing
interfaces or extending classes involved in certificate authentication to further customize
your implementation.

Considerations when implementing client
certificate authentication
Client certificate authentication, while highly secure, isn't for everyone and isn't appropriate
for every situation.

The pros of client certificate authentication are listed, as follows:

Certificates establish a framework of mutual trust and verifiability that both
parties (client and server) are who they say they are
Certificate-based authentication, if implemented properly, is much more difficult
to spoof or tamper with than other forms of authentication
If a well-supported browser is used and configured correctly, client certificate
authentication can effectively act as a single sign-on solution, enabling
transparent login to all certificate-secured applications

Client Certificate Authentication with TLS Chapter 8

[229]

The cons of client certificate authentication are listed, as follows:

The use of certificates typically requires the entire user population to have them.
This can lead to both a user training burden and an administrative burden. Most
organizations deploying certificate-based authentication on a large scale must
have sufficient self-service and helpdesk support for certificate maintenance,
expiration tracking, and user assistance.
The use of certificates is generally an all-or-nothing affair, meaning that mixed-
mode authentication and offering support for non-certificated users is not
provided due to the complexity of web server configuration, or poor application
support.
The use of certificates may not be well supported by all users in your user
population, including the ones who use mobile devices.
The correct configuration of the infrastructure required to support certificate-
based authentication may require advanced IT knowledge.

As you can see, there are both benefits and drawbacks to client certificate authentication.
When implemented correctly, it can be a very convenient mode of access for your users and
has extremely attractive security and non-repudiation properties. You will need to
determine your particular situation to see whether or not this type of authentication is
appropriate.

Summary
In this chapter, we examined the architecture, flow, and Spring Security support for client
certificate-based authentication. We have covered the concepts and overall flow of client
certificate (mutual) authentication. We explored the important steps required to configure
Apache Tomcat for a self-signed SSL and client certificate scenario.

We also learned about configuring Spring Security to understand certificate-based
credentials presented by clients. We covered the architecture of Spring Security classes
related to certificate authentication. We also know how to configure a Spring bean-style
client certificate environment. We also covered the pros and cons of this type of
authentication.

It's quite common for developers unfamiliar with client certificates to be confused by many
of the complexities of this type of environment. We hope that this chapter has made this
complicated subject a bit easier to understand and implement! In the next chapter, we will
discuss how you can accomplish single sign-on with OpenID.

9
Opening up to OAuth 2

OAuth 2 is a very popular form of trusted identity management that allows users to
manage their identity through a single trusted provider. This convenient feature provides
users with the security of storing their password and personal information with the trusted
OAuth 2 provider, optionally disclosing personal information upon request. Additionally,
the OAuth 2-enabled website offers the confidence that the users providing OAuth 2
credentials are who they say they are.

In this chapter, we will cover the following topics:

Learning to set up your own OAuth 2 application in less than 5 minutes
Configuring the JBCP calendar application with a very rapid implementation of
OAuth 2
Learning the conceptual architecture of OAuth 2 and how it provides your site
with trustworthy user access
Implementing OAuth 2-based user registration
Experimenting with OAuth 2 attribute exchange for user profile functionality
Demonstrating how we can trigger automatic authentication to the previous
OAuth 2 provider
Examining the security offered by OAuth 2-based login

Opening up to OAuth 2 Chapter 9

[231]

The promising world of OAuth 2
As an application developer, you may have heard the term OAuth 2 thrown around a lot.
OAuth 2 has been widely adopted by web service and software companies around the
world and is integral to the way these companies interact and share information. But what
exactly is it? In a nutshell, OAuth 2 is a protocol that allows distinct parties to share
information and resources in a secure and reliable manner.

What about OAuth 1.0?

Built with the same motivation, OAuth 1.0 was designed and ratified in
2007. However, it was criticized for being overly complex and also had
issues with imprecise specifications, which led to insecure
implementation. All of these issues contributed to poor adoption for
OAuth 1.0, and eventually led to the design and creation of OAuth 2.
OAuth 2 is the successor to OAuth 1.0.

It is also important to note that OAuth 2 is not backward compatible with
OAuth 1.0, and so OAuth 2 applications cannot integrate with OAuth 1.0
service providers.

This type of login—through a trusted third-party—has been in existence for a long time, in
many different forms (for example, Microsoft Passport became one of the more notable
central login services on the web for some time). The distinct advantage of OAuth 2 is that
the OAuth 2 provider needs to implement only the public OAuth 2 protocol to be
compatible with any site seeking to integrate login with OAuth 2.

You can refer to the OAuth 2.0 specification at https:/ ​/​tools. ​ietf. ​org/
html/ ​rfc6749.

The following diagram illustrates the high-level relationship between a site integrating
OAuth 2 during the login process and the Facebook OAuth 2 provider, for example:

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749

Opening up to OAuth 2 Chapter 9

[232]

We can see that submitting a form post will initiate a request to the OAuth provider,
resulting in the provider displaying an authorization dialog asking the user to allow
jbcpcalendar to gain permission to specific information from your OAuth provider
account. This request contains a uri parameter called code. Once granted, the user is
redirected back to jbcpcalendar, and the code parameter is included in the
uri parameter. Then, the request is redirected to the OAuth provider again, to authorize
jbcpcalendar. The OAuth provider then responds with an access_token that can be
used to access the user's OAuth information that jbcpcalendar was granted access to.

Opening up to OAuth 2 Chapter 9

[233]

Don't trust OAuth 2 unequivocally!

Here, you can see a fundamental assumption that can fool users of the
system. It is possible for us to sign up for an OAuth 2 provider account,
which would make it appear as though we were James Gosling, even
though we obviously are not. Do not make the false assumption that just
because a user has a convincing-sounding OAuth 2 (or OAuth 2 delegate
provider), that he/she is the authentic person without requiring additional
forms of identification. Thinking about it another way, if someone came to
your door just claiming he was James Gosling, would you let him in
without verifying his ID?

The OAuth 2-enabled application then redirects the user to the OAuth 2 provider, and the
user presents his credentials to the provider, which is then responsible for making an access
decision. Once the access decision has been made by the provider, the provider redirects the
user to the originating site, which is now assured of the user's authenticity. OAuth 2 is
much easier to understand once you have tried it. Let's add OAuth 2 to the JBCP calendar
login screen now!

Signing up for an OAuth 2 application
In order to get the full value out of the exercise in this section (and be able to test login), you
will need to create an application with a service provider. Currently, Spring Social supports
Twitter, Facebook, Google, LinkedIn, and GitHub, and the list is growing.

To get the full value out of the exercises in this chapter, we recommend you have accounts
with at least Twitter and GitHub. We have set up accounts for the
jbcpcalendar application, which we will be using for the remainder of this chapter.

Enabling OAuth authentication with Spring
Security
We can see a common theme among the external authentication providers examined over
the next several chapters. Spring Security provides convenient wrappers around the
provider integrations that are actually developed outside the Spring ecosystem.

Opening up to OAuth 2 Chapter 9

[234]

In this vein, the Spring Social project (http:/ ​/​projects. ​spring. ​io/​spring- ​social/ ​)
provides the underlying OAuth 2 provider discovery and request/response negotiation for
the Spring Security OAuth 2 functionality.

Additional required dependencies
Let's take a look at the following steps:

In order to utilize OAuth, we will need to include provider-specific dependencies1.
and their transitive dependencies. This can be done in Gradle by updating the
build.gradle file, as shown in the following code snippet:

 //build.gradle

 compile("org.springframework.boot:spring-boot-starter-
 social-facebook")
 compile("org.springframework.boot:spring-boot-starter-
 social-linkedin")
 compile("org.springframework.boot:spring-boot-starter-
 social-twitter")

Using Spring Boot includes references to Facebook, Twitter, and LinkedIn starter2.
dependencies, as shown in the preceding code snippet. To add other providers,
we must include the provider dependency and include the version. This can be
done in Gradle by updating the build.gradle file, as shown in the following
code snippet:

 //build.gradle

 compile("org.springframework.social:spring-social-google:
 latest.release ")
 compile("org.springframework.social:spring-social-github:
 latest.release ")
 compile("org.springframework.social:spring-social-linkedin:
 latest.release ")

You should start with the source in chapter09.00-calendar.

http://projects.spring.io/spring-social/
http://projects.spring.io/spring-social/
http://projects.spring.io/spring-social/
http://projects.spring.io/spring-social/
http://projects.spring.io/spring-social/
http://projects.spring.io/spring-social/
http://projects.spring.io/spring-social/
http://projects.spring.io/spring-social/
http://projects.spring.io/spring-social/
http://projects.spring.io/spring-social/
http://projects.spring.io/spring-social/
http://projects.spring.io/spring-social/
http://projects.spring.io/spring-social/
http://projects.spring.io/spring-social/

Opening up to OAuth 2 Chapter 9

[235]

When writing the OAuth login form, we will need to replace the username and3.
password fields with OAuth fields. Go ahead and make the following updates to
your login.html file:

 //src/main/resources/templates/login.html

 <div class="form-actions">
 <input id="submit" class="btn" name="submit" type="submit"
 value="Login"/>
 </div>
 </form>

 <h3>Social Login</h3>

 <form th:action="@{/signin/twitter}" method="POST"
 class="form-horizontal">
 <input type="hidden" name="scope" value="public_profile" />
 <div class="form-actions">
 <input id="twitter-submit" class="btn" type="submit"
 value="Login using
 Twitter"/>
 </div>
 </form>
 </div>

We can make similar edits to the signup form, as shown in the following code4.
snippet:

 //src/main/resources/templates/signup/form.html

 </fieldset>
 </form>

 <h3>Social Login</h3>

 <form th:action="@{/signin/twitter}" method="POST"
 class="form-horizontal">
 <input type="hidden" name="scope" value="public_profile" />
 <div class="form-actions">
 <input id="twitter-submit" class="btn" type="submit"
 value="Login using Twitter"/>
 </div>
 </form>
 </div>

Opening up to OAuth 2 Chapter 9

[236]

You will notice that we have added a scope field to define the OAuth 2 details we are
interested in retrieving during authentication.

OAuth 2.0 API Scopes: Scopes allow a provider to define the API data
accessible to client applications. When an API is created by a provider,
they define one scope for each API represented and action. Once an API is
created and define the scopes, the client applications can request these
defined permissions when they initiate an authorization flow and include
them in the access token as part of the scope request parameter.

Each provider might have slightly different API scopes, such as r_basicprofile
and r_emailaddress, but the API scope is also limited to the application configuration. As
such, an application might only request access to email or contacts, not the entire user
profile or provider actions such as posting to a user's wall.

You'll notice that we don't offer the remember me option with OAuth 2 login. This is due to
the fact that the redirection to and from the vendor causes the remember me checkbox
value to be lost so that when the user is successfully authenticated, they no longer have the
remember me option indicated. This is unfortunate, but ultimately increases the security of
OAuth 2 as a login mechanism for our site, as OAuth 2 forces the user to establish a trusted
relationship with the provider with each and every login.

Configuring OAuth 2 support in Spring
Security
Using Spring Social, we can enable OAuth 2-specific provider endpoints for intercepting
provider form submissions.

Local UserConnectionRepository
The UsersConnectionRepository interface is a data access interface for managing a
global store of users' connections to service providers. It provides data access operations
that apply to multiple user records, as shown in the following code snippet:

//src/main/java/com/packtpub/springsecurity/configuration/SocialConfig.java

 @Autowired
 private UsersConnectionRepository usersConnectionRepository;
 @Autowired
 private ProviderConnectionSignup providerConnectionSignup;

Opening up to OAuth 2 Chapter 9

[237]

 @Bean
 public ProviderSignInController providerSignInController() {
 ((JdbcUsersConnectionRepository) usersConnectionRepository)
 .setConnectionSignUp(providerConnectionSignup);
 ...
 }

Creating local database entries for provider
details
Spring Security provides support to save provider details in a separate set of database
tables, in case we want to save the user in a local data store, but don’t want to include that
data in an existing User table:

 //src/main/java/com/packtpub/springsecurity/configuration/
 SocialDatabasePopulator.java

 @Component
 public class SocialDatabasePopulator
 implements InitializingBean {
 private final DataSource dataSource;
 @Autowired
 public SocialDatabasePopulator(final DataSource dataSource) {
 this.dataSource = dataSource;
 }
 @Override
 public void afterPropertiesSet() throws Exception {
 ClassPathResource resource = new ClassPathResource(
 "org/springframework/social/connect/jdbc/
 JdbcUsersConnectionRepository.sql");
 executeSql(resource);
 }
 private void executeSql(final Resource resource) {
 ResourceDatabasePopulator populator = new ResourceDatabasePopulator();
 populator.setContinueOnError(true);
 populator.addScript(resource);
 DatabasePopulatorUtils.execute(populator, dataSource);
 }
 }

This InitializingBean interface is executed at load time and will execute
JdbcUsersConnectionRepository.sql which is located in the spring-social-core-
[VERSION].jar file on the classpath, seeding the following schema into our local database:

 spring-social-core-

Opening up to OAuth 2 Chapter 9

[238]

[VERSION].jar#org/springframework/social/connect/jdbc/
 JdbcUsersConnectionRepository.sql

 create table UserConnection(
 userId varchar(255) not null,
 providerId varchar(255) not null,
 providerUserId varchar(255),
 rank int not null,
 displayName varchar(255),
 profileUrl varchar(512),
 imageUrl varchar(512),
 accessToken varchar(512) not null,
 secret varchar(512),
 refreshToken varchar(512),
 expireTime bigint,
 primary key (userId, providerId, providerUserId));

 create unique index UserConnectionRank on UserConnection(userId,
providerId,
 rank);

Now that we have a table to store provider details, we can configure
ConnectionRepository to save provider details at runtime.

The custom UserConnectionRepository interface
We need to create a UserConnectionRepository interface, and we can leverage
JdbcUsersConnectionRepository as the implementation, which is based on the
JdbcUsersConnectionRepository.sql schema we generated at load time, as follows:

 //src/main/java/com/packtpub/springsecurity/configuration/
 DatabaseSocialConfigurer.java

 public class DatabaseSocialConfigurer extends SocialConfigurerAdapter
{
 private final DataSource dataSource;
 public DatabaseSocialConfigurer(DataSource dataSource) {
 this.dataSource = dataSource;
 }
 @Override
 public UsersConnectionRepository getUsersConnectionRepository(
 ConnectionFactoryLocator connectionFactoryLocator) {
 TextEncryptor textEncryptor = Encryptors.noOpText();
 return new JdbcUsersConnectionRepository(
 dataSource, connectionFactoryLocator, textEncryptor);
 }

Opening up to OAuth 2 Chapter 9

[239]

 @Override
 public void addConnectionFactories(ConnectionFactoryConfigurer config,
 Environment env) {
 super.addConnectionFactories(config, env);
 }
 }

Now, every time a user connects to a registered provider, the connection details will be
saved into our local database.

The ConnectionSignup flow
In order to save the provider details into a local repository, we have created a
ConnectionSignup object, which is a command that signs up a new user in the event that
no userid can be mapped from Connection which allows for implicitly creating a local
user profile from connection data during a provider sign-in attempt:

 //src/main/java/com/packtpub/springsecurity/authentication/
 ProviderConnectionSignup.java

 @Service
 public class ProviderConnectionSignup implements ConnectionSignUp {
 ...;
 @Override
 public String execute(Connection<?> connection) {
 ...
 }
 }

Executing the OAuth 2 provider connection
workflow
In order to save the provider details, we need to fetch the available details from the
provider, available via the OAuth 2 connection. Next, we create a CalendarUser table from
the available details. Note that we need to create at least one GrantedAuthority role.
Here, we have used CalendarUserAuthorityUtils#createAuthorities to
create ROLE_USER GrantedAuthority:

 //src/main/java/com/packtpub/springsecurity/authentication/
 ProviderConnectionSignup.java

 @Service

Opening up to OAuth 2 Chapter 9

[240]

 public class ProviderConnectionSignup implements ConnectionSignUp {
 ...
 @Override
 public String execute(Connection<?> connection) {
 UserProfile profile = connection.fetchUserProfile();
 CalendarUser user = new CalendarUser();
 if(profile.getEmail() != null){
 user.setEmail(profile.getEmail());
 }
 else if(profile.getUsername() != null){
 user.setEmail(profile.getUsername());
 }
 else {
 user.setEmail(connection.getDisplayName());
 }
 user.setFirstName(profile.getFirstName());
 user.setLastName(profile.getLastName());
 user.setPassword(randomAlphabetic(32));
 CalendarUserAuthorityUtils.createAuthorities(user);
 ...
 }
 }

Adding OAuth 2 users
Now that we have created CalendarUser from our provider details, we need to save that
User account into our database using CalendarUserDao. We then return the
CalendarUser email, as that is what we have been using in the JBCP calendar for the
username, as follows:

//src/main/java/com/packtpub/springsecurity/authentication/
ProviderConnectionSignup.java

@Service
public class ProviderConnectionSignup
implements ConnectionSignUp {
 @Autowired
 private CalendarUserDao calendarUserDao;
 @Override
 public String execute(Connection<?> connection) {...
calendarUserDao.createUser(user);
return user.getEmail();
 }
}

Opening up to OAuth 2 Chapter 9

[241]

Now, we have a local User account in our database based on the provider details.

This is an additional database entry, as we have already saved the
provider details into the UserConnection table earlier.

OAuth 2 controller sign-in flow
Now, to complete the SocialConfig.java configuration, we need to construct
ProviderSignInController, which is initialized with ConnectionFactoryLocator,
usersConnectionRepository, and SignInAdapter. The ProviderSignInController
interface is a Spring MVC controller for handling the provider user sign-in flow. An HTTP
POST request to /signin/{providerId} initiates a user sign-in with {providerId}.
Submitting an HTTP GET request to
/signin/{providerId}?oauth_token&oauth_verifier||code will receive
the {providerId} authentication callback and establish the connection.

A ServiceLocator interface is used for creating the ConnectionFactory instances. This
factory supports lookup by providerId and by apiType, based on the included service
providers found within Spring Boot's AutoConfiguration:

//src/main/java/com/packtpub/springsecurity/configuration/SocialConfig.java

 @Autowired
 private ConnectionFactoryLocator connectionFactoryLocator;
 @Bean
 public ProviderSignInController providerSignInController() {
 ...
 return new ProviderSignInController(connectionFactoryLocator,
 usersConnectionRepository, authSignInAdapter());
 }

This will allow submissions to a specific provider uri to be intercepted, and will begin the
OAuth 2 connection flow.

Opening up to OAuth 2 Chapter 9

[242]

Automatic user authentication
Let's take a look at the following steps:

The ProviderSignInController controller is initialized with an authentication1.
SignInAdapter, which is used to complete a provider sign-in attempt by signing
in the local user account with the specified ID:

 //src/main/java/com/packtpub/springsecurity/configuration/
 SocialConfig.java

 @Bean
 public SignInAdapter authSignInAdapter() {
 return (userId, connection, request) -> {
 SocialAuthenticationUtils.authenticate(connection);
 return null;
 };
 }

In the SingInAdapter bean, from the preceding code snippet, we used a custom2.
authentication utility method to create an Authentication object in the form of
UsernamePasswordAuthenticationToken, and added it to SecurityContext
based on the details returned from the OAuth 2 provider:

 //src/main/java/com/packtpub/springsecurity/authentication/
 SocialAuthenticationUtils.java

 public class SocialAuthenticationUtils {
 public static void authenticate(Connection<?> connection) {
 UserProfile profile = connection.fetchUserProfile();
 CalendarUser user = new CalendarUser();
 if(profile.getEmail() != null){
 user.setEmail(profile.getEmail());
 }
 else if(profile.getUsername() != null){
 user.setEmail(profile.getUsername());
 }
 else {
 user.setEmail(connection.getDisplayName());
 }
 user.setFirstName(profile.getFirstName());
 user.setLastName(profile.getLastName());
 UsernamePasswordAuthenticationToken authentication = new
 UsernamePasswordAuthenticationToken(user, null,
 CalendarUserAuthorityUtils.createAuthorities(user));
 SecurityContextHolder.getContext()
 .setAuthentication(authentication);

Opening up to OAuth 2 Chapter 9

[243]

 }
 }

The final details required to connect to a provider is the application ID and secret
key obtained when creating the provider application are as follows:

 //src/main/resources/application.yml:

 spring
 ## Social Configuration:
 social:
 twitter:
 appId: cgceheRX6a8EAE74JUeiRi8jZ
 appSecret: XR0J2N0Inzy2y2poxzot9oSAaE6MIOs4QHSWzT8dyeZaaeawep

Now we have the required details to connect to the Twitter JBCP calendar, and3.
we can start the JBCP calendar and log in with a Twitter provider.

Your code should now look like chapter09.01-calendar.

At this point, you should be able to complete a full login using Twitter's OAuth 24.
provider. The redirects that occur are as follows, first, we initiate the OAuth 2
provider login as shown in the following screenshot:

Opening up to OAuth 2 Chapter 9

[244]

We are then redirected to the provider authorization page, requesting the user to
grant permission to the jbcpcalendar application as shown in the following
screenshot:

After authorizing the jbcpcalendar application, the user is redirected to the5.
jbcpcalendar application and automatically logged in using the provider
display name:

Opening up to OAuth 2 Chapter 9

[245]

At this point, the user exists in the application and is authenticated and6.
authorized with a single GrantedAuthority of ROLE_USER, but if we navigate
to My Events, the user will be allowed to view this page. However, no events
exist for CalendarUser:

Try to create an event for this user to verify that the user credentials that were7.
created correctly in the CalendarUser table.
To verify that the provider details were created correctly, we can open the H28.
admin console and query the USERCONNECTION table to verify that standard
connection details were saved, as shown in the following screenshot:

Opening up to OAuth 2 Chapter 9

[246]

Additionally, we can verify the CALENDAR_USERS table, which has also been9.
populated with the provider details:

Now we have the user registered in our local database, and we also have the ability to
interact with the registered provider based on authorized access to specific provider details.

Additional OAuth 2 providers
We have successfully integrated a single OAuth 2 provider using one of the three current
support providers for Spring Social. There are several other providers available; we are
going to add a few more providers so our users have more than one option. Spring Social
currently supports Twitter, Facebook, and LinkedIn providers natively. Including
additional providers will require additional libraries to gain this support, which will be
covered later in this chapter.

Opening up to OAuth 2 Chapter 9

[247]

Let's take a look at the following steps:

In order to add Facebook or LinkedIn providers into the JBCP calendar1.
application, additional application properties need to be set, and each configured
provider will automatically be registered with the appId and appSecret keys
from the provider application, as follows:

 //src/main/resources/application.yml

 spring:
 social:
 # Twitter
 twitter:
 appId: cgceheRX6a8EAE74JUeiRi8jZ
 appSecret: XR0J2N0Inzy2y2poxzot9oSAaE6MIOs4QHSWzT8dyeZaaeawep
 # facebook
 facebook:
 appId: 299089913898983
 appSecret: 01639f125103752ec408affc92515d0e
 # Linked
 linkedin:
 appId: 866qpyhnq6f6o5
 appSecret: KsFKoOmcGCiLfGfO

We can now add the new login options to our login.html file, and2.
the form.html signup page, to include one new <form> tag for each new
provider:

 //src/main/resources/templates/login.html

 <h3>Social Login</h3>
 <form th:action="@{/signin/twitter}" method="POST"
 class="form-horizontal">
 <input type="hidden" name="scope" value="public_profile" />
 <div class="form-actions">
 <input id="twitter-submit" class="btn" type="submit"
 value="Login using Twitter"/>
 </div>
 </form>

 <form th:action="@{/signin/facebook}" method="POST"
 class="form-horizontal"
 <input type="hidden" name="scope" value="public_profile" />
 <div class="form-actions">
 <input id="facebook-submit" class="btn" type="submit"
 value="Login using Facebook"/> </div>
 </form>

Opening up to OAuth 2 Chapter 9

[248]

 <form th:action="@{/signin/linkedin}" method="POST"
 class="form-horizontal">
 <input type="hidden" name="scope" value="r_basicprofile,
 r_emailaddress" />
 <div class="form-actions">
 <input id="linkedin-submit" class="btn" type="submit"
 value="Login using Linkedin"/>
 </div>
 </form>

Now we have the required details to connect to the additional providers for the3.
JBCP calendar, and we can restart the JBCP calendar application and test logging
in with the other OAuth 2 providers.

Your code should now look like chapter09.02-calendar.

When logging in now, we should be presented with additional provider options,
as shown in the following screenshot:

Opening up to OAuth 2 Chapter 9

[249]

The OAuth 2 user registration problem
One issue that would need to be resolved if supporting multiple providers is username
conflicts between the various provider details returned.

If you log in to the JBCP calendar application with each of the listed providers—which then
query the data that was stored in H2—you will find the data could be similar, if not exactly
the same, based on the user's account details.

In the following USERCONNECTION table, we can see that the USERID column data from each
provider, is similar:

In the CALENDARUSER table, we have two possible issues. First, the user details used for
EMAIL, which is the JBCP calendar user ID , is not an email for some of the providers.
Second, it is still possible that the user identifier for two different providers will be the
same:

Opening up to OAuth 2 Chapter 9

[250]

We are not going to dive into the various ways to detect and correct this possible issue, but
it is worth noting for future reference.

Registering non-standard OAuth 2 providers
In order to include additional providers, we need to perform a few extra steps to include
custom providers into the login flow, as follows:

For each provider, we need to include the provider dependencies in our1.
build.gradle file, as follows:

 //build.gradle

 dependencies {
 ...
 compile("org.springframework.social:spring-social-google:
 ${springSocialGoogleVersion}")
 compile("org.springframework.social:spring-social-github:
 ${springSocialGithubVersion}")
 }

Opening up to OAuth 2 Chapter 9

[251]

Next, we will register the providers into the JBCP calendar application with the2.
following additional application properties for the appId and appSecret key for
each provider:

 //src/main/resources/application.yml

 spring:
 social:
 # Google
 google:
 appId: 947438796602-uiob88a5kg1j9mcljfmk00quok7rphib.apps.
 googleusercontent.com
 appSecret: lpYZpF2IUgNXyXdZn-zY3gpR
 # Github
 github:
 appId: 71649b756d29b5a2fc84
 appSecret: 4335dcc0131ed62d757cc63e2fdc1be09c38abbf

Each new provider must be registered by adding the respective3.
ConnectionFactory interface. We can add a new ConnectionFactory entry
for each new Provider we intend to support, to the custom
DatabaseSocialConfigurer.java file as seen in the following:

 //src/main/java/com/packtpub/springsecurity/configuration/
 DatabaseSocialConfigurer.java

 public class DatabaseSocialConfigurer
 extends SocialConfigurerAdapter {
 ...
 @Override
 public void addConnectionFactories(
 ConnectionFactoryConfigurer config, Environment env) {
 super.addConnectionFactories(config, env);

 // Adding GitHub Connection with properties
 // from application.yml
 config.addConnectionFactory(
 new GitHubConnectionFactory(
 env.getProperty("spring.social.github.appId"),
 env.getProperty("spring.social.github.appSecret")));
 // Adding Google Connection with properties

Opening up to OAuth 2 Chapter 9

[252]

 // from application.yml
 config.addConnectionFactory(
 new GoogleConnectionFactory(
 env.getProperty("spring.social.google.appId"),
 env.getProperty("spring.social.google.appSecret")));
 }
 }

We can now add the new login options to our login.html file and form.html4.
sign up page to include one new <form> tag for each new provider:

 //src/main/resources/templates/login.html

 <h3>Social Login</h3>
 ...
 <form th:action="@{/signin/google}" method="POST"
 class="form-horizontal">
 <input type="hidden" name="scope" value="profile" />
 <div class="form-actions">
 <input id="google-submit" class="btn" type="submit"
 value="Login using
 Google"/>
 </div>
 </form>

 <form th:action="@{/signin/github}" method="POST"
 class="form-horizontal">
 <input type="hidden" name="scope" value="public_profile" />
 <div class="form-actions">
 <input id="github-submit" class="btn" type="submit"
 value="Login using
 Github"/>
 </div>
 </form>

Opening up to OAuth 2 Chapter 9

[253]

Now, we have the required details to connect to the additional providers for the5.
JBCP calendar. We can restart the JBCP calendar application and test logging in
with the additional OAuth 2 providers. When logging in now, we should be
presented with additional provider options, as shown in the following
screenshot:

Is OAuth 2 secure?
As support for OAuth 2 relies on the trustworthiness of the OAuth 2 provider and the
verifiability of the provider's response, security and authenticity are critical in order for the
application to have confidence in the user's OAuth 2-based login.

Opening up to OAuth 2 Chapter 9

[254]

Fortunately, the designers of the OAuth 2 specification were very aware of this concern, and
implemented a series of verification steps to prevent response forgery, replay attacks, and
other types of tampering, which are explained as follows:

Response forgery is prevented due to a combination of a shared secret key
(created by the OAuth 2-enabled site prior to the initial request), and a one-way
hashed message signature on the response itself. A malicious user tampering
with the data in any of the response fields without having access to the shared
secret key—and signature algorithm—would generate an invalid response.
Replay attacks are prevented due to the inclusion of a nonce, or a one-time use,
random key, which should be recorded by the OAuth 2-enabled site so that it
cannot ever be reused. In this way, even a user attempting to reissue the response
URL would be foiled because the receiving site would determine that the nonce
had been previously used, and would invalidate the request.
The most likely form of attack that could result in a compromised user interaction
would be a man-in-the-middle attack, where a malicious user could intercept the
user's interaction between their computer and the OAuth 2 provider. A
hypothetical attacker in this situation could be in a position to record the
conversation between the user's browser and the OAuth 2 provider, and record
the secret key used when the request was initiated. The attacker, in this case,
would need a very high level of sophistication and reasonably a complete
implementation of the OAuth 2 signature specification—in short, this is not likely
to occur with any regularity.

Summary
In this chapter, we reviewed OAuth 2, a relatively recent technology for user authentication
and credentials management. OAuth 2 has a very wide reach on the web and has made
great strides in usability and acceptance within the past year or two. Most public-facing
sites on the modern web should plan on having some form of OAuth 2 support, and the
JBCP calendar application is no exception!

Opening up to OAuth 2 Chapter 9

[255]

In this chapter, we learned about the following topics the OAuth 2 authentication
mechanism and its high-level architecture and key terminology. We also learned about the
OAuth 2 login and automatic user registration with the JBCP calendar application.

We also covered automatic login with OAuth 2 and the security of OAuth 2's login
responses.

We covered one of the simplest single sign-on mechanisms to implement with Spring
Security. One of the downsides is that it does not support a standard mechanism for a
single logout. In the next chapter, we will explore CAS, another standard, single sign-on
protocol that also supports single logout.

10
Single Sign-On with the Central

Authentication Service
In this chapter, we'll examine the use of the Central Authentication Service (CAS) as a
single sign-on portal for Spring Security-based applications.

During the course of this chapter, we'll cover the following topics:

Learning about CAS, its architecture, and how it benefits system administrators
and organizations of any size
Understanding how Spring Security can be reconfigured to handle the
interception of authentication requests and redirecting it to CAS
Configuring the JBCP calendar application to utilize CAS single sign-on
Gaining an understanding of how a single logout can be performed, and
configuring our application to support it
Discussing how to use CAS proxy ticket authentication for services, and
configuring our application to utilize proxy ticket authentication
Discussing how to customize the out-of-the-box JA-SIG CAS server using the
recommended war overlay approach
Integrating the CAS server with LDAP, and passing data from LDAP to Spring
Security via CAS

Single Sign-On with the Central Authentication Service Chapter 10

[257]

Introducing the Central Authentication
Service
CAS is an open source, single sign-on server, providing centralized access control, and
authentication to web-based resources within an organization. The benefits of CAS are
numerous to administrators, and it supports many applications and diverse user
communities. The benefits are as follows:

Individual or group access to resources (applications) can be configured in one
location
Broad support for a wide variety of authentication stores (to centralize user
management) provides a single point of authentication and control to a
widespread, cross-machine environment
Wide authentication support is provided for web-based and non-web-based Java
applications through CAS client libraries
A single point of reference for user credentials (via CAS) is provided so that CAS
client applications are not required to have any knowledge of the user's
credentials, or knowledge of how to verify them

In this chapter, we'll not focus much on the management of CAS, but on authentication and
how CAS can act as an authentication point for the users of our site. Although CAS is
commonly seen in intranet environments for enterprises or educational institutions, it can
also be found in use at high profile locations such as Sony Online Entertainment's public-
facing site.

Single Sign-On with the Central Authentication Service Chapter 10

[258]

High-level CAS authentication flow
At a high level, CAS is composed of a CAS server, which is the central web application for
determining authentication, and one or more CAS services, which are distinct web
applications that use the CAS server to get authenticated. The basic authentication flow of
CAS proceeds via the following actions:

The user attempts to access a protected resource on the website.1.
The user is redirected through the browser from the CAS service to the CAS2.
server to request a login.
The CAS server is responsible for user authentication. If the user is not already3.
authenticated to the CAS server, it requests credentials from the user. In the
following diagram, the user is presented with a login page.
The user submits the credentials (that is, the username and password).4.
If the user's credentials are valid, the CAS server responds with a redirect5.
through the browser with a service ticket. A service ticket is a one-time use token
used to identify a user.
The CAS service calls the CAS server back to verify that the ticket is valid, has not6.
expired, and so on. Note that this step does not occur through the browser.
The CAS server responds with an assertion indicating that trust has been7.
established. If the ticket is acceptable, trust has been established and the user may
proceed via normal authorization checking.

Single Sign-On with the Central Authentication Service Chapter 10

[259]

Visually, this behaves as illustrated in the following diagram:

Single Sign-On with the Central Authentication Service Chapter 10

[260]

We can see that there is a high level of interaction between the CAS server and the secured
application, with several data exchange handshakes required before the trust of the user can
be established. The result of this complexity is a single sign-on protocol that is quite hard to
spoof through common techniques (assuming other network security precautions, such as
the use of SSL and network monitoring, are in place).

Now that we understand how CAS authentication works in general, let's see how it applies
to Spring Security.

Spring Security and CAS
Spring Security has a strong integration capability with CAS, although it's not as tightly
integrated into the security namespace style of configuration like the OAuth2 and LDAP
integrations that we've explored thus far in the latter part of this book. Instead, much of the
configuration relies on bean wiring and configuration by reference, from the security
namespace elements to bean declarations.

The two basic pieces of CAS authentication when using Spring Security involve the
following:

Replacement of the standard AuthenticationEntryPoint implementation,
which typically handles redirection of unauthenticated users to the login page
with an implementation that redirects the user to the CAS server instead
Processing the service ticket when the user is redirected back from the CAS
server to the protected resource, through the use of a custom servlet filter

An important thing to understand about CAS is that in typical deployments, CAS is
intended to replace all of the alternative login mechanisms of your application. As such,
once we configure CAS for Spring Security, our users must use CAS exclusively as an
authentication mechanism to our application. In most cases, this is not a problem; as we
discussed in the previous section, CAS is designed to proxy authentication requests to one
or more authentication stores (similar to what Spring Security does when delegating to a
database or LDAP for authentication). From the previous diagram, we can see that our
application is no longer checking its own authentication store to validate users. Instead, it
determines the user through the use of the service ticket. However, as we will discuss later,
initially, Spring Security still needs a data store to determine the user's authorization. We
will discuss how to remove this restriction later on in the chapter.

Single Sign-On with the Central Authentication Service Chapter 10

[261]

After completing the basic CAS integration with Spring Security, we can remove the login
link from the home page and enjoy automatic redirection to CAS's login screen, where we
attempt to access a protected resource. Of course, depending on the application, it can also
be beneficial to still allow the user to explicitly log in (so that they can see customized
content, and so on).

Required dependencies
Before we got too far, we should ensure that our dependencies are updated. A list of the
dependencies that we have added with comments about when they are needed can be seen,
as follows:

 //build.gradle

 dependencies {
 // CAS:
 compile('org.springframework.security:spring-security-cas')
 ...
 }

Installing and configuring CAS
CAS has the benefit of having an extremely dedicated team behind it that has done an
excellent job of developing both quality software and accurate, straightforward
documentation on how to use it. Should you choose to follow along with the examples in
this chapter, you are encouraged to read the appropriate getting started manual for your
CAS platform. You can find this manual at https:/ ​/​apereo. ​github. ​io/ ​cas/ ​5.​1.​x/ ​index.
html.

https://apereo.github.io/cas/5.1.x/index.html
https://apereo.github.io/cas/5.1.x/index.html
https://apereo.github.io/cas/5.1.x/index.html
https://apereo.github.io/cas/5.1.x/index.html
https://apereo.github.io/cas/5.1.x/index.html
https://apereo.github.io/cas/5.1.x/index.html
https://apereo.github.io/cas/5.1.x/index.html
https://apereo.github.io/cas/5.1.x/index.html
https://apereo.github.io/cas/5.1.x/index.html
https://apereo.github.io/cas/5.1.x/index.html
https://apereo.github.io/cas/5.1.x/index.html
https://apereo.github.io/cas/5.1.x/index.html
https://apereo.github.io/cas/5.1.x/index.html
https://apereo.github.io/cas/5.1.x/index.html
https://apereo.github.io/cas/5.1.x/index.html
https://apereo.github.io/cas/5.1.x/index.html
https://apereo.github.io/cas/5.1.x/index.html
https://apereo.github.io/cas/5.1.x/index.html
https://apereo.github.io/cas/5.1.x/index.html
https://apereo.github.io/cas/5.1.x/index.html

Single Sign-On with the Central Authentication Service Chapter 10

[262]

In order to make integration as simple as possible, we have included a CAS server
application for this chapter, which can be deployed in the Spring Tool Suite or in IntelliJ,
along with the calendar application. For the examples in this chapter, we will assume that
CAS is deployed at https://localhost:9443/cas/ and the calendar application is
deployed at https://localhost:8443/. In order to work, CAS requires the use of
HTTPS. For detailed instructions on setting up HTTPS, refer to the Appendix, Additional
Reference Material.

The examples in this chapter were written using the most recent, available
version of the CAS server, 5.1.2 at the time of writing. Be aware that some
significant changes to some of the backend classes were made to CAS in
the 5.x time frame. So, if you are on an earlier version of the server, these
instructions may be slightly or significantly different for your
environment.

Let's go ahead and configure the components required for CAS authentication.

You should start the chapter off with the source from chapter10.00-
calendar and chapter10.00-cas-server.

Configuring basic CAS integration
Since the Spring Security namespace does not support CAS configuration, there are quite a
few more steps that we need to implement in order to get a basic setup working. In order to
get a high-level understanding of what is happening, you can refer to the following
diagram.

Single Sign-On with the Central Authentication Service Chapter 10

[263]

Don't worry about understanding the entire diagram right now, as we will break it into
small chunks in order to make it easy to digest:

Single Sign-On with the Central Authentication Service Chapter 10

[264]

Creating the CAS ServiceProperties object
The Spring Security setup relies on an o.s.s.cas.ServiceProperties bean in order to
store common information about the CAS service. The ServiceProperties object plays a
role in coordinating the data exchange between the various CAS components—it is used as
a data object to store CAS configuration settings that are shared (and are expected to match)
by the varying participants in the Spring CAS stack. You can view the configuration
included in the following code snippet:

//src/main/java/com/packtpub/springsecurity/configuration/CasConfig.java

 static{
 System.setProperty("cas.server", "https://localhost:9443/cas");
 System.setProperty("cas.server.login",
 "https://localhost:9443/cas/login");
 System.setProperty("cas.service",
 "https://localhost:8443");
 System.setProperty("cas.service.login",
 "https://localhost:8443/login");
 }
 @Value("#{systemProperties['cas.service.login']}")
 private String calendarServiceLogin;
 @Bean
 public ServiceProperties serviceProperties(){
 return new ServiceProperties(){{
 setService(calendarServiceLogin);
 }};
 }

You probably noticed that we leveraged system properties to use variables named
${cas.service} and ${cas.server}. Both of these values can be included in your
application, and Spring will automatically replace them with the values provided in
the PropertySources configuration. This is a common strategy when deploying a CAS
service, since the CAS server will likely change as we progress from development to
production. In this instance, we use localhost:9443 by default for the CAS server and
localhost:8443 for the calendar application. This configuration can be overridden using
a system argument when the application is taken to production. Alternatively, the
configuration can be externalized into a Java properties files. Either mechanism allows us to
externalize our configuration properly.

Single Sign-On with the Central Authentication Service Chapter 10

[265]

Adding the CasAuthenticationEntryPoint object
As we briefly mentioned earlier in this chapter, Spring Security uses
an o.s.s.web.AuthenticationEntryPoint interface to request credentials from the
user. Typically, this involves redirecting the user to the login page. With CAS, we will need
to redirect the CAS server to request a login. When we redirect to the CAS server, Spring
Security must include a service parameter that indicates where the CAS server should
send the service ticket. Fortunately, Spring Security provides the
o.s.s.cas.web.CasAuthenticationEntryPoint object, which is specifically designed
for this purpose. The configuration that is included in the sample application is as follows:

//src/main/java/com/packtpub/springsecurity/configuration/CasConfig.java

 @Value("#{systemProperties['cas.server.login']}")
 private String casServerLogin;
 @Bean
 public CasAuthenticationEntryPoint casAuthenticationEntryPoint(){
 return new CasAuthenticationEntryPoint(){{
 setServiceProperties(serviceProperties());
 setLoginUrl(casServerLogin);
 }};
 }

The CasAuthenticationEntryPoint object uses the ServiceProperties class to
specify where to send the service ticket once the user is authenticated. CAS allows for the
selective granting of access per user, per application, based on configuration. We'll examine
the particulars of this URL in a moment when we configure the servlet filter that is expected
to process it. Next, we will need to update Spring Security to utilize the bean with
the casAuthenticationEntryPoint ID. Make the following update to our
SecurityConfig.java file:

 //src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java

 @Autowired
 private CasAuthenticationEntryPoint casAuthenticationEntryPoint;
 @Override
 protected void configure(HttpSecurity http) throws Exception {
 ...
 // Exception Handling
 http.exceptionHandling()
 .authenticationEntryPoint(casAuthenticationEntryPoint)
 .accessDeniedPage("/errors/403");
 ...

Single Sign-On with the Central Authentication Service Chapter 10

[266]

Lastly, we need to ensure that the CasConfig.java file is loaded by Spring. Update the
SecurityConfig.java file, as follows:

 //src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java

 @Configuration
 @EnableWebSecurity(debug = true)
 @EnableGlobalAuthentication
 @Import(CasConfig.class)
 public class SecurityConfig extends WebSecurityConfigurerAdapter {

The last thing you need to do is to remove the existing UserDetailsService object as the
userDetailsService implementation of the AuthenticationManager, as it is no longer
required as the CasAuthenticationEntryPoint replaces it in the SecurityConfig.java
file:

 src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java
 @Override
 public void configure(AuthenticationManagerBuilder auth)
 throws Exception {
 super.configure(auth);
 //auth.userDetailsService(userDetailsService)
 // .passwordEncoder(passwordEncoder());
 }

If you start the application at this point and attempt to access the My Events page, you will
immediately be redirected to the CAS server for authentication. The default configuration of
CAS allows authentication for any user whose username is equal to the password. So, you
should be able to log in with the username admin1@example.com and the
password admin1@example.com (or user1@example.com/user1@example.com).

You'll notice, however, that even after the login, you will immediately be redirected back to
the CAS server. This is because although the destination application was able to receive the
ticket, it wasn't able to be validated, and as such the AccessDeniedException object is
handled by CAS as a rejection of the ticket.

Single Sign-On with the Central Authentication Service Chapter 10

[267]

Enabling CAS ticket verification
Referring to the diagram that we saw earlier in the Configuring basic CAS integration section,
we can see that Spring Security is responsible for identifying an unauthenticated request
and redirecting the user to CAS via the FilterSecurityInterceptor class. Adding the
CasAuthenticationEntryPoint object has overridden the standard redirect to the login
page functionality and provided the expected redirection from the application to the CAS
server. Now, we need to configure things so that, once authenticated to CAS, the user is
properly authenticated to the application.

If you remember from Chapter 9, Opening up to OAuth2, OAuth2 uses a similar redirection
approach by redirecting unauthenticated users to the OAuth2 provider for authentication,
and then back to the application with verifiable credentials. CAS differs from OAuth2. In
the CAS protocol, upon the user's return to the application, the application is expected to
call back the CAS server to explicitly validate that the credentials provided are valid and
accurate. Compare this with OAuth2, which uses the presence of a date-based nonce and
key-based signature so that the credentials passed by the OAuth2 provider can be
independently verified.

The benefit of the CAS approach is that the information passed on from the CAS server to
authenticate the user is much simpler—only a single URL parameter is returned to the
application by the CAS server. Additionally, the application itself need not track the active
or valid tickets, and instead can wholly rely on CAS to verify this information. Much as we
saw with OAuth2, a servlet filter is responsible for recognizing a redirect from CAS and
processing it as an authentication request. We can see how this is configured in our
CasConfig.java file, as follows:

//src/main/java/com/packtpub/springsecurity/configuration/CasConfig.java

 @Autowired
 private AuthenticationManager authenticationManager;
 @Bean
 public CasAuthenticationFilter casAuthenticationFilter() {
 CasAuthenticationFilter casAuthenticationFilter =
 new CasAuthenticationFilter();
 casAuthenticationFilter.setAuthenticationManager
 (authenticationManager);
 casAuthenticationFilter.setFilterProcessesUrl("/login");
 return casAuthenticationFilter;
 }

Single Sign-On with the Central Authentication Service Chapter 10

[268]

We'll then replace the formLogin() method with the custom servlet filter declaration in
our SecurityConfig.java file:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityC
onfig.java

@Autowired
private CasAuthenticationFilter casFilter;
@Override
protected void configure(HttpSecurity http) throws Exception {
 ...
/*http.formLogin()
 .loginPage("/login/form")
 .loginProcessingUrl("/login")
.failureUrl("/login/form?error")
.usernameParameter("username")
.passwordParameter("password")
.defaultSuccessUrl("/default", true
 .permitAll();*/
 http.addFilterAt(casFilter, CasAuthenticationFilter.class);
 // Exception Handling
 http.exceptionHandling()
 .authenticationEntryPoint(casAuthenticationEntryPoint)
 .accessDeniedPage("/errors/403");
 ...

Finally, a reference to the AuthenticationManager implementation is required by the
CasAuthenticationFilter object—this is added (if not already present) by exposing the
AuthenticationManager implementation as a bean declaration in
SecurityConfig.java:

 //src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java

 @Bean
 @Override
 public AuthenticationManager authenticationManager()
 throws Exception {
 return super.authenticationManager();
 }

Single Sign-On with the Central Authentication Service Chapter 10

[269]

You may have noticed that the CAS service name from the
ServiceProperties configuration evaluates to
https://localhost:8443/login. As we've seen with other
authentication filters, it is best to override the default URL
/j_spring_cas_security_check to ensure that we do not
unnecessarily disclose to malicious users that we are using Spring
Security.

The CasAuthenticationFilter object populates an Authentication implementation (a
UsernamePasswordAuthenticationToken object) with special credentials that are
recognizable by the next and final elements of a minimal CAS configuration.

Proving authenticity with the
CasAuthenticationProvider object
If you have been following the logical flow of Spring Security throughout the rest of this
book, hopefully, you already know what comes next—the Authentication token must be
inspected by an appropriate AuthenticationProvider object. CAS is no different, and as
such, the final piece of the puzzle is the configuration of an
o.s.s.cas.authentication.CasAuthenticationProvider object within
AuthenticationManager.

Let's take a look at the following steps:

First, we'll declare the Spring bean in the CasConfig.java file, as follows:1.

 //src/main/java/com/packtpub/springsecurity/configuration/
 CasConfig.java

 @Bean
 public CasAuthenticationProvider casAuthenticationProvider() {
 CasAuthenticationProvider casAuthenticationProvider = new
 CasAuthenticationProvider();
 casAuthenticationProvider.setTicketValidator(ticketValidator());
 casAuthenticationProvider.setServiceProperties
 (serviceProperties());
 casAuthenticationProvider.setKey("casJbcpCalendar");
 casAuthenticationProvider.setAuthenticationUserDetailsService(
 userDetailsByNameServiceWrapper);
 return casAuthenticationProvider;
 }

Single Sign-On with the Central Authentication Service Chapter 10

[270]

Next, we'll configure a reference to this new AuthenticationProvider object2.
in SecurityConfig.java, where our AuthenticationManager declaration
resides:

 //src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java

 @Autowired
 private CasAuthenticationProvider casAuthenticationProvider;
 @Override
 public void configure(final AuthenticationManagerBuilder auth)
 throws Exception
 {
 auth.authenticationProvider(casAuthenticationProvider);
 }

If you have any other AuthenticationProvider references remaining from3.
prior exercises, please remember to remove them from work with CAS. All of
these changes are illustrated in the preceding code. Now, we'll need to take care
of the other attributes and bean references within the
CasAuthenticationProvider class. The ticketValidator attribute refers to
an implementation of the
org.jasig.cas.client.validation.TicketValidator interface; as we are
using the CAS 3.0 authentication, we'll declare an
org.jasig.cas.client.validation.Cas30ServiceTicketValidator

instance, as follows:

 //src/main/java/com/packtpub/springsecurity/configuration/
 CasConfig.java

 @Bean
 public Cas30ProxyTicketValidator ticketValidator(){
 return new Cas30ProxyTicketValidator(casServer);
 }

The constructor argument supplied to this class should refer (once again) to the URL used
to access the CAS server. You'll note that at this point, we have moved out of the
org.springframework.security package into org.jasig, which is part of the CAS
client's JAR files. Later in this chapter, we'll see that the TicketValidator interface also
has implementations (still within the CAS client's JAR files) that support other methods of
authentication with CAS, such as the proxy ticket and SAML authentications.

Single Sign-On with the Central Authentication Service Chapter 10

[271]

Next, we can see the key attribute; this is simply used to validate the integrity
of UsernamePasswordAuthenticationToken and can be arbitrarily defined.

Just as we saw in Chapter 8, Client Certificate Authentication with TLS, the
authenticationUserDetailsService attribute refers to an
o.s.s.core.userdetails.AuthenticationUserDetailsService object that is used to
translate the username information from the Authentication token to a fully-populated
UserDetails object. The current implementation does this translation by looking up the
username returned by the CAS server and looking up UserDetails using the
UserDetailsService object. Obviously, this technique would only ever be used when we
have confirmed that the integrity of the Authentication token has not been
compromised. We configure this object with a reference to our
CalendarUserDetailsService implementation of the UserDetailsService interface:

//src/main/java/com/packtpub/springsecurity/configuration/CasConfig.java

 @Bean
 public UserDetailsByNameServiceWrapper
 authenticationUserDetailsService(
 final UserDetailsService userDetailsService){
 return new UserDetailsByNameServiceWrapper(){{
 setUserDetailsService(userDetailsService);
 }};
 }

You may wonder why a UserDetailsService interface isn't directly referenced; it's
because, just as with OAuth2, there will be additional advanced configuration options later,
which will allow details from the CAS server to be used to populate the UserDetails
object.

Your code should look like chapter10.01-calendar and
chapter10.01-cas-server.

At this point, we should be able to start both the CAS server and JBCP calendar application.
You can then visit https://localhost:8443/ and select All Events, which will redirect
you to the CAS server. You can then log in using the username admin1@example.com and
the password admin1@example.com. Upon successful authentication, you will be
redirected back to the JBCP calendar application. Excellent job!

Single Sign-On with the Central Authentication Service Chapter 10

[272]

If you are experiencing issues, it is most likely due to an improper SSL
configuration. Ensure that you have set up the trust store file as
tomcat.keystore, as described in the Appendix, Additional reference
Material.

Single logout
You may notice that if you log out of the application, you get the logout confirmation page.
However, if you click on a protected page, such as the My Events page, you are still
authenticated. The problem is that the logout is only occurring locally. So, when you
request another protected resource in the JBCP calendar application, a login is requested
from the CAS server. Since the user is still logged in to the CAS server, it immediately
returns a service ticket and logs the user back into the JBCP calendar application.

This also means that if the user had signed in to other applications using the CAS server,
they would still be authenticated to those applications, since our calendar application does
not know anything about the other applications. Fortunately, CAS and Spring Security offer
a solution to this problem. Just as we can request a login from the CAS server, we can also
request a logout. You can see a high-level diagram of how a logout works within CAS, as
follows:

Single Sign-On with the Central Authentication Service Chapter 10

[273]

The following steps explain how a single logout takes place:

The user requests to log out of the web application.1.
The web application then requests to log out of CAS by sending a redirect2.
through the browser to the CAS server.
The CAS server recognizes the user and then sends a logout request to each CAS3.
service that was authenticated. Note that these logout requests do not occur
through the browser.
The CAS server indicates which user should log out by providing the original4.
service ticket that was used to log the user in. The application is then responsible
for ensuring that the user is logged out.
The CAS server displays the logout success page to the user.5.

Configuring single logout
The configuration for a single logout is relatively simple:

The first step is to specify a logout-success-url attribute to be the logout URL1.
of the CAS server in our SecurityConfig.java file. This means that after we
log out locally, we will automatically redirect the user to the CAS server's logout
page:

 //src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java

 @Value("#{systemProperties['cas.server']}/logout")
 private static String casServerLogout;
 @Override
 protected void configure(final HttpSecurity http)
 throws Exception {
 ...
 http.logout()
 .logoutUrl("/logout")
 .logoutSuccessUrl(casServerLogout)
 .permitAll();
 }

Single Sign-On with the Central Authentication Service Chapter 10

[274]

Since we only have one application, this is all we need to make it appear as
though a single logout is occurring. This is because we log out of our
calendar application before redirecting to the CAS server logout page. This
means that by the time the CAS server sends the logout request to the
calendar application, the user has already been logged out.

If there were multiple applications and the user logged out of another2.
application, the CAS server would send a logout request to our calendar
application and not process the logout event. This is because our application is
not listening to these logout events. The solution is simple; we must create the
SingleSignoutFilter object, as follows:

 //src/main/java/com/packtpub/springsecurity/configuration/
 CasConfig.java

 @Bean
 public SingleSignOutFilter singleSignOutFilter() {
 return new SingleSignOutFilter();
 }

Next, we need to make Spring Security aware of the singleLogoutFilter3.
object in our SecurityCOnfig.java file by including it as a <custom-filter>
element. Place the single logout filter before the regular logout to ensure that it
receives the logout events, as follows:

 //src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java

 @Autowired
 private SingleSignOutFilter singleSignOutFilter;
 @Override
 protected void configure(HttpSecurity http) throws Exception {
 ...
 http.addFilterAt(casFilter, CasAuthenticationFilter.class);
 http.addFilterBefore(singleSignOutFilter, LogoutFilter.class);
 // Logout
 http.logout()
 .logoutUrl("/logout")
 .logoutSuccessUrl(casServerLogout)
 .permitAll();
 }

Single Sign-On with the Central Authentication Service Chapter 10

[275]

Under normal circumstances, we would need to make a few updates to the4.
web.xml or ApplicationInitializer file. However, for our calendar
application, we have already made the updates to our CasConfig.java file, as
follows:

 //src/main/java/com/packtpub/springsecurity/configuration/
 CasConfig.java

 @Bean
 public ServletListenerRegistrationBean
 <SingleSignOutHttpSessionListener>
 singleSignOutHttpSessionListener() {
 ServletListenerRegistrationBean<SingleSignOutHttpSessionListener>
 listener = new
 ServletListenerRegistrationBean<>();
 listener.setEnabled(true);
 listener.setListener(new SingleSignOutHttpSessionListener());
 listener.setOrder(1);
 return listener;
 }
 @Bean
 public FilterRegistrationBean
 characterEncodingFilterRegistration() {
 FilterRegistrationBean registrationBean =
 new FilterRegistrationBean
 (characterEncodingFilter());
 registrationBean.setName("CharacterEncodingFilter");
 registrationBean.addUrlPatterns("/*");
 registrationBean.setOrder(1);
 return registrationBean;
 }
 private CharacterEncodingFilter characterEncodingFilter() {
 CharacterEncodingFilter filter = new CharacterEncodingFilter(
 filter.setEncoding("UTF-8");
 filter.setForceEncoding(true);
 return filter;
 }

First, we added the SingleSignoutHttpSessionListener object to ensure that
the mapping of the service ticket to HttpSession was removed. We have also
added CharacterEncodingFilter, as recommended by the JA-SIG
documentation, to ensure that character encoding is correct when using
SingleSignOutFilter.

Single Sign-On with the Central Authentication Service Chapter 10

[276]

Go ahead and start up the application and try logging out now. You will observe5.
that you are actually logged out.
Now, try logging back in and visiting the CAS server's logout URL directly. For6.
our setup, the URL is https://localhost:9443/cas/logout.
Now, try to visit the JBCP calendar application. You will observe that you are7.
unable to access the application without authenticating again. This demonstrates
that a single logout works.

Your code should look like chapter10.02-calendar and
chapter10.02-cas-server.

Clustered environments
One of the things that we failed to mention in our initial diagram of a single logout was
how the logout is performed. Unfortunately, it is implemented by storing a mapping of the
service ticket to HttpSession as an in-memory map. This means that a single logout will
not work properly within a clustered environment:

Single Sign-On with the Central Authentication Service Chapter 10

[277]

Consider the following situation:

The user logs in to Cluster Member A
Cluster Member A validates the service ticket
It then remembers, in memory, the mapping of the service ticket to the user's
session
The user requests to log out from the CAS Server

The CAS Server sends a logout request to the CAS service, but the Cluster Member B
receives the logout request. It looks in its memory but does not find a session for Service
Ticket A, because it only exists in Cluster Member A. This means, the user has not been
logged out successfully.

Users looking for this functionality might consider looking in the JA-SIG JIRA queue and
forums for solutions to this problem. In fact, a working patch has been submitted on
https:/​/​issues.​jasig. ​org/ ​browse/ ​CASC- ​114. Keep in mind that there are a number of
ongoing discussions and proposals on the forums and in the JA-SIG JIRA queue, so you
may want to look around before deciding which solution to use. For more information
about clustering with CAS, refer to JA-SIG's clustering documentation at https:/ ​/​wiki.
jasig.​org/​display/ ​CASUM/ ​Clustering+CAS.

Proxy ticket authentication for stateless services
Centralizing our authentication using CAS seems to work rather well for web applications,
but what if we want to call a web service using CAS? In order to support this, CAS has a
notion of proxy tickets (PT). The following is a diagram of how it works:

https://issues.jasig.org/browse/CASC-114
https://issues.jasig.org/browse/CASC-114
https://issues.jasig.org/browse/CASC-114
https://issues.jasig.org/browse/CASC-114
https://issues.jasig.org/browse/CASC-114
https://issues.jasig.org/browse/CASC-114
https://issues.jasig.org/browse/CASC-114
https://issues.jasig.org/browse/CASC-114
https://issues.jasig.org/browse/CASC-114
https://issues.jasig.org/browse/CASC-114
https://issues.jasig.org/browse/CASC-114
https://issues.jasig.org/browse/CASC-114
https://issues.jasig.org/browse/CASC-114
https://issues.jasig.org/browse/CASC-114
https://issues.jasig.org/browse/CASC-114
https://wiki.jasig.org/display/CASUM/Clustering+CAS
https://wiki.jasig.org/display/CASUM/Clustering+CAS
https://wiki.jasig.org/display/CASUM/Clustering+CAS
https://wiki.jasig.org/display/CASUM/Clustering+CAS
https://wiki.jasig.org/display/CASUM/Clustering+CAS
https://wiki.jasig.org/display/CASUM/Clustering+CAS
https://wiki.jasig.org/display/CASUM/Clustering+CAS
https://wiki.jasig.org/display/CASUM/Clustering+CAS
https://wiki.jasig.org/display/CASUM/Clustering+CAS
https://wiki.jasig.org/display/CASUM/Clustering+CAS
https://wiki.jasig.org/display/CASUM/Clustering+CAS
https://wiki.jasig.org/display/CASUM/Clustering+CAS
https://wiki.jasig.org/display/CASUM/Clustering+CAS
https://wiki.jasig.org/display/CASUM/Clustering+CAS

Single Sign-On with the Central Authentication Service Chapter 10

[278]

The flow is the same as standard CAS authentication until the following things take place:

The Service Ticket is validated when an additional parameter is included called1.
the proxy ticket callback URL (PGT URL).
The CAS Server calls the PGT URL over HTTPS to validate that the PGT URL is2.
what it claims to be. Like most of CAS, this is done by performing an SSL
handshake to the appropriate URL.
The CAS Server submits the Proxy Granting Ticket (PGT) and the Proxy3.
Granting Ticket I Owe You (PGTIOU) to the PGT URL over HTTPS to ensure
that the tickets are submitted to the source they claim to be.
The PGT URL receives the two tickets and must store an association of the4.
PGTIOU to the PGT.
The CAS Server finally returns a response to the request in step 1 that includes5.
the username and the PGTIOU.
The CAS service can look up the PGT using the PGTIOU.6.

Configuring proxy ticket authentication
Now that we know how PT authentication works, we will update our current configuration
to obtain a PGT by performing the following steps:

The first step is to add a reference to a ProxyGrantingTicketStorage1.
implementation. Go ahead and add the following code to our CasConfig.java
file:

 //src/main/java/com/packtpub/springsecurity/configuration/
 CasConfig.java

 @Bean
 public ProxyGrantingTicketStorage pgtStorage() {
 return new ProxyGrantingTicketStorageImpl();
 }
 @Scheduled(fixedRate = 300_000)
 public void proxyGrantingTicketStorageCleaner(){
 pgtStorage().cleanUp();
 }

Single Sign-On with the Central Authentication Service Chapter 10

[279]

The ProxyGrantingTicketStorageImpl implementation is an in-memory2.
mapping of the PGTIOU to a PGT. Just as with logging out, this means we would
have problems in a clustered environment using this implementation. Refer to the
JA-SIG documentation to determine how to set this up in a clustered
environment: https://wiki.jasig.org/display/CASUM/Clustering+CAS.

We also need to periodically clean ProxyGrantingTicketStorage by invoking3.
its cleanUp() method. As you can see, Spring's task abstraction makes this very
simple. You may consider tweaking the configuration to clear the Ticket's, in a
separate a thread pool that makes sense for your environment. For more
information, refer to the Task Execution and Scheduling section of the Spring
Framework Reference documentation at http:/ ​/​static. ​springsource. ​org/
spring/​docs/ ​current/ ​spring- ​framework- ​reference/ ​html/ ​scheduling. ​html.
Now we need to use ProxyGrantingTicketStorage, which we have just4.
created. We just need to update the ticketValidator method to refer to our
storage and to know the PGT URL. Make the following updates to
CasConfig.java:

 //src/main/java/com/packtpub/springsecurity/configuration/
 CasConfig.java

 @Value("#{systemProperties['cas.calendar.service']}/pgtUrl")
 private String calendarServiceProxyCallbackUrl;
 @Bean
 public Cas30ProxyTicketValidator ticketValidator(){
 Cas30ProxyTicketValidator tv = new
 Cas30ProxyTicketValidator(casServer);
 tv.setProxyCallbackUrl(calendarServiceProxyCallbackUrl);
 tv.setProxyGrantingTicketStorage(pgtStorage());
 return tv;
 }

The last update we need to make is to our CasAuthenticationFilter object, to5.
store the PGTIOU to the PGT mapping in our ProxyGrantingTicketStorage
implementation when the PGT URL is called. It is critical to ensure that the
proxyReceptorUrl attribute matches the proxyCallbackUrl attribute of the
Cas20ProxyTicketValidator object, to ensure that the CAS server sends the
ticket to the URL that our application is listing to. Make the following changes to
security-cas.xml:

 //src/main/java/com/packtpub/springsecurity/configuration/
 CasConfig.java

https://wiki.jasig.org/display/CASUM/Clustering+CAS
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/scheduling.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/scheduling.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/scheduling.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/scheduling.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/scheduling.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/scheduling.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/scheduling.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/scheduling.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/scheduling.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/scheduling.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/scheduling.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/scheduling.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/scheduling.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/scheduling.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/scheduling.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/scheduling.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/scheduling.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/scheduling.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/scheduling.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/scheduling.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/scheduling.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/scheduling.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/scheduling.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/scheduling.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/scheduling.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/scheduling.html

Single Sign-On with the Central Authentication Service Chapter 10

[280]

 @Bean
 public CasAuthenticationFilter casFilter() {
 CasAuthenticationFilter caf = new CasAuthenticationFilter();
 caf.setAuthenticationManager(authenticationManager);
 caf.setFilterProcessesUrl("/login");
 caf.setProxyGrantingTicketStorage(pgtStorage());
 caf.setProxyReceptorUrl("/pgtUrl");
 return caf;
 }

Now that we have a PGT, what do we do with it? A service ticket is a one-time use token.
However, a PGT can be used to produce PT. Let's see how we can create a PT using a PGT.

You will observe that the proxyCallBackUrl attribute matches the
absolute path of our context-relative proxyReceptorUrl attribute path.
Since we are deploying our base application to https://${cas.service
}/, the full path of our proxyReceptor URL will be
https://${cas.service }/pgtUrl.

Using proxy tickets
We can now use our PGT to create a PT to authenticate it to a service. The code to do this is
quite trivially demonstrated in the EchoController class that we have included with this
chapter. You can see the relevant portions of it in the following code snippet. For additional
details, refer to the sample's source code:

 //src/main/java/com/packtpub/springsecurity/web/controllers/
 EchoController.java

 @ResponseBody
 @RequestMapping("/echo")
 public String echo() throws UnsupportedEncodingException {
 final CasAuthenticationToken token = (CasAuthenticationToken)
 SecurityContextHolder.getContext().getAuthentication();
 final String proxyTicket = token.getAssertion().getPrincipal()
 .getProxyTicketFor(targetUrl);
 return restClient.getForObject(targetUrl+"?ticket={pt}",
 String.class, proxyTicket);
 }

Single Sign-On with the Central Authentication Service Chapter 10

[281]

This controller is a contrived example that will obtain a PT that will be used to authenticate
a RESTful call to obtain all of the events for the currently logged-in user. It then writes the
JSON response to the page. The thing that may confuse some users is that the
EchoController object is actually making a RESTful call to the MessagesController
object that is in the same application. This means that the calendar application makes a
RESTful call to itself.

Go ahead and visit https://localhost:8443/echo to see it in action. The page looks a
lot like the CAS login page (minus the CSS). This is because the controller attempts to echo
our My Events page, and our application does not yet know how to authenticate a PT. This
means it is redirected to the CAS login page. Let's see how we can authenticate proxy
tickets.

Your code should look like chapter10.03-calendar and
chapter10.03-cas-server.

Authenticating proxy tickets
Let's take a look at the following steps to learn about authenticating proxy tickets:

We first need to tell the ServiceProperties object that we want to authenticate1.
all of the tickets and not just those submitted to the filterProcessesUrl
attribute. Make the following updates to CasConfig.java:

 //src/main/java/com/packtpub/springsecurity/configuration/
 CasConfig.java

 @Bean
 public ServiceProperties serviceProperties(){
 return new ServiceProperties(){{
 setService(calendarServiceLogin);
 setAuthenticateAllArtifacts(true);
 }};
 }

Single Sign-On with the Central Authentication Service Chapter 10

[282]

We then need to update our CasAuthenticationFilter object for it to know2.
that we want to authenticate all artifacts (that is, tickets) instead of only listening
to a specific URL. We also need to use an AuthenticationDetailsSource
interface that can dynamically provide the CAS service URL when validating
proxy tickets on arbitrary URLs. This is important because when a CAS service
asks whether a ticket is valid or not, it must also provide the CAS service URL
that was used to create the ticket. Since proxy tickets can occur at any URL, we
must be able to dynamically discover this URL. This is done by leveraging the
ServiceAuthenticationDetailsSource object, which will provide the
current URL from the HTTP request:

 //src/main/java/com/packtpub/springsecurity/configuration/
 CasConfig.java

 @Bean
 public CasAuthenticationFilter casFilter() {
 CasAuthenticationFilter caf = new CasAuthenticationFilter();
 caf.setAuthenticationManager(authenticationManager);
 caf.setFilterProcessesUrl("/login");
 caf.setProxyGrantingTicketStorage(pgtStorage());
 caf.setProxyReceptorUrl("/pgtUrl");
 caf.setServiceProperties(serviceProperties());
 caf.setAuthenticationDetailsSource(new
 ServiceAuthenticationDetailsSource(serviceProperties())
);
 return caf;
 }

We will also need to ensure that we are using the3.
Cas30ProxyTicketValidator object and not the
Cas30ServiceTicketValidator implementation, and indicate which proxy
tickets we will want to accept. We will configure ours to accept a proxy ticket
from any CAS service. In a production environment, you will want to consider
restricting yourself to only those CAS services that are trusted:

 //src/main/java/com/packtpub/springsecurity/configuration/
 CasConfig.java

 @Bean
 public Cas30ProxyTicketValidator ticketValidator(){
 Cas30ProxyTicketValidator tv = new
 Cas30ProxyTicketValidator(casServer);
 tv.setProxyCallbackUrl(calendarServiceProxyCallbackUrl);

Single Sign-On with the Central Authentication Service Chapter 10

[283]

 tv.setProxyGrantingTicketStorage(pgtStorage());
 tv.setAcceptAnyProxy(true);
 return tv;
 }

Lastly, we will want to provide a cache for our CasAuthenticationProvider4.
object so that we do not need to hit the CAS service for every call to our service:

 //src/main/java/com/packtpub/springsecurity/configuration/
 CasConfig.java

 @Bean
 public CasAuthenticationProvider casAuthenticationProvider() {
 CasAuthenticationProvider cap = new CasAuthenticationProvider();
 cap.setTicketValidator(ticketValidator());
 cap.setServiceProperties(serviceProperties());
 cap.setKey("casJbcpCalendar");
 cap.setAuthenticationUserDetailsService
 (userDetailsByNameServiceWrapper);
 cap.setStatelessTicketCache(ehCacheBasedTicketCache());
 return cap;
 }
 @Bean
 public EhCacheBasedTicketCache ehCacheBasedTicketCache() {
 EhCacheBasedTicketCache cache = new EhCacheBasedTicketCache();
 cache.setCache(ehcache());
 return cache;
 }
 @Bean(initMethod = "initialise", destroyMethod = "dispose")
 public Cache ehcache() {
 Cache cache = new Cache("casTickets", 50, true, false, 3_600, 900);
 return cache;
 }

As you might have suspected, the cache requires the ehcache dependency that5.
we mentioned at the beginning of the chapter. Go ahead and start the application
back up and visit https://localhost:8443/echo again. This time, you should
see a JSON response to calling our My Events page.

Single Sign-On with the Central Authentication Service Chapter 10

[284]

Your code should look like chapter10.04-calendar and
chapter10.04-cas-server.

Customizing the CAS server
All of the changes in this section will be to the CAS server and not the calendar application.
This section is only meant to be an introduction to configuring the CAS server, as a detailed
setup is certainly beyond the scope of this book. Just as with the changes for the calendar
application, we encourage you to follow along with the changes in this chapter. For more
information, you can refer to the JA-SIG CAS Wikipedia page at https:/ ​/​wiki. ​jasig. ​org/
display/​CAS/​Home.

CAS WAR overlay
The preferred way to customize CAS is to use a Maven or Gradle War overlay. With this
mechanism, you can change everything from the UI to the method in which you
authenticate to the CAS server. The concept of a WAR overlay is simple. You add a WAR
overlay, cas-server-webapp, as a dependency, and then provide additional files that will
be merged with the existing WAR overlay. For more information about the CAS WAR
overlay, refer to the JA-SIG documentation at https:/ ​/​wiki. ​jasig. ​org/ ​display/ ​CASUM/
Best+Practice+-​+Setting+Up+CAS+Locally+using+the+Maven2+WAR+Overlay+Method.

https://wiki.jasig.org/display/CAS/Home
https://wiki.jasig.org/display/CAS/Home
https://wiki.jasig.org/display/CAS/Home
https://wiki.jasig.org/display/CAS/Home
https://wiki.jasig.org/display/CAS/Home
https://wiki.jasig.org/display/CAS/Home
https://wiki.jasig.org/display/CAS/Home
https://wiki.jasig.org/display/CAS/Home
https://wiki.jasig.org/display/CAS/Home
https://wiki.jasig.org/display/CAS/Home
https://wiki.jasig.org/display/CAS/Home
https://wiki.jasig.org/display/CAS/Home
https://wiki.jasig.org/display/CAS/Home
https://wiki.jasig.org/display/CAS/Home
https://wiki.jasig.org/display/CASUM/Best+Practice+-+Setting+Up+CAS+Locally+using+the+Maven2+WAR+Overlay+Method
https://wiki.jasig.org/display/CASUM/Best+Practice+-+Setting+Up+CAS+Locally+using+the+Maven2+WAR+Overlay+Method
https://wiki.jasig.org/display/CASUM/Best+Practice+-+Setting+Up+CAS+Locally+using+the+Maven2+WAR+Overlay+Method
https://wiki.jasig.org/display/CASUM/Best+Practice+-+Setting+Up+CAS+Locally+using+the+Maven2+WAR+Overlay+Method
https://wiki.jasig.org/display/CASUM/Best+Practice+-+Setting+Up+CAS+Locally+using+the+Maven2+WAR+Overlay+Method
https://wiki.jasig.org/display/CASUM/Best+Practice+-+Setting+Up+CAS+Locally+using+the+Maven2+WAR+Overlay+Method
https://wiki.jasig.org/display/CASUM/Best+Practice+-+Setting+Up+CAS+Locally+using+the+Maven2+WAR+Overlay+Method
https://wiki.jasig.org/display/CASUM/Best+Practice+-+Setting+Up+CAS+Locally+using+the+Maven2+WAR+Overlay+Method
https://wiki.jasig.org/display/CASUM/Best+Practice+-+Setting+Up+CAS+Locally+using+the+Maven2+WAR+Overlay+Method
https://wiki.jasig.org/display/CASUM/Best+Practice+-+Setting+Up+CAS+Locally+using+the+Maven2+WAR+Overlay+Method
https://wiki.jasig.org/display/CASUM/Best+Practice+-+Setting+Up+CAS+Locally+using+the+Maven2+WAR+Overlay+Method
https://wiki.jasig.org/display/CASUM/Best+Practice+-+Setting+Up+CAS+Locally+using+the+Maven2+WAR+Overlay+Method
https://wiki.jasig.org/display/CASUM/Best+Practice+-+Setting+Up+CAS+Locally+using+the+Maven2+WAR+Overlay+Method
https://wiki.jasig.org/display/CASUM/Best+Practice+-+Setting+Up+CAS+Locally+using+the+Maven2+WAR+Overlay+Method
https://wiki.jasig.org/display/CASUM/Best+Practice+-+Setting+Up+CAS+Locally+using+the+Maven2+WAR+Overlay+Method
https://wiki.jasig.org/display/CASUM/Best+Practice+-+Setting+Up+CAS+Locally+using+the+Maven2+WAR+Overlay+Method

Single Sign-On with the Central Authentication Service Chapter 10

[285]

How does the CAS internal authentication work?
Before we jump into CAS configuration, we'll briefly illustrate the standard behavior of
CAS authentication processing. The following diagram should help you follow the
configuration steps required to allow CAS to talk to our embedded LDAP server:

While the previous diagram describes the internal flow of authentication within the CAS
server itself, it is likely that if you are implementing integration between Spring Security
and CAS, you will need to adjust the configuration of the CAS server as well. It's important,
therefore, that you understand how CAS authentication works at a high level.

Single Sign-On with the Central Authentication Service Chapter 10

[286]

The CAS server's org.jasig.cas.authentication.AuthenticationManager interface
(not to be confused with the Spring Security interface of the same name) is responsible for
authenticating the user based on the provided credentials. Much as with Spring Security,
the actual processing of the credentials is delegated to one (or more) processing class
implementing the
org.jasig.cas.authentication.handler.AuthenticationHandler interface (we
recognize that the analogous interface in Spring Security would be
AuthenticationProvider).

Finally, a
org.jasig.cas.authentication.principal.CredentialsToPrincipalResolver

interface is used to translate the credentials passed into a full
org.jasig.cas.authentication.principal.Principal object (similar behavior in
Spring Security occurs during the implementation of UserDetailsService).

While not a full review of the behind-the-scenes functionality of the CAS server, this should
help you understand the configuration steps in the next several exercises. We encourage
you to read the source code for CAS and consult the web-based documentation available at
the JA-SIG CAS Wikipedia page at http:/ ​/​www. ​ja-​sig. ​org/ ​wiki/ ​display/ ​CAS.

Configuring CAS to connect to our embedded
LDAP server
The
org.jasig.cas.authentication.principal.UsernamePasswordCredentialsToPri

ncipalResolver object that comes configured, by default, with CAS doesn't allow us to
pass back attribute information and demonstrate this feature of Spring Security CAS
integration, so we'd suggest using an implementation that does allow this.

An easy authentication handler to configure and use (especially if you have gone through
the previous chapter's LDAP exercises) is
org.jasig.cas.adaptors.ldap.BindLdapAuthenticationHandler, which
communicates with the embedded LDAP server that we used in the previous chapter. We'll
lead you through the configuration of CAS that returns user LDAP attributes in the
following guide.

http://www.ja-sig.org/wiki/display/CAS
http://www.ja-sig.org/wiki/display/CAS
http://www.ja-sig.org/wiki/display/CAS
http://www.ja-sig.org/wiki/display/CAS
http://www.ja-sig.org/wiki/display/CAS
http://www.ja-sig.org/wiki/display/CAS
http://www.ja-sig.org/wiki/display/CAS
http://www.ja-sig.org/wiki/display/CAS
http://www.ja-sig.org/wiki/display/CAS
http://www.ja-sig.org/wiki/display/CAS
http://www.ja-sig.org/wiki/display/CAS
http://www.ja-sig.org/wiki/display/CAS
http://www.ja-sig.org/wiki/display/CAS
http://www.ja-sig.org/wiki/display/CAS
http://www.ja-sig.org/wiki/display/CAS
http://www.ja-sig.org/wiki/display/CAS
http://www.ja-sig.org/wiki/display/CAS

Single Sign-On with the Central Authentication Service Chapter 10

[287]

All of the CAS configuration will take place in the WEB-
INF/deployerConfigContext.xml file of the CAS installation, and will typically involve
inserting class declarations into configuration file segments that already exist. We have
already extracted the default WEB-INF/deployerConfigContext.xml file from cas-
server-webapp and placed it in cas-server/src/main/webapp/WEB-INF.

If the contents of this file look familiar to you, it's because CAS uses the Spring Framework
for its configuration just like the JBCP calendar! We'd recommend using a good IDE with a
handy reference to the CAS source code if you want to dig into what these configuration
settings do. Remember that in this section, and all sections where we refer to WEB-
INF/deployerConfigContext.xml, we are referring to the CAS installation and not JBCP
calendar.

Let's take a look at the following steps:

First, we'll add a new BindLdapAuthenticationHandler object in place of the1.
SimpleTestUsernamePasswordAuthenticationHandler object, which will
attempt to bind the user to LDAP (just as we did in Chapter 6, LDAP Directory
Services).
The AuthenticationHandler interface will be placed in the2.
authenticationHandlers property of the authenticationManager bean:

 //cas-server/src/main/webapp/WEB-INF/deployerConfigContext.xml

 <property name="authenticationHandlers">
 <list>
 ... remove ONLY
 SimpleTestUsernamePasswordAuthenticationHandler ...
 <bean class="org.jasig.cas.adaptors
 .ldap.BindLdapAuthenticationHandler">
 <property name="filter" value="uid=%u"/>
 <property name="searchBase" value="ou=Users"/>
 <property name="contextSource" ref="contextSource"/>
 </bean>
 </list>
 </property>

Don't forget to remove the reference to the
SimpleTestUsernamePasswordAuthenticationHandler object, or at
least move its definition to after that of the
BindLdapAuthenticationHandler object, otherwise, your CAS
authentication will not use LDAP and use the stub handler instead!

Single Sign-On with the Central Authentication Service Chapter 10

[288]

You'll notice the bean reference to a contextSource bean; this defines the3.
org.springframework.ldap.core.ContextSource implementation, which
CAS will use to interact with LDAP (yes, CAS uses Spring LDAP as well). We'll
define this at the end of the file using the Spring Security namespace to simplify
its definition, as follows:

 //cas-server/src/main/webapp/WEB-INF/deployerConfigContext.xml

 <sec:ldap-server id="contextSource"
 ldif="classpath:ldif/calendar.ldif" root="dc=jbcpcalendar,dc=com" />
 </beans>

This creates an embedded LDAP instance that uses the calendar.ldif file
included with this chapter. Of course, in a production environment, you would
want to point to a real LDAP server.

Finally, we'll need to configure a new4.
org.jasig.cas.authentication.principal.CredentialsToPrincipalRe

solver object. This is responsible for translating the credentials that the user has
provided (that CAS has already authenticated using the
BindLdapAuthenticationHandler object) into a full
org.jasig.cas.authentication.principal.Principal authenticated
principal. You'll notice many configuration options in this class, which we'll skim
over. You are welcome to dive into them as you explore CAS further.
Remove UsernamePasswordCredentialsToPrincipalResolver and add the5.
following bean definition inline to the credentialsToPrincipalResolvers
property of the CAS authenticationManager bean:

 //cas-server/src/main/webapp/WEB-INF/deployerConfigContext.xml

 <property name="credentialsToPrincipalResolvers">
 <list>
 <!-- REMOVE UsernamePasswordCredentialsToPrincipalResolver -->
 <bean class="org.jasig.cas.authentication.principal
 .HttpBasedServiceCredentialsToPrincipalResolver" />
 <bean class="org.jasig.cas.authentication.principal
 .CredentialsToLDAPAttributePrincipalResolver">
 <property name="credentialsToPrincipalResolver">
 <bean class="org.jasig.cas.authentication.principal
 .UsernamePasswordCredentialsToPrincipalResolver"/>
 </property>
 <property name="filter" value="(uid=%u)"/>
 <property name="principalAttributeName" value="uid"/>
 <property name="searchBase" value="ou=Users"/>

Single Sign-On with the Central Authentication Service Chapter 10

[289]

 <property name="contextSource" ref="contextSource"/>
 <property name="attributeRepository" ref="attributeRepository"/>
 </bean>
 </list>
 </property>

You'll notice that, as with the Spring Security LDAP configuration, much of the
same behavior exists in CAS with principals being searched on property matches
below a subtree of the directory, based on a DN.

Note that we haven't yet configured the bean with the ID attributeRepository
ourselves, which should refer to an implementation of
org.jasig.services.persondir.IPersonAttributeDao. CAS ships with a
default configuration that includes a simple implementation of this interface,
org.jasig.services.persondir.support.StubPersonAttributeDao,
which will be sufficient until we configure LDAP-based attributes in a later
exercise.

Your code should look like chapter10.05-calendar and
chapter10.05-cas-server.

So, now we've configured basic LDAP authentication in CAS. At this point, you should be
able to restart CAS, start JBCP calendar (if it's not already running), and authenticate it
using admin1@example.com/admin or user1@example.com/user1. Go ahead and try it
to see that it works. If it does not work, try checking the logs and comparing your
configuration with the sample configuration.

As discussed in Chapter 5, Authentication with Spring Data, you may encounter issues
starting the application, whether or not the temporary directory named apacheds-
spring-security still exists. If the application appears to not exist, check the logs and see
if the apacheds-spring-security directory needs to be removed.

Getting the UserDetails object from a CAS
assertion
Up until this point, we have been authenticating with CAS by obtaining the roles from our
InMemoryUserDetailsManager object. However, we can create the UserDetails object
from the CAS assertion just as we did with OAuth2. The first step is to configure the CAS
server to return the additional attributes.

Single Sign-On with the Central Authentication Service Chapter 10

[290]

Returning LDAP attributes in the CAS response
We know that CAS can return the username in the CAS response, but it can also return
arbitrary attributes in the CAS response. Let's see how we can update the CAS server to
return additional attributes. Again, all of the changes in this section are in the CAS server
and not in the calendar application.

Mapping LDAP attributes to CAS attributes
The first step requires us to map LDAP attributes to attributes in the CAS assertion
(including the role attribute, which we're expecting to contain the user's
GrantedAuthority).

We'll add another bit of configuration to the CAS deployerConfigContext.xml file. This
new bit of configuration is required to instruct CAS as to how to map attributes from the
CAS Principal object to the CAS IPersonAttributes object, which will ultimately be
serialized as part of ticket validation. This bean configuration should replace the bean of the
same name—which is attributeRepository—as follows:

 //cas-server/src/main/webapp/WEB-INF/deployerConfigContext.xml

 <bean id="attributeRepository" class="org.jasig.services.persondir
 .support.ldap.LdapPersonAttributeDao">
 <property name="contextSource" ref="contextSource"/>
 <property name="requireAllQueryAttributes" value="true"/>
 <property name="baseDN" value="ou=Users"/>
 <property name="queryAttributeMapping">
 <map>
 <entry key="username" value="uid"/>
 </map>
 </property>
 <property name="resultAttributeMapping">
 <map>
 <entry key="cn" value="FullName"/>
 <entry key="sn" value="LastName"/>
 <entry key="description" value="role"/>
 </map>
 </property>
 </bean>

Single Sign-On with the Central Authentication Service Chapter 10

[291]

The functionality behind the scenes here is definitely confusing—essentially, the purpose of
this class is to map Principal back to the LDAP directory. (This is the
queryAttributeMapping property mapping the username field of Principal to the uid
attribute in the LDAP query.) The provided baseDN Java Bean property is searched using
the LDAP query (uid=user1@example.com), and attributes are read from the matching
entry. The attributes are mapped back to Principal using the key/value pairs in the
resultAttributeMapping property. We recognize that LDAP's cn and sn attributes are
being mapped to meaningful names, and the description attribute is being mapped to the
role that will be used for determining the authorization of our user.

Part of the complexity comes from the fact that a portion of this functionality is wrapped up
in a separate project called Person Directory (http:/ ​/ ​www.​ja- ​sig. ​org/ ​wiki/ ​display/
PD/​Home), which is intended to aggregate multiple sources of information about a person
into a single view. The design of Person Directory is such that it is not directly tied to
the CAS server and can be reused as part of other applications. The downside of this design
choice is that it makes some aspects of CAS configuration more complex than it initially
seems should be required.

Troubleshooting LDAP attribute mapping in CAS
We would love to set up the same type of query in LDAP as we used with
Spring Security LDAP in Chapter 6, LDAP Directory Services, to be able to
map Principal to a full LDAP-distinguished name, and then to use that
DN to look up group membership by matching on the basis of the
uniqueMember attribute of a groupOfUniqueNames entry. Unfortunately,
the CAS LDAP code doesn't have this flexibility yet, leading to the
conclusion that more advanced LDAP mapping will require extensions to
base classes in CAS.

http://www.ja-sig.org/wiki/display/PD/Home
http://www.ja-sig.org/wiki/display/PD/Home
http://www.ja-sig.org/wiki/display/PD/Home
http://www.ja-sig.org/wiki/display/PD/Home
http://www.ja-sig.org/wiki/display/PD/Home
http://www.ja-sig.org/wiki/display/PD/Home
http://www.ja-sig.org/wiki/display/PD/Home
http://www.ja-sig.org/wiki/display/PD/Home
http://www.ja-sig.org/wiki/display/PD/Home
http://www.ja-sig.org/wiki/display/PD/Home
http://www.ja-sig.org/wiki/display/PD/Home
http://www.ja-sig.org/wiki/display/PD/Home
http://www.ja-sig.org/wiki/display/PD/Home
http://www.ja-sig.org/wiki/display/PD/Home
http://www.ja-sig.org/wiki/display/PD/Home
http://www.ja-sig.org/wiki/display/PD/Home
http://www.ja-sig.org/wiki/display/PD/Home
http://www.ja-sig.org/wiki/display/PD/Home

Single Sign-On with the Central Authentication Service Chapter 10

[292]

Authorizing CAS services to access custom
attributes
Next, we will need to authorize any CAS service over HTTPS to access these attributes. To
do this, we can update RegisteredServiceImpl, which has the description Only Allows
HTTPS URLs in InMemoryServiceRegistryDaoImpl, as follows:

 //cas-server/src/main/webapp/WEB-INF/deployerConfigContext.xml

 <bean class="org.jasig.cas.services.RegisteredServiceImpl">
 <property name="id" value="1" />
 <property name="name" value="HTTPS" />
 <property name="description" value="Only Allows HTTPS Urls" />
 <property name="serviceId" value="https://**" />
 <property name="evaluationOrder" value="10000002" />
 <property name="allowedAttributes">
 <list>
 <value>FullName</value>
 <value>LastName</value>
 <value>role</value>
 </list>
 </property>
 </bean>

Acquiring a UserDetails from CAS
When we first set up CAS integration with Spring Security, we configured
UserDetailsByNameServiceWrapper, which simply translated the username presented
to CAS into a UserDetails object from UserDetailsService, which we had referenced
(in our case, it was InMemoryUserDetailsManager). Now that CAS is referencing the
LDAP server, we can set up LdapUserDetailsService, as we discussed at the tail end of
Chapter 6, LDAP Directory Services, and things will work just fine. Note that we have
switched back to modifying the calendar application and not the CAS server.

Single Sign-On with the Central Authentication Service Chapter 10

[293]

The
GrantedAuthorityFromAssertionAttributesUser
object
Now that we have modified the CAS server to return custom attributes, we'll experiment
with another capability of the Spring Security CAS integration—the ability to populate
UserDetails from the CAS assertion itself! This is actually as simple as switching the
AuthenticationUserDetailsService implementation to the
o.s.s.cas.userdetails.GrantedAuthorityFromAssertionAttributesUserDetail

sService object, whose job it is to read the CAS assertion, look for a certain attribute, and
map the value of that attribute directly to the GrantedAuthority object for the user. Let's
assume that there is an attribute entitled role that will be returned with the assertion. We'll
simply configure a new authenticationUserDetailsService bean (be sure to replace
the previously defined authenticationUserDetailsService bean) in the
CaseConfig.xml file:

//src/main/java/com/packtpub/springsecurity/configuration/CasConfig.java

 @Bean
 public AuthenticationUserDetailsService userDetailsService(){
 GrantedAuthorityFromAssertionAttributesUserDetailsService uds
 = new GrantedAuthorityFromAssertionAttributesUserDetailsService(
 new String[]{"role"}
);
 return uds;
 }

You will also want to remove the userDetailsService bean from our
SecurityConfig.java file, since it is no longer needed.

Alternative ticket authentication using SAML 1.1
Security Assertion Markup Language (SAML) is a standard, cross-platform protocol for
identify verification using structured XML assertions. SAML is supported by a wide variety
of products, including CAS (in fact, we will look at support for SAML within Spring
Security itself in a later chapter).

Single Sign-On with the Central Authentication Service Chapter 10

[294]

While the standard CAS protocol can be extended to return attributes, the SAML security
assertion XML dialect solves some of the issues with attribute passing, using the CAS
response protocol that we previously described. Happily, switching between CAS ticket
validation and SAML ticket validation is as simple as changing the TicketValidator
implementation configured in CasSecurity.java. Modify ticketValidator, as follows:

//src/main/java/com/packtpub/springsecurity/configuration/CasConfig.java

 @Bean
 public Saml11TicketValidator ticketValidator(){
 return new Saml11TicketValidator(casServer);
 }

You will notice that there is no longer a reference to the PGT URL. This is because the
Saml11TicketValidator object does not support PGT. While both could exist, we opt to
remove any references to the proxy ticket authentication, since we will no longer be using
proxy ticket authentication. If you do not want to remove it from this exercise, don't worry;
it won't prevent our application from running so long as your ticketValidator bean ID
looks similar to the previous code snippet.

In general, it's recommended that SAML ticket validation be used over CAS 2.0 ticket
validation, as it adds more non-repudiation features, including timestamp validation, and
solves the attribute problem in a standard way.

Restart the CAS server and JBCP calendar application. You can then visit
https://localhost:8443 and see that our calendar application can obtain UserDetails
from the CAS response.

Your code should now look like chapter10.06-calendar and
chapter10.06-cas-server.

How is attribute retrieval useful?
Remember that CAS provides a layer of abstraction for our application, removing the ability
for our application to directly access the user repository, and instead forcing all such access
to be performed through CAS as a proxy.

Single Sign-On with the Central Authentication Service Chapter 10

[295]

This is extremely powerful! It means that our application no longer cares what kind of
repository the users are stored in, nor does it have to worry about the details of how to
access them—this simply confirms that authentication with CAS is sufficient to prove that a
user should be able to access our application. For system administrators, this means that
should an LDAP server be renamed, moved, or otherwise adjusted, they only need to
reconfigure it in a single location—CAS. Centralizing access through CAS allows for a high
level of flexibility and adaptability in the overall security architecture of the organization.

This story to the usefulness of attribute retrieval from CAS; now all applications
authenticated through CAS have the same view of a user and can consistently display
information across any CAS-enabled environment.

Be aware that, once authenticated, Spring Security CAS does not require the CAS server,
unless the user is required to reauthenticate. This means that attributes and other user
information stored locally in the application in the user's Authentication object may
become stale over time, and possibly out of sync with the source CAS server. Take care to
set session timeouts appropriately to avoid this potential issue!

Additional CAS capabilities
CAS offers additional advanced configuration capabilities outside of those that are exposed
through the Spring Security CAS wrappers. Some of these include the following
capabilities:

Providing transparent single sign-on for users who are accessing multiple CAS-
secured applications within a configurable time window on the CAS server.
Applications can force users to authenticate to CAS by setting the renew property
to true on TicketValidator; you may want to conditionally set this property
in custom code in the event where the user is attempting to access a highly
secured area of the application.
The RESTful API for obtaining service tickets.
JA-SIG's CAS server can also act as an OAuth2 server. If you think about it, this
makes sense, since CAS is very similar to OAuth2.
Providing OAuth support for the CAS server so that it can obtain access tokens to
a delegate OAuth provider (that is, Google), or so that the CAS server can be the
OAuth server itself.

Single Sign-On with the Central Authentication Service Chapter 10

[296]

We'd encourage you to explore the full capabilities of the CAS client and server as well as
ask questions to the helpful folks in the JA-SIG community forums!

Summary
In this chapter, we learned about the CAS single sign-on portal and how it can be integrated
with Spring Security, and we also covered the CAS architecture and communication paths
between actors in a CAS-enabled environment. We also saw the benefits of CAS-enabled
applications for application developers and system administrators. We also learned about
configuring JBCP calendar to interact with a basic CAS installation. We also covered the use
of CAS's single logout support.

We also saw how proxy ticket authentication works and how to leverage it to authenticate
stateless services.
We also covered tasks of updating CAS to interact with LDAP, and sharing LDAP data with
our CAS-enabled application. We even learned about implementing attribute exchange
with the industry standard SAML protocol.

We hope this chapter was an interesting introduction to the world of single sign-on. There
are many other single sign-on systems in the marketplace, mostly commercial, but CAS is
definitely one of the leaders of the open source SSO world, and an excellent platform to
build out SSO capability in any organization.

In the next chapter, we'll learn more about Spring Security authorization.

11
Fine-Grained Access Control

In this chapter, we will first examine two ways to implement fine-grained
authorization—authorization that may affect portions of a page of the application. Next, we
will look at Spring Security's approach to securing the business tier through method
annotation and the use of interface-based proxies to accomplish AOP. Then, we will review
an interesting capability of annotation-based security that allows for role-based filtering on
collections of data. Last, we will look at how class-based proxies differ from interface-based
proxies.

During the course of this chapter, we'll cover the following topics:

Configuring and experimenting with different methods of performing in-page
authorization checks on content, given the security context of a user request
Performing configuration and code annotation to make caller preauthorization a
key part of our application's business-tier security
Several alternative approaches to implement method-level security, and
reviewing the pros and cons of each type
Implementing data-based filters on collections and arrays using method-level
annotations
Implementing method-level security on our Spring MVC controllers to avoid
configuring antMatcher() methods and <intercept-url> elements

Fine-Grained Access Control Chapter 11

[298]

Gradle dependencies
There are a number of optional dependencies that may be required, depending on what
features you decide to use. Many of these dependencies are commented as Spring Boot
includes them already in the starter parent. You will find that our build.gradle file
already includes all of the following dependencies:

 //build.gradle
 // Required for JSR-250 based security:
 // JSR-250 Annotations

 compile ('javax.annotation:javax.annotation-api:1.3')

 // Already provided by Spring Boot
 // compile('cglib:cglib-nodep')
 // Already provided by Spring Boot
 // Required for protect-pointcut
 // compile('org.aspectj:aspectjweaver')

Integrating Spring Expression Language (SpEL)
Spring Security leverages Spring Expression Language (SpEL) integration in order to easily
articulate various authorization requirements. If you recall, we have already looked at the
use of SpEL in Chapter 2, Getting Started with Spring Security, when we defined our
antMatcher() method:

 .antMatchers("/events/").hasRole("ADMIN")

Spring Security provides an o.s.s.access.expression.SecurityExpressionRoot
object that provides the methods and objects available for use, in order to make an access
control decision. For example, one of the methods available to use is hasRole method,
which accepts a string. This corresponds to the value of the access attribute (in the
preceding code snippet). In fact, there are a number of other expressions available, as
shown in the following table:

Expression Description

hasRole(String role)
hasAuthority(String role)

Returns true if the current user has the
specified authority.

hasAnyRole(String... role)
hasAnyAuthority(String...
authority)

Returns true if the current user has any of the
specified authorities.

Fine-Grained Access Control Chapter 11

[299]

principal Allows access to the current Authentication
object's principal attribute. As discussed in
Chapter 3, Custom Authentication, this will often
be an instance of UserDetails.

authentication Obtains the current Authentication object
from the SecurityContext interface returned
by the getContext() method of the
SecurityContextHolder class.

permitAll Always returns true.

denyAll Always returns false.

isAnonymous() Returns true if the current principal is
anonymous (is not authenticated).

isRememberMe() Returns true if the current principal was
authenticated using the remember-me feature.

isAuthenticated() Returns true if the user is not an anonymous
user (that is, they are authenticated).

isFullyAuthenticated() Returns true if the user is authenticated
through a means other than remember me.

hasPermission(Object target,
Object permission)

Returns true if the user has permission to
access the specified object for the given
permission.

hasPermission(String
targetId, String targetType,
Object permission)

Returns true if the user has permission to
access the specified identifier for a given type
and permission.

We have provided some examples of using these SpEL expressions in the following code
snippet. Keep in mind that we will go into more detail throughout this and the next chapter:

 // allow users with ROLE_ADMIN

 hasRole('ADMIN')

 // allow users that do not have the ROLE_ADMIN

 !hasRole('ADMIN')

 // allow users that have ROLE_ADMIN or ROLE_ROOT and
 // did not use the remember me feature to login

Fine-Grained Access Control Chapter 11

[300]

 fullyAuthenticated() and hasAnyRole('ADMIN','ROOT')

 // allow if Authentication.getName() equals admin

 authentication.name == 'admin'

The WebSecurityExpressionRoot class
The o.s.s.web.access.expression.WebSecurityExpressionRoot class makes a few
additional properties available to us. These properties, along with the standard properties
already mentioned, are made available in the access attribute of the antMatchers()
method and in the JSP/Thymeleaf access attribute of the <sec:authorize> tag, as we
will discuss shortly:

Expression Description

request The current HttpServletRequest method.

hasIpAddress(String...
ipAddress)

Returns true if the current IP address matches the
ipAddress value. This can be an exact IP address
or the IP address/network mask.

Using the request attribute
The request attribute is fairly self-explanatory, but we have provided a few examples in
the following code. Remember, any of these examples could be placed in the
antMatchers() method's access attribute or the <sec:authorize> element's access
attribute:

 // allows only HTTP GETrequest.method == 'GET'
 // allow anyone to perform a GET, but
 // other methods require ROLE_ADMIN

 request.method == 'GET' ? permitAll : hasRole('ADMIN')

Using the hasIpAddress method
The hasIpAddress method is not quite as clear-cut as the request attribute. The
hasIpAddress will easily match an exact IP address; for example, the following code
would allow access if the current user's IP address was 192.168.1.93:

 hasIpAddress('192.168.1.93')

Fine-Grained Access Control Chapter 11

[301]

However, this is not all that useful. Instead, we can define the following code, which would
also match our IP address and any other IP address in our subnet:

 hasIpAddress('192.168.1.0/24')

The question is: how is this calculated? The key is to understand how to calculate the
network address and its mask. To learn how to do this, we can take a look at a concrete
example. We launch ifconfig from our Linux Terminal to view our network information
(Windows users can use enter ipconfig /all into the Command Prompt):

$ ifconfig
wlan0 Link encap:Ethernet HWaddr a0:88:b4:8b:26:64
inet addr:192.168.1.93 Bcast:192.168.1.255 Mask:255.255.255.0

Take a look at the following diagram:

We can see that the first three octets of our mask are 255. This means that the first three
octets of our IP Address belong to the network address. In our calculation, this means that
the remaining octets are 0:

We can then calculate the mask by first transforming each octet into a binary number, and
then count how many ones there are. In our instance, we get 24.

This means our IP address will match 192.168.1.0/24. A good site for additional
information on netmasks is Cisco's documentation, available at http:/ ​/​www. ​cisco. ​com/ ​c/
en/​us/​support/​docs/ ​ip/ ​routing- ​information- ​protocol- ​rip/ ​13788- ​3. ​html.

http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html

Fine-Grained Access Control Chapter 11

[302]

The MethodSecurityExpressionRoot class
Method SpEL expressions also provide a few additional properties that can be used through
the o.s.s.access.expression.method.MethodSecurityExpressionRoot class:

Expression Description

target Refers to this or the current object being secured.

returnObject Refers to the object returned by the annotated method.

filterObject Can be used on a collection or array in conjunction with @PreFilter or
@PostFilter, to only include the elements that match the expression.
The filterObject object represents the loop variable of the collection or
array.

#<methodArg> Any argument to a method can be referenced by prefixing the argument
name with #. For example, a method argument named id can be referred
to using #id.

If the description of these expressions appears a bit brief, don't worry; we'll work through a
number of examples later in this chapter.

We hope that you have a decent grasp of the power of Spring Security's SpEL support. To
learn more about SpEL, refer to the Spring reference documentation at https:/ ​/ ​docs.
spring.​io/​spring/ ​docs/ ​current/ ​spring- ​framework- ​reference/ ​html/ ​expressions. ​html.

Page-level authorization
Page-level authorization refers to the availability of application features based on the
context of a particular user's request. Unlike coarse-grained authorization that we explored
in Chapter 2, Getting Started with Spring Security, fine-grained authorization typically refers
to the selective availability of the portions of a page, rather than restricting access to a page
entirely. Most real-world applications will spend a considerable amount of time on the
details of fine-grained authorization planning.

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html

Fine-Grained Access Control Chapter 11

[303]

Spring Security provides us with the following three methods of selective display
functionality:

Spring Security JSP tag libraries allow conditional access declarations to be placed
within a page declaration itself, using the standard JSP tag library syntax.
Thymeleaf Spring Security tag libraries allow conditional access declarations to
be placed within a page declaration itself, using the standard Thymeleaf tag
library syntax.
Checking user authorization in an MVC application's controller layer allows the
controller to make an access decision and bind the results of the decision to the
model data provided to the view. This approach relies on standard JSTL
conditional page rendering and data binding, and is slightly more complicated
than Spring Security tag libraries; however, it is more in line with the standard
web application MVC logical design.

Any of these approaches are perfectly valid when developing fine-grained authorization
models for a web application. Let's explore how each approach is implemented through a
JBCP calendar use case.

Conditional rendering with the Thymeleaf
Spring Security tag library
The most common functionality used in the Thymeleaf Spring Security tag library is to
conditionally render portions of the page based on authorization rules. This is done with
the < sec:authorize*> tag that functions similarly to the <if> tag in the core JSTL
library, in that the tag's body will render depending on the conditions provided in the tag
attributes. We have already seen a very brief demonstration of how the Spring Security tag
library can be used to restrict the viewing of content if the user is not logged in.

Conditional rendering based on URL access rules
The Spring Security tag library provides functionality to render content based on the
existing URL authorization rules that are already defined in the security configuration file.
This is done via the use of the authorizeRequests() method and the antMatchers()
method.

Fine-Grained Access Control Chapter 11

[304]

If there are multiple HTTP elements, the authorizeRequests() method uses the currently
matched HTTP element's rules.

For example, we could ensure that the All Events link is displayed only when appropriate,
that is, for users who are administrators—recall that the access rules we've previously
defined are as follows:

 .antMatchers("/events/").hasRole("ADMIN")

Update the header.html file to utilize this information and conditionally render the link to
the All Events page:

//src/main/resources/templates/fragments/header.html

<html xmlns:th="http://www.thymeleaf.org"
xmlns:sec="http://www.thymeleaf.org/thymeleaf-extras-springsecurity
4">
...
<li sec:authorize-url="/events/">
All Events

This will ensure that the content of the tag is not displayed unless the user has sufficient
privileges to access the stated URL. It is possible to further qualify the authorization check
using the HTTP method, by including the method attribute before the URL, as follows:

 <li sec:authorize-url="GET /events/">
 All Events

Using the authorize-url attribute to define authorization checks on blocks of code is
convenient because it abstracts the knowledge of the actual authorization checks from your
pages and keeps it in your security configuration file.

Be aware that the HTTP method should match the case specified in your security
antMatchers() method, otherwise they may not match as you expect. Also, note that the
URL should always be relative to the web application context root (as your URL access
rules are).

For many purposes, the use of the <sec> tag's authorize-url attribute will suffice to
correctly display link- or action-related content only when the user is allowed to see it.
Remember that the tag need not only surround a link; it could even surround a whole form
if the user doesn't have permission to submit it.

Fine-Grained Access Control Chapter 11

[305]

Conditional rendering using SpEL
An additional, more flexible method of controlling the display of JSP content is available
when the <sec> tag is used in conjunction with a SpEL expression. Let's review what we
learned in Chapter 2, Getting Started with Spring Security. We could hide the My Events link
from any unauthenticated users by changing our header.html file, as follows:

 //src/main/resources/templates/fragments/header.html

 <li sec:authorize="isAuthenticated()">
 My Events

The SpEL evaluation is performed by the same code behind the scenes as the expressions
utilized in the antMatchers() method access declaration rules (assuming the expressions
have been configured). Hence, the same set of built-in functions and properties are
accessible from the expressions built using the <sec> tag.

Both of these methods of utilizing the <sec> tag provide powerful, fine-grained control
over the display of page content based on security authorization rules.

Go ahead and start up the JBCP calendar application. Visit https://localhost:8443 and
log in with the user user1@example.com and the password user1. You will observe that
the My Events link is displayed, but the All Events link is hidden. Log out and log in as the
user admin1@example.com with the password
admin1. Now both links are visible.

You should start with the code from chapter11.01-calendar.

Using controller logic to conditionally render
content
In this section, we will demonstrate how we can use Java-based code to determine if we
should render some content. We can choose to only show the Create Event link on the
Welcome page to users who have a username that contains user. This will hide the Create
Event link on the Welcome page from users who are not logged in as administrators.

Fine-Grained Access Control Chapter 11

[306]

The welcome controller from the sample code for this chapter has been updated to populate
the model with an attribute named showCreateLink, derived from the method name, as
follows:

//src/main/java/com/packtpub/springsecurity/web/controllers/WelcomeControll
er.java

 @ModelAttribute (“showCreateLink”)
 public boolean showCreateLink(Authentication authentication) {
 return authentication != null &&
 authentication.getName().contains("user");
 }

You may notice that Spring MVC can automatically obtain the Authentication object for
us. This is because Spring Security maps our current Authentication object to the
HttpServletRequest.getPrincipal() method. Since Spring MVC will automatically
resolve any object of the java.security.Principal type to the value of
HttpServletRequest.getPrincipal(), specifying Authentication as an argument to
our controller is an easy way to access the current Authentication object. We could also
decouple the code from Spring Security by specifying an argument of the Principal type
instead. However, we chose Authentication in this scenario to help demonstrate how
everything connects.

If we were working in another framework that did not know how to do this, we could
obtain the Authentication object using the SecurityContextHolder class, as we did in
Chapter 3, Custom Authentication. Also note that if we were not using Spring MVC, we
could just set the HttpServletRequest attribute directly rather than populating it on the
model. The attribute that we populated on the request would then be available to our JSP,
just as it is when using a ModelAndView object with Spring MVC.

Next, we will need to use the HttpServletRequest attribute in our index.html file to
determine if we should display the Create Event link. Update index.html, as follows:

 //src/main/resources/templates/header.html

 <li th:if="${showCreateLink}"><a id="navCreateEventLink"
 th:href="@{events/form}">...

Now, start the application, log in using admin1@example.com as the username and
admin1 as the password, and visit the All Events page. You should no longer see the Create
Events link in the main navigation (although it will still be present on the page).

Fine-Grained Access Control Chapter 11

[307]

Your code should look like this: chapter11.02-calendar.

The WebInvocationPrivilegeEvaluator class
There may be times when an application will not be written using JSPs and will need to be
able to determine access based upon a URL, as we did with <... sec:authorize-
url="/events/">. This can be done by using the
o.s.s.web.access.WebInvocationPrivilegeEvaluator interface, which is the same
interface that backs the JSP tag library. In the following code snippet, we demonstrate its
use by populating our model with an attribute named showAdminLink. We are able to
obtain WebInvocationPrivilegeEvaluator using the @Autowired annotation:

//src/main/java/com/packtpub/springsecurity/web/controllers/WelcomeControll
er.java

 @ModelAttribute (“showAdminLink”)
 public boolean showAdminLink(Authentication authentication) {
 return webInvocationPrivilegeEvaluator.
 isAllowed("/admin/", authentication);
 }

If the framework you are using is not being managed by Spring, @Autowire will not be able
to provide you with WebInvocationPrivilegeEvaluator. Instead, you can use Spring's
org.springframework.web.context.WebApplicationContextUtils interface to
obtain an instance of WebInvocationPrivilegeEvaluator, as follows:

 ApplicationContext context = WebApplicationContextUtils
 .getRequiredWebApplicationContext(servletContext);
 WebInvocationPrivilegeEvaluator privEvaluator =
 context.getBean(WebInvocationPrivilegeEvaluator.class)

To try it out, go ahead and update index.html to use the showAdminLink request
attribute, as follows:

//src/main/resources/templates/header.html

 <li th:if="${showAdminLink}">

 H2 Database Console
 ...

Fine-Grained Access Control Chapter 11

[308]

Restart the application and view the Welcome page before you have logged in. The H2 link
should not be visible. Log in as admin1@example.com/admin1, and you should see it.

Your code should look like chapter11.03-calendar.

What is the best way to configure in-page
authorization?
Major advances in the Thymeleaf Spring Security <sec> tag in Spring Security 4 removed
many of the concerns about the use of this tag in previous versions of the library. In many
cases, the use of the authorize-url attribute of the tag can appropriately isolate the code
from changes in authorization rules. You should use the authorize-url attribute of the
tag in the following scenarios:

The tag is preventing display functionality that can be clearly identified by a
single URL
The contents of the tag can be unambiguously isolated to a single URL

Unfortunately, in a typical application, the likelihood that you will be able to use the
authorize-url attribute of the tag frequently is somewhat low. The reality is that
applications are usually much more complex than this, and require more involved logic
when deciding to render portions of a page.

It's tempting to use the Thymeleaf Spring Security tag library to declare bits of rendered
pages as off-limits based on security criteria in other methods. However, there are a number
of reasons why (in many cases) this isn't a great idea, as follows:

Complex conditions beyond role membership are not supported by the tag
library. For example, if our application incorporated customized attributes on the
UserDetails implementation, IP filters, geolocation, and so on, none of these
would be supported by the standard <sec> tag.
These could, however, conceivably be supported by the custom tags or using
SpEL expressions. Even in this case, the page is more likely to be directly tied to
business logic rather than what is typically encouraged.

Fine-Grained Access Control Chapter 11

[309]

The <sec> tag must be referenced on every page that it's used in. This leads to
potential inconsistencies between the rulesets that are intended to be common,
but may be spread across different physical pages. A good object-oriented system
design would suggest that conditional rule evaluations be located in only one
place, and logically referred to from where they should be applied.
It is possible (and we illustrate this using our common header page include) to
encapsulate and reuse portions of pages to reduce the occurrence of this type of
problem, but it is virtually impossible to eliminate in a complex application.
There is no way to validate the correctness of rules stated at compile time.
Whereas compile-time constants can be used in typical Java-based, object-
oriented systems, the tag library requires (in typical use) hardcoded role names
where a simple typo might go undetected for some time.
To be fair, such typos could be caught easily by comprehensive functional tests
on the running application, but they are far easier to test using a standard Java
component unit testing techniques.
We can see that, although the template-based approach for conditional content
rendering is convenient, there are some significant downsides.

All of these issues can be solved by the use of code in controllers that can be used to push
data into the application view model. Additionally, performing advanced authorization
determinations in code allows for the benefits of reuse, compile-time checks, and proper
logical separation of the model, view, and controller.

Method-level security
Our primary focus up to this point in the book has been on securing the web-facing portion
of the JBCP calendar application; however, in real-world planning of secured systems, equal
attention should be paid to securing the service methods that allow users access to the most
critical part of any system—its data.

Fine-Grained Access Control Chapter 11

[310]

Why we secure in layers?
Let's take a minute to see why it is important to secure our methods, even though we have
already secured our URLs. Start the JBCP calendar application up. Log in using
user1@example.com as the username and user1 as the password, and visit the All Events
page. You will see the custom Access Denied page. Now, add .json to the end of the URL
in the browser so that the URL is now https://localhost:8443/events/.json. You
will now see a JSON response with the same data as the HTML All Events page. This data
should only be visible to an administrator, but we have bypassed it by finding a URL that
was not configured properly.

We can also view the details of an event that we do not own and are not invited to. Change
.json with 102 so that the URL is now https://localhost:8443/events/102. You
will now see a Lunch event that is not listed on your My Events page. This should not be
visible to us because we are not an administrator and this is not our event.

As you can see, our URL rules are not quite strong enough to entirely secure our
application. These exploits do not even need to take advantage of more complex problems,
such as differences in how containers handle URL normalization. In short, there are often
ways to bypass URL-based security. Let's see how adding a security layer to our business
tier can help with our new security vulnerability.

Securing the business tier
Spring Security has the ability to add a layer of authorization (or authorization-based data
pruning) to the invocation of any Spring-managed bean in your application. While many
developers focus on web-tier security, business-tier security is arguably just as important, as
a malicious user may be able to penetrate the security of your web tier or access services
exposed through a non-UI frontend, such as a web service.

Let's examine the following logical diagram to see why we're interested in applying a
secondary layer of security:

Fine-Grained Access Control Chapter 11

[311]

Spring Security has the following two main techniques for securing methods:

Preauthorization: This technique ensures that certain constraints are satisfied
prior to the execution of a method that is being allowed, for example, if a user has
a particular GrantedAuthority, such as ROLE_ADMIN. Failure to satisfy the
declared constraints means that the method call will fail.
Postauthorization: This technique ensures that the calling principal still satisfies
declared constraints after the method returns. This is rarely used but can provide
an extra layer of security around some complex, interconnected business tier
methods.

The preauthorization and postauthorization techniques provide formalized support for
what are generally called preconditions and postconditions in a classic, object-oriented
design. Preconditions and postconditions allow a developer to declare through runtime
checks that certain constraints around a method's execution must always hold true. In the
case of security preauthorization and postauthorization, the business tier developer makes a
conscious decision about the security profile of particular methods by encoding expected
runtime conditions as part of an interface or class API declaration. As you may imagine, this
requires a great deal of forethought to avoid unintended consequences!

Fine-Grained Access Control Chapter 11

[312]

Adding the @PreAuthorize method annotation
Our first design decision will be to augment method security at the business tier by
ensuring that a user must be logged in as an ADMIN user before he/she is allowed to access
the getEvents() method. This is done with a simple annotation added to the method in
the service interface definition, as follows:

 import org.springframework.security.access.prepost.PreAuthorize;
 ...
 public interface CalendarService {
 ...
 @PreAuthorize("hasRole('ADMIN')")
 List<Event> getEvents();
 }

This is all that is required to ensure that anyone invoking our getEvents() method is an
administrator. Spring Security will use a runtime Aspect Oriented Programming (AOP)
pointcut to execute BeforeAdvice on the method, and throw
o.s.s.access.AccessDeniedException if the security constraints aren't met.

Instructing Spring Security to use method annotations
We'll also need to make a one-time change to SecurityConfig.java, where we've got the
rest of our Spring Security configuration. Simply add the following annotation to the class
declaration:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityC
onfig.java

@Configuration
@EnableWebSecurity
@EnableGlobalMethodSecurity(prePostEnabled = true)
public class SecurityConfig extends WebSecurityConfigurerAdapter {

Validating method security
Don't believe it was that easy? Log in with user1@example.com as the username and
user1 as the password, and try accessing https://localhost:8443/events/.json.
You should see the Access Denied page now.

Fine-Grained Access Control Chapter 11

[313]

Your code should look like chapter11.04-calendar.

If you look at the Tomcat console, you'll see a very long stack trace, starting with the
following output:

 DEBUG ExceptionTranslationFilter - Access is denied
 (user is not anonymous); delegating to AccessDeniedHandler
 org.s.s.access.AccessDeniedException: Access is denied
 at org.s.s.access.vote.AffirmativeBased.decide
 at org.s.s.access.intercept.AbstractSecurityInterceptor.
 beforeInvocation
 at org.s.s.access.intercept.aopalliance.
 MethodSecurityInterceptor.invoke
 ...
 at $Proxy16.getEvents
 at com.packtpub.springsecurity.web.controllers.EventsController.events

Based on the Access Denied page, and the stack trace clearly pointing to the getEvents
method invocation, we can see that the user was appropriately denied access to the business
method because it lacked the GrantedAuthority of ROLE_ADMIN. If you run the same with
the username admin1@example.com and the password admin1, you will discover that
access will be granted.

Isn't it amazing that with a simple declaration in our interface, we're able to ensure that the
method in question is secure? But how does AOP work?

Interface-based proxies
In the given example from the previous section, Spring Security used an interface-based
proxy to secure our getEvents method. Let's take a look at the simplified pseudocode of
what happened to understand how this works:

 DefaultCalendarService originalService = context.getBean
 (CalendarService.class)
 CalendarService secureService = new CalendarService() {
 … other methods just delegate to originalService ...
 public List<Event> getEvents() {
 if(!permitted(originalService.getEvents)) {
 throw AccessDeniedException()
 }

Fine-Grained Access Control Chapter 11

[314]

 return originalCalendarService.getEvents()
 }
 };

You can see that Spring creates the original CalendarService just as it normally does.
However, it instructs our code to use another implementation of CalendarService that
performs a security check before returning the result of the original method. The secure
implementation can be created with no prior knowledge of our interface because Spring
uses Java's java.lang.reflect.Proxy APIs to dynamically create new implementations
of the interface. Note that the object returned is no longer an instance of
DefaultCalendarService, since it is a new implementation of CalendarService, that is,
it is an anonymous implementation of CalendarService. This means that we must
program against an interface in order to use the secure implementation, otherwise, a
ClassCastException exception will occur. To learn more about Spring AOP, refer to the
Spring reference documentation at http:/ ​/​static. ​springsource. ​org/ ​spring/ ​docs/
current/​spring-​framework- ​reference/ ​html/ ​aop. ​html#aop- ​introduction- ​proxies.

In addition to the @PreAuthorize annotation, there are several other ways of declaring
security preauthorization requirements on methods. We can examine these different ways
of securing methods and then evaluate their pros and cons in different circumstances.

JSR-250 compliant standardized rules
JSR-250 Common Annotations for the Java platform defines a series of annotations, some
that are security-related, which are intended to be portable across JSR-250 compliant
runtime environments. The Spring Framework became compliant with JSR-250 as part of
the Spring 2.x release, including the Spring Security framework.

While JSR-250 annotations are not as expressive as Spring native annotations, they have the
benefit that the declarations they provide are compatible across implementing Java EE
application servers such as Glassfish or service-oriented runtime frameworks such as
Apache Tuscany. Depending on your application's needs and requirements for portability,
you may decide that the trade-off of reduced specificity is worth the portability of the code.

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies

Fine-Grained Access Control Chapter 11

[315]

To implement the rule we specified in the first example, we make a few changes by
performing the following steps:

First, we need to update our SecurityConfig file to use the JSR-2501.
annotations:

 //src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java

 @Configuration
 @EnableWebSecurity
 @EnableGlobalMethodSecurity(jsr250Enabled = true)
 public class SecurityConfig extends WebSecurityConfigurerAdapter {

Lastly, the @PreAuthorize annotation needs to change to the @RolesAllowed2.
annotation. As we might anticipate, the @RolesAllowed annotation does not
support SpEL expressions, so we edit CalendarService as follows:

 @RolesAllowed("ROLE_ADMIN")
 List<Event> getEvents();

Restart the application, log in as user1@example.com/user1, and try to access3.
http://localhost:8080/events/.json. You should see the Access Denied
page again.

Your code should look like this: chapter11.05-calendar.

Note that it's also possible to provide a list of allowed GrantedAuthority names using the
standard Java 5 String array annotation syntax:

 @RolesAllowed({"ROLE_USER","ROLE_ADMIN"})
 List<Event> getEvents();

Fine-Grained Access Control Chapter 11

[316]

There are also two additional annotations specified by JSR-250, namely @PermitAll and
@DenyAll, which function as you might expect, permitting and denying all requests to the
method in question.

Annotations at the class level
Be aware that method-level security annotations can be applied at the class
level as well! Method-level annotations, if supplied, will always override
annotations specified at the class level. This can be helpful if your business
needs to dictate the specification of security policies for an entire class.
Take care to use this functionality in conjunction with good comments and
coding standards, so that developers are very clear about the security
characteristics of the class and its methods.

Method security using Spring's @Secured
annotation
Spring itself provides a simpler annotation style that is similar to the JSR-250
@RolesAllowed annotation. The @Secured annotation is functionally and syntactically the
same as @RolesAllowed. The only notable differences are that it does not require the
external dependency, cannot be processed by other frameworks, and the processing of these
annotations must be explicitly enabled with another attribute on the
@EnableGlobalMethodSecurity annotation:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va

 @EnableWebSecurity(debug = true)
 @EnableGlobalMethodSecurity(securedEnabled=true)
 public class SecurityConfig extends WebSecurityConfigurerAdapter {

As @Secured functions in the same way as the JSR standard @RolesAllowed annotation,
there's no real compelling reason to use it in new code, but you may run across it in older
Spring code.

Fine-Grained Access Control Chapter 11

[317]

Method security rules incorporating method
parameters
Logically, writing rules that refer to method parameters in their constraints seem sensible
for certain types of operations. For example, it might make sense for us to restrict the
findForUser(int userId) method to meet the following constraints:

The userId argument must be equal to the current user's ID
The user must be an administrator (in this case, it is valid for the user to see any
event)

While it's easy to see how we could alter the rule to restrict the method invocation only to
administrators, it's not clear how we would determine if the user is attempting to change
their own password.

Fortunately, SpEL binding, used by the Spring Security method annotations, supports more
sophisticated expressions, including expressions that incorporate method parameters. You
will also want to ensure that you have enabled pre- and post-annotations in the
SecurityConfig file, as follows:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va

 @Configuration
 @EnableWebSecurity
 @EnableGlobalMethodSecurity(prePostEnabled = true)
 public class SecurityConfig extends WebSecurityConfigurerAdapter {
 Lastly, we can update our CalendarService interface as follows:
 @PreAuthorize("hasRole('ADMIN') or principal.id == #userId")
 List<Event> findForUser(int userId);

You can see here that we've augmented the SpEL directive we used in the first exercise with
a check against the ID of the principal and against the userId method parameter (#userId,
the method parameter name, is prefixed with a # symbol). The fact that this powerful
feature of method parameter binding is available should get your creative juices flowing
and allow you to secure method invocations with a very precise set of logical rules.

Fine-Grained Access Control Chapter 11

[318]

Our principal is currently an instance of CalendarUser due to the custom
authentication setup from Chapter 3, Custom Authentication. This means
that the principal has all of the properties that our
CalendarUser application has on it. If we had not done this
customization, only the properties of the UserDetails object would be
available.

SpEL variables are referenced with the hash (#) prefix. One important note is that in order
for method argument names to be available at runtime, debugging symbol table
information must be retained after compilation. Common methods to retain the debugging
symbol table information are listed as follows:

If you are using the javac compiler, you will need to include the -g flag when
building your classes
When using the <javac> task in Ant, add the attribute debug="true"
In Gradle, ensure to add --debug when running the main method, or the
bootRun task
In Maven, ensure the maven.compiler.debug=true property (the default is
true)

Consult your compiler, build tool, or IDE documentation for assistance on configuring this
same setting in your environment.

Start up your application and try logging in with user1@example.com as the username
and user1 as the password. On the Welcome page, request the My Events
(email=admin1@example.com) link to see an Access Denied page. Try again with My
Events (email=user1@example.com) to see it work. Note that the displayed user on the
My Events page matches the currently logged-in user. Now, try the same steps and log in
as admin1@example.com/admin1. You will be able to see both pages since you are logged
in as a user with the ROLE_ADMIN permission.

Your code should look like chapter11.06-calendar.

Fine-Grained Access Control Chapter 11

[319]

Method security rules incorporating returned
values
Just as we were able to leverage the parameters to the method, we can also leverage the
returned value of the method call. Let's update the getEvent method to meet the following
constraints on the returned value:

The attendee's ID must be the current user's ID
The owner'sID must be the current user's ID
The user must be an administrator (in this case, it is valid for the user to see any
event)

Add the following code to the CalendarService interface:

 @PostAuthorize("hasRole('ROLE_ADMIN') or " + "principal.username ==
 returnObject.owner.email or " +
 "principal.username == returnObject.attendee.email")
 Event getEvent(int eventId);

Now, try logging in with the username user1@example.com and the password user1.
Next, try accessing the Lunch event using the link on the Welcome page. You should now
see the Access Denied page. If you log in using the username user2@example.com and the
password user2, the event will display as expected since user2@example.com is the
attendee at the Lunch event.

Your code should look like chapter11.07-calendar.

Securing method data using role-based filtering
The two final Spring Security-dependent annotations are @PreFilter and @PostFilter,
which are used to apply security-based filtering rules to collections or arrays (with
@PostFilter only). This type of functionality is referred to as security trimming or
security pruning and involves using the security credentials of principal at runtime to
selectively remove members from a set of objects. As you might expect, this filtering is
performed using SpEL expression notation within the annotation declaration.

Fine-Grained Access Control Chapter 11

[320]

We'll work through an example with JBCP calendar, as we want to filter the getEvents
method to only return the events that this user is allowed to see. In order to do this, we
remove any existing security annotations and add the @PostFilter annotation to our
CalendarService interface, as follows:

 @PostFilter("principal.id == filterObject.owner.id or " +
 "principal.id == filterObject.attendee.id")
 List<Event> getEvents();

Your code should look like this: chapter11.08-calendar.

Remove the antMatchers() method, restricting access to /events/URL so that we can test
our annotation. Start up the application and view the All Events page when logged in with
the username user1@example.com and password user1. You will observe that only the
events that are associated with our user are displayed.

With filterObject acting as the loop variable that refers to the current event, Spring
Security will iterate over the List<Event> returned by our service and modify it to only
contain the Event objects that match our SpEL expression.

In general, the @PostFilter method behaves in the following way. For brevity, we refer to
the collection as the method return value, but be aware that @PostFilter works with
either collection or array method return types.

The filterObject object is rebound to the SpEL context for each element in the collection.
This means that if your method is returning a collection with 100 elements, the SpEL
expression will be evaluated for each.

The SpEL expression must return a Boolean value. If the expression evaluates to true, the
object will remain in the collection, while if the expression evaluates to false, the object will
be removed.

In most cases, you'll find that collection post filtering saves you from the complexity of
writing boilerplate code that you would likely be writing anyway. Take care that you
understand how @PostFilter works conceptually; unlike @PreAuthorize, @PostFilter
specifies method behavior and not a precondition. Some object-oriented purists may argue
that @PostFilter isn't appropriate for inclusion as a method annotation, and such filtering
should instead be handled through code in a method implementation.

Fine-Grained Access Control Chapter 11

[321]

Safety of collection filtering
Be aware that the actual collection returned from your method will be
modified! In some cases, this isn't desirable behavior, so you should
ensure that your method returns a collection that can be safely modified.
This is especially important if the returned collection is an ORM-bound
one, as post-filter modifications could inadvertently be persisted to the
ORM data store!

Spring Security also offers functionality to prefilter method parameters that are collections;
let's try implementing that now.

Prefiltering collections with @PreFilter
The @PreFilter annotation can be applied to a method to filter collection elements that are
passed into a method based on the current security context. Functionally, once it has a
reference to a collection, this annotation behaves exactly the same as the @PostFilter
annotation, with a couple of exceptions, as follows:

The @PreFilter annotation supports only collection arguments and does not
support array arguments.
The @PreFilter annotation takes an additional,
optional filterTarget attribute which is used to specifically identify the
method parameter and filter it when the annotated method has more than one
argument.
As with @PostFilter, keep in mind that the original collection passed to the
method is permanently modified. This may not be desirable behavior, so ensure
that callers know that the collection's security may be trimmed after the method
is invoked!

Imagine if we had a save method that accepted a collection of event objects, and we wanted
to only allow the saving of events that were owned by the currently logged in user. We
could do this as follows:

 @PreFilter("principal.id == filterObject.owner.id")
 void save(Set<Event> events);

Much like our @PostFilter method, this annotation causes Spring Security to iterate over
each event with the loop variable filterObject. It then compares the current user's ID
against the event owner's ID. If they match, the event is retained. If they do not match, the
result is discarded.

Fine-Grained Access Control Chapter 11

[322]

Comparing method authorization types
The following quick reference chart may assist you in selecting a type of method
authorization check to use:

Method authorization type Specified as JSR standard Allows SpEL
expressions

@PreAuthorize
@PostAuthorize

Annotation No Yes

@RolesAllowed, @PermitAll,
@DenyAll

Annotation Yes No

@Secure Annotation No No

protect-pointcut XML No No

Most Java 5 consumers of Spring Security will probably opt to use the JSR-250 annotations
for maximum compatibility and reuse their business classes (and relevant constraints)
across an IT organization. Where needed, these basic declarations can be replaced with the
annotations that tie the code to the Spring Security implementation itself.

If you are using Spring Security in an environment that doesn't support annotations (Java
1.4 or previous), unfortunately, your choices are somewhat limited to method security
enforcement. Even in this situation, the use of AOP provides a reasonably rich environment
in which we can develop basic security declarations.

Practical considerations for annotation-based
security
One thing to consider is that when returning a collection of real-world applications, there is
likely to be some sort of paging. This means that our @PreFilter and @PostFilter
annotations cannot be used as the sole means of selecting which objects to return. Instead,
we need to ensure that our queries only select the data that the user is allowed to access.
This means that the security annotations become redundant checks. However, it is
important to remember our lesson at the beginning of this chapter; we want to secure layers
in case one layer is able to be bypassed.

Fine-Grained Access Control Chapter 11

[323]

Summary
In this chapter, we have covered most of the remaining areas in standard Spring Security
implementations that deal with authorization. We've learned enough to take a thorough
pass through the JBCP calendar application and verify that proper authorization checks are
in place in all tiers of the application, to ensure that malicious users cannot manipulate or
access data to which they do not have access.

We developed two techniques for micro-authorization, namely filtering out in-page content
based on authorization or other security criteria using the Thymeleaf Spring Security tag
library and Spring MVC controller data binding. We also explored several methods of
securing business functions and data in the business tier of our application and supporting
a rich, declarative security model that was tightly integrated with the code. We also learned
how to secure our Spring MVC controllers and the differences between interface and class
proxy objects

At this point, we've wrapped up coverage of much of the important Spring Security
functionality that you're likely to encounter in most standard, secure web application
development scenarios.

In the next chapter, we will discuss the ACL (domain object model) module of Spring
Security. This will allow us to explicitly declare authorization, rather than relying on
existing data.

12
Access Control Lists

In this chapter, we will address the complex topic of access control lists (ACL), which can
provide a rich model of domain object instance-level authorization. Spring Security ships
with a robust, but complicated, access control list module that can serve the needs of small
to medium-sized implementations reasonably well.

In this chapter, we'll cover the following topics:

Understanding the conceptual model of ACL
Reviewing the terminology and application of ACL concepts in the Spring
Security ACL module
Building and reviewing the database schema required to support Spring ACL
Configuring JBCP calendar to use ACL secured business methods via annotations
and Spring beans
Performing advanced configuration, including customized ACL permissions,
ACL-enabled JSP tag checks and method security, mutable ACLs, and smart
caching
Examining architectural considerations and planning scenarios for ACL
deployment

Access Control Lists Chapter 12

[325]

The conceptual module of ACL
The final piece of the non-web tier security puzzle is security at the business object level,
applied at or below the business tier. Security at this level is implemented using a technique
known as ACL, or ACLs. Summing up the objective of ACLs in a single sentence—ACLs
allow specification of a set of group permissions based on the unique combination of a
group, business object, and logical operation.

For example, an ACL declaration for JBCP calendar might declare that a given user has to
write access to his or her own event. This can be shown as follows:

Username Group Object Permissions

mick event_01 read, write

ROLE_USER event_123 read

ANONYMOUS Any event none

You can see that this ACL is eminently readable by a human—mick has read and write
access to his own event (event_01); other registered users can read the events of mick, but
anonymous users cannot. This type of rule matrix is, in a nutshell, what ACL attempts to
synthesize about a secured system and its business data into a combination of code, access
checking, and metadata. Most true ACL-enabled systems have extremely complex ACL
lists, and may conceivably have millions of entries across the entire system. Although this
sounds frighteningly complex, proper up-front reasoning and implementation with a
capable security library can make ACL management quite feasible.

If you use a Microsoft Windows or Unix/Linux-based computer, you experience the magic
of ACLs every single day. Most modern computer operating systems use ACL directives as
part of their file storage systems, allowing permission granting based on a combination of a
user or group, file or directory, and permission. In Microsoft Windows, you can view some
of the ACL capabilities of a file by right-clicking on a file and examining its security
properties (Properties | Security), as shown in the following screenshot:

Access Control Lists Chapter 12

[326]

You will be able to see that the combinations of inputs to the ACL are visible and intuitive
as you navigate through the various groups or users and permissions.

Access control lists in Spring Security
Spring Security supports ACL-driven authorization checks against access to individual
domain objects by individual users of the secured system. Much as in the OS filesystem
example, it is possible to use the Spring Security ACL components to build logical tree
structures of both business objects and groups or principals. The intersection of permissions
(inherited or explicit) on both the requestor and the requestee is used to determine allowed
access.

Access Control Lists Chapter 12

[327]

It's quite common for users approaching the ACL capability of Spring Security to be
overwhelmed by its complexity, combined with a relative dearth of documentation and
examples. This is compounded by the fact that setting up the ACL infrastructure can be
quite complicated, with many interdependencies and reliance on bean-based configuration
mechanisms, which are quite unlike much of the rest of Spring Security (as you'll see in a
moment when we set up the initial configuration).

The Spring Security ACL module was written to be a reasonable baseline, but users
intending to build extensively on the functionality will likely run into a series of frustrating
limitations and design choices, which have gone (for the most part) uncorrected as they
were first introduced in the early days of Spring Security. Don't let these limitations
discourage you! The ACL module is a powerful way to embed rich access controls in your
application, and further scrutinize and secure user actions and data.

Before we dig into configuring Spring Security ACL support, we need to review some key
terminology and concepts.

The main unit of secured actor identity in the Spring ACL system is the Security Identity
(SID). The SID is a logical construct that can be used to abstract the identity of either an
individual principal or a group (GrantedAuthority). The SIDs object defined by the ACL
data model you construct are used as the basis for explicit and derived access control rules,
when determining the allowed level of access for a particular principal.

If SIDs are used to define actors in the ACL system, the opposite half of the security
equation is the definition of the secured objects themselves. The identification of individual
secured objects is called (unsurprisingly) an object identity. The default Spring ACL
implementation of an object identity requires ACL rules to be defined at the individual
object instance level, which means, if desired, every object in the system can have an
individual access rule.

Individual access rules are known as Access Control Entries (ACEs). An ACE is the
combination of the following factors:

The SID for the actor to which the rule applies
The object identity to which the rule applies
The permission that should be applied to the given SID and the stated object
identity
Whether or not the stated permission should be allowed or denied for the given
SID and object identity

Access Control Lists Chapter 12

[328]

The purpose of the Spring ACL system as a whole is to evaluate each secured method
invocation and determine whether the object or objects being acted on in the method should
be allowed as per the applicable ACEs. Applicable ACEs are evaluated at runtime, based on
the caller and the objects in play.

Spring Security ACL is flexible in its implementation. Although the majority of this chapter
details the out-of-the-box functionality of the Spring Security ACL module, keep in mind,
however, that many of the rules indicated represent default implementations, which in
many cases can be overridden based on more complex requirements.

Spring Security uses helpful value objects to represent the data associated with each of these
conceptual entities. These are listed in the following table:

ACL conceptual object Java object

SID o.s.s.acls.model.Sid

Object identity o.s.s.acls.model.ObjectIdentity

ACL o.s.s.acls.model.Acl

ACE o.s.s.acls.model.AccessControlEntry

Let's work through the process of enabling Spring Security ACL components for a simple
demonstration in the JBCP calendar application.

Basic configuration of Spring Security ACL
support
Although we hinted previously that configuring ACL support in Spring Security requires
bean-based configuration (which it does), you can use ACL support while retaining the
simpler security XML namespace configuration if you choose. In the remaining examples in
this chapter, we will be focusing on Java-based configuration.

Access Control Lists Chapter 12

[329]

Gradle dependencies
As with most of the chapters, we will need to add some dependencies in order to use the
functionality in this chapter. A list of the dependencies we have added with comments
about when they are needed can be checked as follows:

 build.gradle
 dependencies {
 // ACL
 compile('org.springframework.security:spring-security-acl')
 compile('net.sf.ehcache:ehcache')
 ...
 }

Defining a simple target scenario
Our simple target scenario is to grant user2@example.com read access to only the birthday
party event. All other users will not have any access to any events. You will observe that
this differs from our other examples, since user2@example.com is not otherwise associated
with the birthday party event.

Although there are several ways to set up ACL checking, our preference is to follow the
annotation-based approach that we used in this chapter's method-level annotations. This
nicely abstracts the use of ACLs away from the actual interface declarations and allows for
replacement (if you want) of the role declarations with something other than ACLs at a later
date (should you so choose).

We'll add an annotation to the CalendarService.getEvents method, which filters each
event based upon the current user's permission to the event:

 src/main/java/com/packtpub/springsecurity/service/CalendarService.java
 @PostFilter("hasPermission(filterObject, 'read')")
 List<Event> getEvents();

You should be starting with chapter12.00-calendar.

Access Control Lists Chapter 12

[330]

Adding ACL tables to the H2 database
The first thing we'll need to do is add the required tables and data to support persistent
ACL entries in our in-memory H2 database. To do this, we'll add a new SQL DDL file and
the corresponding data to our embedded-database declaration in schema.sql. We will
break down each of these files later in the chapter.

We have included the following schema.sql file with this chapter's source code, which is
based upon the schema files included in the Spring Security reference's Appendix,
Additional Reference Material:

src/main/resources/schema.sql
-- ACL Schema --
create table acl_sid (
id bigint generated by default as identity(start with 100) not
 null primary key,
principal boolean not null,
sid varchar_ignorecase(100) not null,
constraint uk_acl_sid unique(sid,principal));

create table acl_class (
id bigint generated by default as identity(start with 100) not
 null primary key,
class varchar_ignorecase(500) not null,
constraint uk_acl_class unique(class));

create table acl_object_identity (
id bigint generated by default as identity(start with 100) not
 null primary key,
object_id_class bigint not null,
object_id_identity bigint not null,
parent_object bigint,
owner_sid bigint not null,
entries_inheriting boolean not null,
constraint uk_acl_objid
 unique(object_id_class,object_id_identity),
constraint fk_acl_obj_parent foreign
 key(parent_object)references acl_object_identity(id),
constraint fk_acl_obj_class foreign
 key(object_id_class)references acl_class(id),
constraint fk_acl_obj_owner foreign key(owner_sid)references
 acl_sid(id));

create table acl_entry (
id bigint generated by default as identity(start with 100) not
 null primary key,
acl_object_identity bigint not null,

Access Control Lists Chapter 12

[331]

ace_order int not null,
sid bigint not null,
mask integer not null,
granting boolean not null,
audit_success boolean not null,
audit_failure boolean not null,
constraint uk_acl_entry unique(acl_object_identity,ace_order),
constraint fk_acl_entry_obj_id foreign key(acl_object_identity)
references acl_object_identity(id),
constraint fk_acl_entry_sid foreign key(sid) references
 acl_sid(id));

The preceding code will result in the following database schema:

You can see how the concepts of SIDs, OBJECT_IDENTITY, and ACEs map directly to the
database schema. Conceptually, this is convenient, as we can map our mental model of the
ACL system and how it is enforced directly to the database.

Access Control Lists Chapter 12

[332]

If you've cross-referenced this with the H2 database schema supplied with the Spring
Security documentation, you'll note that we've made a few tweaks that commonly bite
users. These are as follows:

Change the ACL_CLASS.CLASS column to 500 characters, from the default value
of 100. Some long, fully qualified class names don't fit in 100 characters.
Name the foreign keys with something meaningful so that failures are more
easily diagnosed.

If you are using another database, such as Oracle, you'll have to translate the DDL into DDL
and data types specific to your database.

Once we configure the remainder of the ACL system, we'll return to the database to set up
some basic ACEs to prove the ACL functionality in its most primitive form.

Configuring SecurityExpressionHandler
We'll need to configure <global-method-security> to enable annotations (where we'll
annotate based on the expected ACL privilege), and reference a custom access decision
manager.

We will also need to provide an
o.s.s.access.expression.SecurityExpressionHandler implementation that is
aware of how to evaluate permissions. Update your SecurityConfig.java configuration,
as follows:

src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.java
 @EnableGlobalMethodSecurity(prePostEnabled = true)
 @Import(AclConfig.class)
 public class SecurityConfig extends WebSecurityConfigurerAdapter {

This is a bean reference to the DefaultMethodSecurityExpressionHandler object that
we have defined in AclConfig.java file for you, as follows:

 src/main/java/com/packtpub/springsecurity/configuration/AclConfig.java
 @Bean
 public DefaultMethodSecurityExpressionHandler expressionHandler(){
 DefaultMethodSecurityExpressionHandler dmseh =
 new DefaultMethodSecurityExpressionHandler();
 dmseh.setPermissionEvaluator(permissionEvaluator());
 dmseh.setPermissionCacheOptimizer(permissionCacheOptimizer());
 return dmseh;
 }

Access Control Lists Chapter 12

[333]

With even a relatively straightforward ACL configuration, as we have in our scenario, there
are a number of required dependencies to set up. As we mentioned previously, the Spring
Security ACL module comes out of the box with a number of components that you can
assemble to provide a decent set of ACL capabilities. Note that all of the components that
we'll reference in the following diagram are part of the framework:

Access Control Lists Chapter 12

[334]

The AclPermissionCacheOptimizer object
The DefaultMethodSecurityExpressionHandler object has two dependencies. The
AclPermissionCacheOptimizer object is used to prime the cache with all of the ACLs for
a collection of objects in a single JDBC select statement. The relatively simple configuration
included with this chapter can be checked, as follows:

 src/main/java/com/packtpub/springsecurity/configuration/AclConfig.java
 @Bean
 public AclPermissionCacheOptimizer permissionCacheOptimizer(){
 return new AclPermissionCacheOptimizer(aclService());
 }

Optimizing AclPermission Cache
The DefaultMethodSecurityExpressionHandler object then delegates to a
PermissionEvalulator instance. For the purposes of this chapter, we are using ACLs so
that the bean we will use AclPermissionEvaluator, which will read the ACLs that we
define in our database. You can view the provided configuration for
permissionEvaluator, as follows:

src/main/java/com/packtpub/springsecurity/configuration/AclConfig.j
ava
@Bean
public AclPermissionEvaluator permissionEvaluator(){
 return new AclPermissionEvaluator(aclService());
}

The JdbcMutableAclService object
At this point, we have seen a reference to th with the aclService ID twice. The
aclService ID resolves to an implementation of o.s.s.acls.model.AclService that is
responsible (through delegation) for translating information about the object being secured
by ACLs into expected ACEs:

src/main/java/com/packtpub/springsecurity/configuration/AclConfig.j
ava
@Autowired
private DataSource dataSource;
@Bean
public JdbcMutableAclService aclService(){

Access Control Lists Chapter 12

[335]

 return new JdbcMutableAclService(dataSource,
 lookupStrategy(),
 aclCache());
}

We'll use o.s.s.acls.jdbc.JdbcMutableAclService, which is the default
implementation of o.s.s.acls.model.AclService. This implementation comes out of
the box and is ready to use the schema that we defined in the last step of this exercise. The
JdbcMutableAclService object will additionally use recursive SQL and post-processing
to understand object and SID hierarchies and ensure that representations of these
hierarchies are passed back to AclPermissionEvaluator.

The BasicLookupStrategy class
The JdbcMutableAclService class uses the same JDBC dataSource instance that we've
defined with the embedded database declaration, and it also delegates to an
implementation of o.s.s.acls.jdbc.LookupStrategy, which is solely responsible for
actually making database queries and resolving requests for ACLs. The only
LookupStrategy implementation supplied with Spring Security is
o.s.s.acls.jdbc.BasicLookupStrategy, and is defined as follows:

src/main/java/com/packtpub/springsecurity/configuration/AclConfig.j
ava
@Bean
public LookupStrategy lookupStrategy(){
 return new BasicLookupStrategy(
 dataSource,
 aclCache(),
 aclAuthorizationStrategy(),
 consoleAuditLogger());
}

Now, BasicLookupStrategy is a relatively complex beast. Remember that its purpose is
to translate a list of the ObjectIdentity declarations to be protected into the actual,
applicable ACE list from the database. As ObjectIdentity declarations can be recursive,
this proves to be quite a challenging problem, and a system which is likely to experience
heavy use should consider the SQL that's generated for performance impact on the
database.

Access Control Lists Chapter 12

[336]

Querying with the lowest common denominator
Be aware that BasicLookupStrategy is intended to be compatible with all databases by
strictly sticking with standard ANSI SQL syntax, notably left [outer] joins. Some
older databases (notably, Oracle8i) did not support this join syntax, so ensure that you
verify that the syntax and structure of SQL is compatible with your particular database!

There are also most certainly more efficient database-dependent methods of performing
hierarchical queries using non-standard SQL, for example, Oracle's CONNECT BY statement
and the Common Table Expression (CTE) capability of many other databases, including
PostgreSQL and Microsoft SQL Server.

Much as you learned in the example in Chapter 4, JDBC-Based Authentication, using a
custom schema for the JdbcDaoImpl implementation of the UserDetailsService
properties are exposed to allow for configuration of the SQL utilized by
BasicLookupStrategy. Consult the Javadoc and the source code itself to see how they are
used so that they can be correctly applied to your custom schema.

We can see that LookupStrategy requires a reference to the same JDBC dataSource
instance that AclService utilizes. The other three references bring us almost to the end of the
dependency chain.

EhCacheBasedAclCache
The o.s.s.acls.model.AclCache interface declares an interface for a caching
ObjectIdentity to ACL mappings, to prevent redundant (and expensive) database
lookups. Spring Security ships with only one implementation of AclCache, using the third-
party library Ehcache.

Ehcache is an open source, memory and disk-based caching library that is widely used in
many open source and commercial Java products. As mentioned earlier in the chapter,
Spring Security ships with a default implementation of ACL caching, which relies on the
availability of a configured Ehcache instance, which it uses to store ACL information in
preference to reading ACLs from the database.

While deep configuration of Ehcache is not something we want to cover in this section,
we'll cover how Spring ACL uses the cache and walk you through a basic default
configuration.

Access Control Lists Chapter 12

[337]

Setting up Ehcache is simple—we'll simply declare
o.s.s.acls.domain.EhCacheBasedAclCache along with its two dependent beans from
Spring Core that manage Ehcache instantiation and expose several helpful configuration
properties. Like our other beans, we have already provided the following configuration in
AclConfig.java:

src/main/java/com/packtpub/springsecurity/configuration/AclConfig.java
@Bean
public EhCacheBasedAclCache aclCache(){
 return new EhCacheBasedAclCache(ehcache(),
 permissionGrantingStrategy(),
 aclAuthorizationStrategy()
);
}

@Bean
public PermissionGrantingStrategy permissionGrantingStrategy(){
 return new DefaultPermissionGrantingStrategy(consoleAuditLogger());
}

@Bean
public Ehcache ehcache(){
 EhCacheFactoryBean cacheFactoryBean = new EhCacheFactoryBean();
 cacheFactoryBean.setCacheManager(cacheManager());
 cacheFactoryBean.setCacheName("aclCache");
 cacheFactoryBean.setMaxBytesLocalHeap("1M");
 cacheFactoryBean.setMaxEntriesLocalHeap(0L);
 cacheFactoryBean.afterPropertiesSet();
 return cacheFactoryBean.getObject();
}

@Bean
public CacheManager cacheManager(){
 EhCacheManagerFactoryBean cacheManager = new
EhCacheManagerFactoryBean();
 cacheManager.setAcceptExisting(true);
cacheManager.setCacheManagerName(CacheManager.getInstance().getName());
 cacheManager.afterPropertiesSet();
return cacheManager.getObject();
}

Access Control Lists Chapter 12

[338]

The ConsoleAuditLogger class
The next simple dependency hanging off of o.s.s.acls.jdbc.BasicLookupStrategy is
an implementation of the o.s.s.acls.domain.AuditLogger interface, which is used by
the BasicLookupStrategy class to audit ACL and ACE lookups. Similar to the AclCache
interface, only one implementation is supplied with Spring Security that simply logs to the
console. We'll configure it with another one-line bean declaration:

src/main/java/com/packtpub/springsecurity/configuration/AclConfig.j
ava
@Bean
public ConsoleAuditLogger consoleAuditLogger(){
 return new ConsoleAuditLogger();
}

The AclAuthorizationStrategyImpl interface
The final dependency to resolve is to an implementation of the
o.s.s.acls.domain.AclAuthorizationStrategy interface, which actually has no
immediate responsibility at all during the load of the ACL from the database. Instead, the
implementation of this interface is responsible for determining whether a runtime change to
an ACL or ACE is allowed, based on the type of change. We'll explain more on this later
when we cover mutable ACLs, as the logical flow is both somewhat complicated and not
pertinent to getting our initial configuration complete. The final configuration requirements
are as follows:

src/main/java/com/packtpub/springsecurity/configuration/AclConfig.j
ava
@Bean
public AclAuthorizationStrategy aclAuthorizationStrategy() {
 return new AclAuthorizationStrategyImpl(
 new SimpleGrantedAuthority("ROLE_ADMINISTRATOR")
);
}

You might wonder what the reference to the bean with ID adminAuthority is
for—AclAuthorizationStrategyImpl provides the ability to specify
GrantedAuthority that is required to allow specific operations at runtime on mutable
ACLs. We'll cover these later in this chapter.

Access Control Lists Chapter 12

[339]

Lastly, we need to update our SecurityConfig.java file to load our AclConfig.java
file, as follows:

src/main/java/com/packtpub/springsecurity/configuration/SecurityCon
fig.java
@Import(AclConfig.class)
public class SecurityConfig extends WebSecurityConfigurerAdapter {

We're finally done with the basic configuration of an out-of-the-box Spring Security ACL
implementation. The next and final step requires that we insert a simple ACL and ACE into
the H2 database and test it out!

Creating a simple ACL entry
Recall that our very simple scenario is to only allow user2@example.com access to the
birthday party event and ensure that no other events are accessible. You may find it helpful
to refer back several pages to the database schema diagram to follow which data we are
inserting and why.

We have already included a file named data.sql in the sample application. All of the SQL
explained in this section will be from the file—you may feel free to experiment and add
more test cases based on the sample SQL we've provided—in fact, we'd encourage that you
experiment with sample data!

Let's take a look at the following steps for creating a simple ACL entry:

First, we'll need to populate the ACL_CLASS table with any or all of the domain1.
object classes, which may have ACL rules—in the case of our example, this is
simply our Event class:

 src/main/resources/data.sql
 insert into acl_class (id, class) values (10,
 'com.packtpub.springsecurity.domain.Event');

We chose to use primary keys that are between 10 to 19 for the ACL_CLASS table,
20 to 29 for the ACL_SID table, and so on. This will help to make it easier to
understand which data associates to which table. Note that our Event table starts
with a primary key of 100. These conveniences are done for example purposes
and are not suggested for production purposes.

Access Control Lists Chapter 12

[340]

Next, the ACL_SID table is seeded with SIDs that will be associated with the2.
ACEs. Remember that SIDs can either be roles or users—we'll populate the roles
and user2@example.com here.
While the SID object for roles is straightforward, the SID object for a user is not3.
quite as clear-cut. For our purposes, the username is used for the SID. To learn
more about how the SIDs are resolved for roles and users, refer to
o.s.s.acls.domain.SidRetrievalStrategyImpl. If the defaults do not meet
your needs, a custom o.s.s.acls.model.SidRetrievalStrategy default can
be injected into AclPermissionCacheOptimizer and
AclPermissionEvaluator. We will not need this sort of customization for our
example, but it is good to know that it is available if necessary:

 src/main/resources/data.sql
 insert into acl_sid (id, principal, sid) values (20, true,
 'user2@example.com');
 insert into acl_sid (id, principal, sid) values (21, false,
 'ROLE_USER');
 insert into acl_sid (id, principal, sid) values (22, false,
 'ROLE_ADMIN');

The table where things start getting complicated is the ACL_OBJECT_IDENTITY table that is
used to declare individual domain object instances, their parent (if any), and owning SID.
For example, this table represents the Event objects that we are securing. We'll insert a row
with the following properties:

Domain object of type Event that is a foreign key, 10, to our ACL_CLASS table via
the OBJECT_ID_CLASS column.
Domain object primary key of 100 (the OBJECT_ID_IDENTITY column). This is a
foreign key (although not enforced with a database constraint) to our Event
object.
Owner SID of user2@example.com, which is a foreign key, 20, to ACL_SID via
the OWNER_SID column.

The SQL to represent our events with IDs of 100 (birthday event), 101, and 102 is as
follows:

 src/main/resources/data.sql
 insert into acl_object_identity(id,object_id_identity,object_id_class,
 parent_object,owner_sid,entries_inheriting)
 values (30, 100, 10, null, 20, false);
 insert into acl_object_identity(id,object_id_identity,object_id_class,
 parent_object,owner_sid,entries_inheriting)
 values (31, 101, 10, null, 21, false);

Access Control Lists Chapter 12

[341]

 insert into acl_object_identity(id,object_id_identity,object_id_class,
 parent_object,owner_sid,entries_inheriting)
 values (32, 102, 10, null, 21, false);

Keep in mind that the owning SID could also represent a role—both types of rules function
equally well as far as the ACL system is concerned.

Finally, we'll add an ACE-related to this object instance, which declares that
user2@example.com is allowed read access to the birthday event:

 src/main/resources/data.sql
 insert into acl_entry
 (acl_object_identity, ace_order, sid, mask, granting, audit_success,
 audit_failure) values(30, 1, 20, 1, true, true, true);

The MASK column here represents a bitmask, which is used to grant permission assigned to
the stated SID on the object in question. We'll explain the details of this later in this
chapter—unfortunately, it doesn't tend to be as useful as it may sound.

Now, we can start the application and run through our sample scenario. Try logging in with
user2@example.com/user2 and accessing the All Events page. You will see that only the
birthday event is listed. When logged in with admin1@example.com/admin1 and viewing
the All Events page, no events will be displayed. However, if we navigated directly to an
event, it would not be protected. Can you figure out how to secure direct access to an event
based on what you learned in this chapter?

If you have not figured it out yet, you can secure direct access to an event by making the
following update to CalendarService, as follows:

 src/main/java/com/packtpub/springsecurity/service/CalendarService.java
 @PostAuthorize("hasPermission(filterObject, 'read') " +
 "or hasPermission(filterObject, 'admin_read')")
 Event getEvent(int eventId);

We now have a basic working setup of ACL-based security (albeit, a very simple scenario).
Let's move on to some more explanation about concepts we saw during this walkthrough,
and then review a couple of considerations in a typical Spring ACL implementation that
you should consider before using it.

Access Control Lists Chapter 12

[342]

Your code should look like chapter12.01-calendar.

It is worth noting that we have not created new ACL entries when we
create events. Thus, in the current state, if you create an event, you will
receive an error similar to the following:

Exception during execution of Spring Security
application! Unable to find ACL information for object
identity
org.springframework.security.acls.domain.ObjectIdentityIm
pl[Type: com.packtpub.springsecurity.domain.Event;

Identifier: 103].

Advanced ACL topics
Some high-level topics that we skimmed over during the configuration of our ACL
environment had to do with ACE permissions and the use of the GrantedAuthority
indicators to assist the ACL environment in determining whether certain types of runtime
changes to ACLs were allowed. Now that we have a working environment, we'll review
these more advanced topics.

How permissions work
Permissions are no more than single logical identifiers represented by bits in an integer. An
access control entry grants permissions to SIDs based on the bitmask, which comprises the
logical AND of all permissions applicable to that access control entry.

The default permission implementation, o.s.s.acls.domain.BasePermission, defines
a series of integer values representing common ACL authorization verbs. These integer
values correspond to single bits set in an integer, so a value of BasePermission, WRITE,
with integer value 1 has a bitwise value of 21 or 2.

Access Control Lists Chapter 12

[343]

These are illustrated in the following diagram:

We can see that the Sample permission bitmask would have an integer value of 3, due to
the application of both the Read and Write permissions to the permission value. All of the
standard integer single permission values shown in the preceding diagram are defined in
the BasePermission object as static constants.

The logical constants that are included in BasePermission are just a sensible baseline of
commonly used permissions in ACE, and have no semantic meaning within the Spring
Security framework. It's quite common for very complex ACL implementations to invent
their own custom permissions, augmenting best practice examples with domain- or
business-dependent ones.

One issue that often confuses users is how the bitmasks are used in practice, given that
many databases either do not support bitwise logic or do not support it in a scalable way.
Spring ACL intends to solve this problem by putting more of the load of calculating
appropriate permissions related to bitmasks on the application rather than on the database.

It's important to review the resolution process, where we see how
AclPermissionEvaluator resolves permissions declared on the method itself (in our
example, with the @PostFilter annotation) to real ACL permissions.

The following diagram illustrates the process that Spring ACL performs to evaluate the
declared permission against the relevant ACEs for the requesting principal:

Access Control Lists Chapter 12

[344]

We see that AclPermissionEvaluator relies on classes implementing two interfaces,
o.s.s.acls.model.ObjectIdentityRetrievalStrategy and
o.s.s.acls.model.SidRetrievalStrategy, to retrieve ObjectIdentity and SIDs
appropriate for the authorization check. The important thing to note about these strategies
is how the default implementation classes actually determine the ObjectIdentity and
SIDs objects to return, based on the context of the authorization check.

Access Control Lists Chapter 12

[345]

The ObjectIdentity object has two properties, type and identifier, that are derived
from the object being checked at runtime, and used to declare ACE entries. The default
ObjectIdentityRetrievalStrategy interface uses the fully-qualified class name to
populate the type property. The identifier property is populated with the result of a
method with the signature Serializable getId(), invoked on the actual object instance.

As your object isn't required to implement an interface to be compatible with ACL checks,
the requirement to implement a method with a specific signature can be surprising for
developers implementing Spring Security ACL. Plan ahead and ensure that your domain
objects contain this method! You may also implement your own
ObjectIdentityRetrievalStrategy class (or subclass the out-of-the-box
implementation) to call a method of your choice. The name and type signature of the
method is, unfortunately, not configurable.

Unfortunately, the actual implementation of AclImpl directly compares the permission
specified in our SpEL expression specified in our @PostFilter annotation, and the
permission stored on the ACE in the database, without using bitwise logic. The Spring
Security community is in debate about whether this is unintentional or working as
intended, but regardless, you will need to take care when declaring a user with a
combination of permissions, as either AclEntryVoter must be configured with all
combinations of permission, or the ACEs need to ignore the fact that the permission field is
intended to store multiple values and instead store a single permission per ACE.

If you want to verify this with our simple scenario, change the READ permission we granted
to the user2@example.com SID to the bitmask combination of Read and Write, which
translates to a value of 3. This would be updated in the data.sql file, as follows:

 src/main/resources/data.sql
 insert into acl_entry
 (acl_object_identity, ace_order, sid, mask, granting,
 audit_success, audit_failure) values(30, 1, 20, 3, true, true, true);

Your code should look like chapter12.02-calendar.

Access Control Lists Chapter 12

[346]

The custom ACL permission declaration
As stated in the earlier discussion on permission declarations, permissions are nothing but
logical names for integer bit values. As such, it's possible to extend the
o.s.s.acls.domain.BasePermission class and declare your own permissions. We'll
cover a very straightforward scenario here, where we create a new ACL permission called
ADMIN_READ. This is a permission that will be granted only to administrative users and will
be assigned to protect resources that only administrators could read. Although a contrived
example for the JBCP calendar application, this type of use of custom permissions occurs
quite often in situations dealing with personally identifiable information (for example,
social security number, and so on—recall that we covered PII in Chapter 1, Anatomy of an
Unsafe Application).

Let's get started making the changes required to support this by performing the following
steps:

The first step is to extend the BasePermission class with our own1.
com.packtpub.springsecurity.acls.domain.CustomPermission class, as
follows:

 package com.packtpub.springsecurity.acls.domain;
 public class CustomPermission extends BasePermission {
 public static final Permission ADMIN_READ = new
 CustomPermission(1 << 5, 'M'); // 32
 public CustomPermission(int mask, char code) {
 super(mask, code);
 }
 }

Next, we will need to configure the o.s.s.acls.domain.PermissionFactory2.
default implementation, o.s.s.acls.domain.DefaultPermissionFactory,
to register our custom permission logical value. The role of PermissionFactory
is to resolve permission bitmasks into logical permission values (which can be
referenced by the constant value, or by name, such as ADMIN_READ, in other areas
of the application). The PermissionFactory instance requires that any custom
permission is registered with it for proper lookup. We have included the
following configuration that registers our CustomPermission class, as follows:

 src/main/java/com/packtpub/springsecurity/configuration/
 AclConfig.java
 @Bean
 public DefaultPermissionFactory permissionFactory(){
 return new DefaultPermissionFactory(CustomPermission.class);
 }

Access Control Lists Chapter 12

[347]

Next, we will need to override the default PermissionFactory instance for our3.
BasicLookupStrategy and AclPermissionEvaluator interfaces with the
customized DefaultPermissionFactory interface. Make the following updates
to your security-acl.xml file:

src/main/java/com/packtpub/springsecurity/configuration/AclConf
ig.java
@Bean
public AclPermissionEvaluator permissionEvaluator(){
 AclPermissionEvaluator pe = new
AclPermissionEvaluator(aclService());
 pe.setPermissionFactory(permissionFactory());
 return pe;
}
@Bean
public LookupStrategy lookupStrategy(){
 BasicLookupStrategy ls = new BasicLookupStrategy(
 dataSource,
 aclCache(),
aclAuthorizationStrategy(),
 consoleAuditLogger());
 ls.setPermissionFactory(permissionFactory());
 return ls;
}

We also need to add the SQL query to utilize the new permission to grant access4.
to the conference call (acl_object_identity ID of 31) event to
admin1@example.com. Make the following updates to data.sql:

 src/main/resources/data.sql
 insert into acl_sid (id, principal, sid) values (23, true,
 'admin1@example.com');
 insert into acl_entry (acl_object_identity, ace_order, sid,
 mask, granting, audit_success, audit_failure)
 values(31, 1, 23, 32, true, true, true);

We can see that the new integer bitmask value of 32 has been referenced in the
ACE data. This intentionally corresponds to our new ADMIN_READ ACL
permission, as defined in Java code. The conference call event is referenced by its
primary key (stored in the object_id_identity column) value of 31, in the
ACL_OBJECT_IDENTITY table.

Access Control Lists Chapter 12

[348]

The last step is to update our CalendarService's getEvents() method to5.
utilize our new permission, as follows:

 @PostFilter("hasPermission(filterObject, 'read') " + "or
 hasPermission(filterObject, 'admin_read')")
 List<Event> getEvents();

With all of these configurations in place, we can start up the site again and test out the
custom ACL permission. Based on the sample data we have configured, here is what should
happen when the various available users click on categories:

Username/password Birthday party
event

Conference call event Other events

user2@example.com/user2 Allowed via
READ

Denied Denied

admin1@example.com/admin1 Denied Allowed via
ADMIN_READ

Denied

user1@example.com/user1 Denied Denied Denied

We can see that even with the use of our simple cases, we've now been able to extend the
Spring ACL functionality in a very limited way to illustrate the power of this fine-grained
access control system.

Your code should look like chapter12.03-calendar.

Enabling ACL permission evaluation
We saw in Chapter 2, Getting Started with Spring Security, that the Spring Security JSP tag
library offers functionality to expose authentication-related data to the user and to restrict
what the user can see based on a variety of rules. So far in this book, we have used the
Thymeleaf Security tag libraries that are built on top of Spring Security.

Access Control Lists Chapter 12

[349]

The very same tag library can also interact with an ACL-enabled system right out of the
box! From our simple experiments, we have configured a simple ACL authorization
scenario around the first two categories in the list on the home page. Let's take a look at the
following steps and learn how to enable ACL permission evaluation in our Thymeleaf
pages:

First, we will need to remove our @PostFilter annotation from the1.
getEvents() method in our CalendarService interface in order to give our
JSP tag library a chance to filter out the events that are not allowed for display.
Go ahead and remove @PostFilter now, as follows:

 src/main/java/com/packtpub/springsecurity/service/
 CalendarService.java
 List<Event> getEvents();

Now that we have removed @PostFilter, we can utilize the <sec:authorize-2.
acl> tag to hide the events that the user doesn't actually have access to. Refer to
the table in the preceding section as a refresher of the access rules we've
configured up to this point!
We'll wrap the display of each event with the <sec:authorize-acl> tag,3.
declaring the list of permissions to check on the object to be displayed:

 src/main/resources/templates/events/list.html
 <tr th:each="event : ${events}"
 sec:authorize-acl="${event} :: '1,32'">
 <td th:text="${#calendars.format(event.when,
 'yyyy-MM-dd HH:mm')}">today</td>
 <td th:text="${event.owner.name}"></td>
 <td th:text="${event.attendee.name}"> </td>
 <td><a th:href="@{'/events/{id}'(id=${event.id})}"
 th:text="${event.summary}"></td>
 </tr>

Think for a moment about what we want to occur here—we want the user to see4.
only the items to which they actually have the READ or ADMIN_READ (our custom
permission) access. However, to use the tag library, we need to use the
permission mask, which can be referenced from the following table:

Name Mask

READ 1

WRITE 2

ADMIN_READ 32

Access Control Lists Chapter 12

[350]

Behind the scenes, the tag implementation utilizes the same
SidRetrievalStrategy and ObjectIdentityRetrievalStrategy interfaces
discussed earlier in this chapter. So, the computation of access checking follows
the same workflow as it does with ACL-enabled voting on method security. As
we will see in a moment, the tag implementation will also use the same
PermissionEvaluator.

We have already configured our GlobalMethodSecurityConfiguration
configuration with an expressionHandler element that references
DefaultMethodSecurityExpressionHandler. The
DefaultMethodSecurityExpressionHandler implementation is aware of our
AclPermissionEvaluator interface, but we must also make Spring Security's
web tier aware of AclPermissionEvalulator. If you think about it, this
symmetry makes sense, since securing methods and HTTP requests are protecting
two very different resources. Fortunately, Spring Security's abstractions make this
rather simple.

Add a DefaultWebSecurityExpressionHandler handler that references the5.
bean with the ID as permissionEvaluator that we have already defined:

 src/main/java/com/packtpub/springsecurity/configuration/
 AclConfig.java
 @Bean
 public DefaultWebSecurityExpressionHandler webExpressionHandler(){
 return new DefaultWebSecurityExpressionHandler(){{
 setPermissionEvaluator(permissionEvaluator());
 }};
 }

Now, update SecurityConfig.java to refer to our6.
webExpressionHandler implementation, as follows:

 src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java
 @Autowired
 private DefaultWebSecurityExpressionHandler webExpressionHandler;
 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http.authorizeRequests()
 .expressionHandler(webExpressionHandler);
 ...
 }

Access Control Lists Chapter 12

[351]

You can see how these steps are very similar to how we added support for permission
handling to our method security. This time, it was a bit simpler, since we were able to reuse
the same bean with ID as PermissionEvaluator that we already configured.

Start up our application and try accessing the All Events page as different users. You will
find that the events that are not allowed for a user are now hidden using our tag library
instead of the @PostFilter annotation. We are still aware that accessing an event directly
would allow a user to see it. However, this could easily be added by combining what you
learned in this chapter with what you learned about the @PostAuthorize annotation in
this chapter.

Your code should look like chapter12.04-calendar.

Mutable ACLs and authorization
Although the JBCP calendar application doesn't implement full user administration
functionality, it's likely that your application will have common features, such as new user
registration and administrative user maintenance. To this point, lack of these
features—which we have worked around using SQL inserts at application startup—hasn't
stopped us from demonstrating many of the features of Spring Security and Spring ACL.

However, the proper handling of runtime changes to declared ACLs, or the addition or
removal of users in the system, is critical to maintaining the consistency and security of the
ACL-based authorization environment. Spring ACL solves this issue through the concept of
the mutable ACL (o.s.s.acls.model.MutableAcl).

Extending the standard ACL interface, the MutableAcl interface allows for runtime
manipulation of ACL fields in order to change the in-memory representation of a particular
ACL. This additional functionality includes the ability to create, update, or delete ACEs,
change ACL ownership, and other useful functions.

We might expect, then, that the Spring ACL module would come out of the box with a way
to persist runtime ACL changes to the JDBC datastore, and indeed it does. The
o.s.s.acls.jdbc.JdbcMutableAclService class may be used to create, update, and
delete the MutableAcl instances in the database, as well as to do general maintenance on
the other supporting tables for ACLs (handling SIDs, ObjectIdentity, and domain object
class names).

Access Control Lists Chapter 12

[352]

Recall from earlier in the chapter that the AclAuthorizationStrategyImpl class allows
us to specify the administrative role for actions on mutable ACLs. These are supplied to the
constructor as part of the bean configuration. The constructor arguments and their meaning
are as follows:

Arg # What it does?

1 Indicates the authority that a principal is required to have in order to take
ownership of an ACL-protected object at runtime

2 Indicates the authority that a principal is required to have in order to change the
auditing of an ACL-protected object at runtime

3 Indicates the authority that a principal is required to have in order to make any
other kind of change (create, update, and delete) to an ACL-protected object at
runtime

It may be confusing that we only specified a single constructor argument when there are
three arguments listed. The AclAuthorizationStrategyImpl class can also accept a single
GrantedAuthority, which will then be used for all three arguments. This is convenient if
we want the same GrantedAuthority to be used for all of the operations.

The JdbcMutableAclService interface contains a number of methods used to manipulate
ACL and ACE data at runtime. While the methods themselves are fairly understandable
(createAcl, updateAcl, and deleteAcl), the correct way to configure and use
JdbcMutableAclService is often difficult for even advanced Spring Security users.

Let's modify CalendarService to create a new ACL for newly created events.

Adding ACLs to newly created events
Currently, if a user creates a new event, it will not be visible to the user in the All Events
view, since we are using the <sec:authorize-acl> tag to only display event objects that
the user has access to. Let's update our DefaultCalendarService interface so that when a
user creates a new event, they are granted read access to that event and it will be displayed
for them on the All Events page.

Access Control Lists Chapter 12

[353]

Let's take a look at the following steps to add ACLs to newly created events:

The first step is to update our constructor to accept MutableAclService and1.
UserContext:

 src/main/java/com/packtpub/springsecurity/service/
 DefaultCalendarService.java
 public class DefaultCalendarService implements CalendarService {
 ...
 private final MutableAclService aclService;
 private final UserContext userContext;
 @Autowired
 public DefaultCalendarService(EventDao eventDao,
 CalendarUserDao userDao, CalendarUserRepository userRepository,
 PasswordEncoder passwordEncoder, MutableAclService aclService,
 UserContext userContext) {
 ...
 this.aclService = aclService;
 this.userContext = userContext;
 }

Then, we need to update our createEvent method to also create an ACL for the2.
current user. Make the following changes:

 src/main/java/com/packtpub/springsecurity/service/
 DefaultCalendarService.java
 @Transactional
 public int createEvent(Event event) {
 int result = eventDao.createEvent(event);
 event.setId(result);
 // Add new ACL Entry:
 MutableAcl acl = aclService.createAcl
 (new ObjectIdentityImpl(event));
 PrincipalSid sid = new PrincipalSid(
 userContext.getCurrentUser().getEmail());
 acl.setOwner(sid);
 acl.insertAce(0, BasePermission.READ, sid, true);
 aclService.updateAcl(acl);
 return result;
 }

The JdbcMutableAclService interface uses the current user as the default3.
owner for the created MutableAcl interface. We chose to explicitly set the owner
again to demonstrate how this can be overridden.

Access Control Lists Chapter 12

[354]

We then add a new ACE and save our ACL. That's all there is to it.4.
Start the application and log in with user1@example.com/user1.5.
Visit the All Events page and see that there are no events currently listed. Then,6.
create a new event and it will be displayed the next time you visit the All Events
page. If you log in as any other user, the event will not be visible on the All
Events page. However, it will potentially be visible to the user, since we have not
applied security to other pages. Again, we encourage you to attempt to secure
these pages on your own.

Your code should look like chapter12.05-calendar.

Considerations for a typical ACL deployment
Actually deploying Spring ACL in a true business application tends to be quite involved.
We wrap up coverage of Spring ACL with some considerations that arise in most Spring
ACL implementation scenarios.

ACL scalability and performance modeling
For small and medium-sized applications, the addition of ACLs is quite manageable, and
while it adds overhead to database storage and runtime performance, the impact is not
likely to be significant. However, depending on the granularity with which ACLs and ACEs
are modeled, the numbers of database rows in a medium- to the large-sized application can
be truly staggering and can task even the most seasoned database administrator.

Let's assume we were to extend ACLs to cover an extended version of the JBCP calendar
application. Let's assume that users can manage accounts, post pictures to events, and
administer (add/remove users) from an event. We'll model the data as follows:

All users have accounts.
10% of users are able to administer an event. The average number of events that a
user can administer will be two.
Events will be secured (read-only) per customer, but also need to be accessible
(read/write) by administrators.

Access Control Lists Chapter 12

[355]

10 percent of all customers will be allowed to post pictures. The average number
of posts per user will be 20.
Posted pictures will be secured (read-write) per user, as well as administrators.
Posted pictures will be read-only for all other users.

Given what we know about the ACL system, we know that the database tables have the
following scalability attributes:

Table Scales with data Scalability notes

ACL_CLASS No One row is required per domain class.

ACL_SID Yes (users) One row is required per role
(GrantedAuthority). One row is required
for each user account (if individual domain
objects are secured per user).

ACL_OBJECT_IDENTITY Yes (domain class
instances per
class)

One row is required per instance of a
secured domain object.

ACL_ENTRY Yes (domain
object instances
individual ACE
entries)

One row is required per ACE; may require
multiple rows for a single domain object.

We can see that ACL_CLASS doesn't really have scalability concerns (most systems will have
fewer than 1,000 domain classes). The ACL_SID table will scale linearly based on the
number of users in the system. This is probably not a matter of concern because other user-
related tables will scale in this fashion as well (user account, and so on).

The two tables of concern are ACL_OBJECT_IDENTITY and ACL_ENTRY. If we model the
estimated rows required to model an order for an individual customer, we come up with
the following estimates:

Table ACL data per event ACL data per picture post

ACL_OBJECT_IDENTITY One row is required for a
single event.

One row is required for a single
post.

Access Control Lists Chapter 12

[356]

ACL_ENTRY Three rows—one row is
required for read access by the
owner (the user SID), two
rows are required (one for
read access, one for write
access) for the administrative
group SID.

Four rows—one row is required
for read access by the user
group SID, one row is required
for write access by the owner,
two rows are required for the
administrative group SID (as
with events)

We can then take the usage assumptions from the previous page and calculate the following
ACL scalability matrix as follows:

Table/Object Scale factor Estimates (Low) Estimates (High)

Users 10,000 1,000,000

Events # Users * 0.1 * 2 2,000 200,000

Picture Posts # Users * 0.1 * 20 20,000 2,000,000

ACL_SID # Users 10,000 1,000,000

ACL_OBJECT_IDENTITY # Events + # Picture
Posts

220,000 2,200,000

ACL_ENTRY (# Events * 3) + (#
Picture Posts * 4)

86,000 8,600,000

From these projections based on only a subset of the business objects likely to be involved
and secured in a typical ACL implementation, you can see that the number of database
rows devoted to storing ACL information is likely to grow linearly (or faster) in relation to
your actual business data. Especially in large system planning, forecasting the amount of
ACL data that you are likely to use is extremely important. It is not uncommon for very
complex systems to have hundreds of millions of rows related to ACL storage.

Do not discount custom development costs
Utilizing a Spring ACL-secured environment often requires significant development work
above and beyond the configuration steps we've described to this point. Our sample
configuration scenario has the following limitations:

No facility is provided for responding to the manipulation modification of events
or modification of permissions

Access Control Lists Chapter 12

[357]

Not all of the application is using permissions. For example, the My Events page
and directly navigating to an event are both not secured

The application does not effectively use ACL hierarchies. These limitations would
significantly impact the functionality were we to roll out ACL security to the whole site.
This is why it is critical that when planning Spring ACL rollout across an application, you
must carefully review all of the places where the domain data is manipulated and ensure
that these locations correctly update ACL and ACE rules, and invalidate caches. Typically,
the securing of methods and data takes place at the service or business application layer,
and the hooks required to maintain ACLs and ACEs occur at the data access layer.

If you are dealing with a reasonably standard application architecture, with proper isolation
and encapsulation of functionality, it's likely that there's an easily identified central location
for these changes. On the other hand, if you're dealing with an architecture that has
devolved (or was never designed well in the first place), then adding ACL functionality and
supporting hooks in data manipulation code can prove to be very difficult.

As previously hinted, it's important to keep in mind that the Spring ACL architecture hasn't
changed significantly since the days of Acegi 1.x. During that time, many users have
attempted to implement it, and have logged and documented several important restrictions,
many of which are captured in the Spring Security JIRA repository (http:/ ​/ ​jira.
springframework.​org/ ​). Issue SEC-479 functions as a useful entry point for some of the
key limitations, many of which remain unaddressed with Spring Security 3, and (if they are
applicable to your situation) can require significant custom coding to work around.

http://jira.springframework.org/
http://jira.springframework.org/
http://jira.springframework.org/
http://jira.springframework.org/
http://jira.springframework.org/
http://jira.springframework.org/
http://jira.springframework.org/
http://jira.springframework.org/
http://jira.springframework.org/

Access Control Lists Chapter 12

[358]

The following are some of the most important and commonly encountered issues:

The ACL infrastructure requires a numeric primary key. For applications that use
a GUID or UUID primary key (which occurs more frequently due to more
efficient support in modern databases), this can be a significant limitation.
At the time of writing this, the JIRA issue, SEC-1140, documents the issue that the
default ACL implementation does not correctly compare permission bitmasks
using bitwise operators. We covered this earlier in the section on permissions.
Several inconsistencies exist between the method of configuring Spring ACL and
the rest of Spring Security. In general, it is likely that you will run into areas
where class delegates or properties are not exposed through DI, necessitating an
override and rewrite strategy that can be time consuming and expensive to
maintain.
The permission bitmask is implemented as an integer, and thus has 32 possible
bits. It's somewhat common to expand the default bit assignments to indicate
permissions on individual object properties (for example, assigning a bit to read
the social security number of an employee). Complex deployments may have
well over 32 properties per domain object, in which case the only alternative
would be to remodel your domain objects around this limitation.

Depending on your specific application's requirements, it is likely that you will encounter
additional issues, especially with regards to the number of classes requiring change when
implementing certain types of customizations.

Should I use Spring Security ACL?
Just like the details of applying Spring Security as a whole are highly business dependent,
so is the application of Spring ACL support. In fact, this tends to be even more true of ACL
support due to its tight coupling to business methods and domain objects. We hope that this
guide to Spring ACL explained the important high-level and low-level configurations and
concepts required to analyze Spring ACL for use in your application and can assist you in
determining and matching its capabilities to real-world use.

Access Control Lists Chapter 12

[359]

Summary
In this chapter, we focused on security based on ACL and the specific details of how this
type of security is implemented by the Spring ACL module.

We reviewed the basic concept of ACL, and many reasons why they can be very effective
solutions to authorization. Also, you learned the key concepts related to the Spring ACL
implementation, including ACEs, SIDs, and object identity. We examined the database
schema and logical design required to support a hierarchical ACL system. We configured
all the required Spring beans to enable the Spring ACL module and enhanced one of the
service interfaces to use annotated method authorization. We then tied the existing users in
our database, and business objects used by the site itself, into a sample set of ACE
declarations and supporting data. We reviewed the concepts around Spring ACL
permission handling. We expanded our knowledge of the Spring Security Thymeleaf tag
library and SpEL expression language (for method security) to utilize ACL checks. We
discussed the mutable ACL concept and reviewed the basic configuration and custom
coding required in a mutable ACL environment. We developed a custom ACL permission
and configured the application to demonstrate its effectiveness. We configured and
analyzed the use of the Ehcache cache manager to reduce the database impact of Spring
ACL. We analyzed the impact and design considerations of using the Spring ACL system in
a complex business application.

This wraps up our discussion about Spring Security ACLs. In the next chapter, we'll dig a
bit further into how Spring Security works.

13
Custom Authorization

In this chapter, we will write some custom implementations for Spring Security's key
authorization APIs. Once we have done this, we will use the understanding of the custom
implementations to understand how Spring Security's authorization architecture works.

Throughout this chapter, we will cover the following topics:

Gaining an understanding of how authorization works
Writing a custom SecurityMetaDataSource backed by a database instead of
antMatchers() methods
Creating a custom SpEL expression
Implementing a custom PermissionEvaluator object that allows our
permissions to be encapsulated

Authorizing the requests
As in the authentication process, Spring Security provides an
o.s.s.web.access.intercept.FilterSecurityInterceptor servlet filter, which is
responsible for coming up with a decision as to whether a particular request will be
accepted or denied. At the point the filter is invoked, the principal has already been
authenticated, so the system knows that a valid user has logged in; remember that we
implemented the List<GrantedAuthority> getAuthorities() method, which returns
a list of authorities for the principal, in Chapter 3, Custom Authentication. In general, the
authorization process will use the information from this method (defined by the
Authentication interface) to determine, for a particular request, whether or not the
request should be allowed.

Custom Authorization Chapter 13

[361]

Remember that authorization is a binary decision—a user either has access to a secured
resource or he does not. There is no ambiguity when it comes to authorization.

A Smart object-oriented design is pervasive within the Spring Security framework, and
authorization decision management is no exception.

In Spring Security, the o.s.s.access.AccessDecisionManager interface specifies two
simple and logical methods that fit sensibly into the processing decision flow of requests, as
follows:

Supports: This logical operation actually comprises two methods that allow the
AccessDecisionManager implementation to report whether or not it supports
the current request.
Decide: This allows the AccessDecisionManager implementation to verify,
based on the request context and security configuration, whether or not access
should be allowed and the request accepted. The Decide method actually has no
return value, and instead reports the denial of a request by throwing an exception
to indicate rejection.

Specific types of exceptions can further dictate the action to be taken by the application to
resolve authorization decisions. The o.s.s.access.AccessDeniedException interface is
the most common exception thrown in the area of authorization and merits special handling
by the filter chain.

The implementation of AccessDecisionManager is completely configurable using
standard Spring bean binding and references. The default AccessDecisionManager
implementation provides an access granting mechanism based on AccessDecisionVoter
and votes aggregation.

A voter is an actor in the authorization sequence whose job is to evaluate any or all of the
following things:

The context of the request for a secured resource (such as a URL requesting an IP
address)
The credentials (if any) presented by the user
The secured resource being accessed
The configuration parameters of the system, and the resource itself

Custom Authorization Chapter 13

[362]

The AccessDecisionManager implementation is also responsible for passing the access
declaration (referred to in the code as implementations of the
o.s.s.access.ConfigAttribute interface) of the resource being requested to the voter.
In the case of web URLs, the voter will have information about the access declaration of the
resource. If we look at our very basic configuration file's URL intercept declaration, we'll see
ROLE_USER being declared as the access configuration for the resource the user is trying to
access, as follows:

 .antMatchers("/**").hasRole("USER");

Based on the voter's knowledge, it will decide whether the user should have access to the
resource or not. Spring Security allows the voter to make one of three decisions, whose
logical definition is mapped to constants in the interface, as shown in the following table:

Decision type Description

Grant (ACCESS_GRANTED) The voter recommends giving access to the resource.

Deny (ACCESS_DENIED) The voter recommends denying access to the resource.

Abstain (ACCESS_ABSTAIN) The voter abstains (does not make a decision) on access to
the resource. This may happen for a number of reasons,
such as follows:
• The voter doesn't have conclusive information
• The voter can't decide on a request of this type

As you may have guessed from the design of access decision-related objects and interfaces,
this portion of Spring Security has been designed so that it can be applied to authentication
and access control scenarios that aren't exclusively in the web domain. We'll encounter
voters and access decision managers when we look at method-level security later in this
chapter.

Custom Authorization Chapter 13

[363]

When we put this all together, the overall flow of the default authorization check for web
requests is similar to the following diagram:

We can see that the abstraction of ConfigAttribute allows for data to be passed from the
configuration declarations (retained in the
o.s.s.web.access.intercept.DefaultFilterinvocationSecurityMetadataSourc

e interface) to the voter responsible for acting on ConfigAttribute without any
intervening classes needing to understand the contents of ConfigAttribute. This
separation of concerns provides a solid foundation for building new types of security
declarations (such as the declarations we will see within method security) while utilizing
the same access decision pattern.

Custom Authorization Chapter 13

[364]

Configuration of access decision aggregation
Spring Security does actually allow for the configuration of AccessDecisionManager in
the security namespace. The access-decision-manager-ref attribute on the <http>
element allows you to specify a Spring bean reference to an implementation of
AccessDecisionManager. Spring Security ships with three implementations of this
interface, all in the o.s.s.access.vote package as follows:

Class name Description

AffirmativeBased If any voter grants access, access is immediately granted, regardless
of previous denials.

ConsensusBased The majority vote (grant or deny) governs the decision of
AccessDecisionManager. Tie-breaking and the handling of empty
votes (containing only abstentions) is configurable.

UnanimousBased All voters must grant access, otherwise, access is denied.

Configuring a UnanimousBased access decision
manager
If we want to modify our application to use the access decision manager, we require two
modifications. In order to do this, we add the accessDecisionManager entry to the http
element in our SecurityConfig.java file, as follows:

 //src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java

 http.authorizeRequests()
 .anyRequest()
 .authenticated()
 .accessDecisionManager(accessDecisionManager());

This is a standard Spring bean reference, so this should correspond to the id attribute of a
bean. We could then define the UnanimousBased bean, as shown in the following code
snippet. Note that we will not actually utilize this configuration in our exercises:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityC
onfig.java

@Bean
public AccessDecisionManager accessDecisionManager() {

Custom Authorization Chapter 13

[365]

 List<AccessDecisionVoter<? extends Object>> decisionVoters
 = Arrays.asList(
 new AuthenticatedVoter(),
 new RoleVoter(),
 new WebExpressionVoter()
);

 return new UnanimousBased(decisionVoters);
}

You may be wondering what the decisionVoters property is about. This property is
auto-configured until we declare our own AccessDecisionManager. The default
AccessDecisionManager class requires us to declare the list of voters who are consulted
to make authentication decisions. The two voters listed here are the defaults supplied by the
security namespace configuration.

Spring Security doesn't come with a wide variety of voters, but it would be trivial to
implement a new one. As we will see later in the chapter, in most situations, creating a
custom voter is not necessary, since this can typically be implemented using custom
expressions or even a custom o.s.s.access.PermissionEvaluator.

The two voter implementations that we reference here are the following:

Class name Description Example

o.s.s.access.vote.RoleVoter Checks that the user has the
matching declared role. Expects the
attribute to define a comma-
delimited list of names. The prefix
is expected, but optionally
configurable.

access="ROLE_USER,ROLE_ADMIN"

o.s.s.access.vote.AuthenticatedVoter Supports special declarations
allowing wildcard matches:
• IS_AUTHENTICATED_FULLY
allows access if a fresh username and
password are supplied.
•
IS_AUTHENTICATED_REMEMBERED

allows access if the user has
authenticated with the remember-me
functionality.
•
IS_AUTHENTICATED_ANONYMOUSLY

allows access if the user is anonymous

access="IS_AUTHENTICATED_ANONYMOUSLY"

Custom Authorization Chapter 13

[366]

Expression-based request authorization
As you might expect, SpEL handling is supplied by a different Voter implementation,
o.s.s.web.access.expression.WebExpressionVoter, which understands how to
evaluate the SpEL expressions. The WebExpressionVoter class relies on an
implementation of the SecurityExpressionHandler interface for this purpose. The
SecurityExpressionHandler interface is responsible both for evaluating the expressions
and for supplying the security-specific methods that are referenced in the expressions. The
default implementation of this interface exposes methods defined in the
o.s.s.web.access.expression.WebSecurityExpressionRoot class.

The flow and relationship between these classes are shown in the following diagram:

Custom Authorization Chapter 13

[367]

Now that we know how to request authorization works, let's solidify our understanding by
making a few custom implementations of some key interfaces.

Customizing request authorization
The real power of Spring Security's authorization is demonstrated by how adaptable it is to
custom requirements. Let's explore a few scenarios that will help reinforce our
understanding of the overall architecture.

Dynamically defining access control to URLs
Spring Security provides several methods for mapping ConfigAttribute objects to a
resource. For example, the antMatchers() method ensures it is simple for developers to
restrict access to specific HTTP requests in their web application. Behind the scenes, an
implementation of o.s.s.acess.SecurityMetadataSource is populated with these
mappings and queried to determine what is required in order to be authorized to make any
given HTTP request.

While the antMatchers() method is very simple, there may be times that it would be
desirable to provide a custom mechanism for determining the URL mappings. An example
of this might be if an application needs to be able to dynamically provide the access control
rules. Let's demonstrate what it would take to move our URL authorization configuration
into a database.

Configuring the RequestConfigMappingService
The first step is to be able to obtain the necessary information from the database. This will
replace the logic that reads in the antMatchers() methods from our security bean
configuration. In order to do this, the chapter's sample code contains
JpaRequestConfigMappingService, which will obtain a mapping of an ant pattern and
an expression from the database represented as RequestConfigMapping. The rather
simple implementation is as follows:

 //
src/main/java/com/packtpub/springsecurity/web/access/intercept/
 JpaRequestConfigMappingService.java

 @Repository("requestConfigMappingService")
 public class JpaRequestConfigMappingService
 implements RequestConfigMappingService {

Custom Authorization Chapter 13

[368]

 @Autowired
 private SecurityFilterMetadataRepository
securityFilterMetadataRepository;

 @Autowired
 public JpaRequestConfigMappingService(
 SecurityFilterMetadataRepository sfmr
) {
 this.securityFilterMetadataRepository = sfmr;
 }

 @Override
 public List<RequestConfigMapping> getRequestConfigMappings() {
 List<RequestConfigMapping> rcm =
 securityFilterMetadataRepository
 .findAll()
 .stream()
 .sorted((m1, m2) -> {
 return m1.getSortOrder() - m2.getSortOrder()
 })
 .map(md -> {
 return new RequestConfigMapping(
 new AntPathRequestMatcher
 (md.getAntPattern()),
 new SecurityConfig
 (md.getExpression()));
 }).collect(toList());
 return rcm;
 }
}

It is important to notice that, just as with the antMatchers() methods, order matters.
Therefore, we ensure the results are sorted by the sort_order column. The service creates
an AntRequestMatcher and associates it to SecurityConfig, an instance of
ConfigAttribute. This will provide a mapping of the HTTP request to
ConfigAttribute objects that can be used by Spring Security to secure our URLs.

We need to create a domain object to use for JPA to map to as follows:

//
src/main/java/com/packtpub/springsecurity/domain/SecurityFilterMeta
data.java

@Entity
@Table(name = "security_filtermetadata")

Custom Authorization Chapter 13

[369]

public class SecurityFilterMetadata implements Serializable {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private Integer id;
 private String antPattern;
 private String expression;
 private Integer sortOrder;

... setters / getters ...
}

Finally, we need to create a Spring Data repository object as follows:

 // src/main/java/com/packtpub/springsecurity/repository/
 SecurityFilterMetadataRepository.java

 public interface SecurityFilterMetadataRepository
 extends JpaRepository<SecurityFilterMetadata, Integer> {}

In order for the new service to work, we will need to initialize our database with the schema
and the access control mappings. Just as with the service implementation, our schema is
rather straightforward:

// src/main/resources/schema.sql

...
create table security_filtermetadata (
 id INTEGER GENERATED BY DEFAULT AS IDENTITY,
 ant_pattern VARCHAR(1024) NOT NULL unique,
 expression VARCHAR(1024) NOT NULL,
 sort_order INTEGER NOT NULL,
 PRIMARY KEY (id)
);

We can then use the same antMatchers() mappings from our SecurityConfig.java file
to produce the schema.sql file:

// src/main/resources/data.sql

-- Security Filter Metadata --

insert into
security_filtermetadata(id,ant_pattern,expression,sort_order)
values (110, '/admin/h2/**','permitAll',10);

Custom Authorization Chapter 13

[370]

insert into
security_filtermetadata(id,ant_pattern,expression,sort_order)
values (115, '/','permitAll',15);

insert into
security_filtermetadata(id,ant_pattern,expression,sort_order)
values (120, '/login/*','permitAll',20);

insert into
security_filtermetadata(id,ant_pattern,expression,sort_order)
values (140, '/logout','permitAll',30);

insert into
security_filtermetadata(id,ant_pattern,expression,sort_order)
values (130, '/signup/*','permitAll',40);

insert into
security_filtermetadata(id,ant_pattern,expression,sort_order)
values (150, '/errors/**','permitAll',50);

insert into
security_filtermetadata(id,ant_pattern,expression,sort_order)
values (160, '/admin/**','hasRole("ADMIN")',60);

insert into
security_filtermetadata(id,ant_pattern,expression,sort_order)
values (160, '/events/','hasRole("ADMIN")',60);

insert into
security_filtermetadata(id,ant_pattern,expression,sort_order)
values (170, '/**','hasRole("USER")',70);

At this point, your code should be starting with chapter13.00-
calendar.

Custom Authorization Chapter 13

[371]

Custom SecurityMetadataSource implementation
In order for Spring Security to be aware of our URL mappings, we need to provide a
custom FilterInvocationSecurityMetadataSource implementation. The
FilterInvocationSecurityMetadataSource package extends the
SecurityMetadataSource interface which, given a particular HTTP request, is what
provides Spring Security with the information necessary for determining if access should be
granted. Let's take a look at how we can utilize our
RequestConfigMappingService interface to implement a SecurityMetadataSource
interface:

 //src/main/java/com/packtpub/springsecurity/web/access/intercept/
 FilterInvocationServiceSecurityMetadataSource.java

 @Component("filterInvocationServiceSecurityMetadataSource")
 public class FilterInvocationServiceSecurityMetadataSource implements
 FilterInvocationSecurityMetadataSource, InitializingBean{
 … constructor and member variables omitted ...

 public Collection<ConfigAttribute> getAllConfigAttributes() {
 return this.delegate.getAllConfigAttributes();
 }

 public Collection<ConfigAttribute> getAttributes(Object object) {
 return this.delegate.getAttributes(object);
 }

 public boolean supports(Class<?> clazz) {
 return this.delegate.supports(clazz);
 }

 public void afterPropertiesSet() throws Exception {
 List<RequestConfigMapping> requestConfigMappings =
 requestConfigMappingService.getRequestConfigMappings();
 LinkedHashMap requestMap = new
 LinkedHashMap(requestConfigMappings.size());
 for(RequestConfigMapping requestConfigMapping
 requestConfigMappings) {
 RequestMatcher matcher =
 requestConfigMapping.getMatcher();
 Collection<ConfigAttribute> attributes =
 requestConfigMapping.getAttributes();

Custom Authorization Chapter 13

[372]

 requestMap.put(matcher,attributes);
 }
 this.delegate =
 new
 ExpressionBasedFilterInvocationSecurityMetadataSource
 (requestMap,expressionHandler);
 }
 }

We are able to use our RequestConfigMappingService interface to create a map of
RequestMatcher objects that map to ConfigAttribute objects. We then delegate to an
instance of ExpressionBasedFilterInvocationSecurityMetadataSource to do all
the work. For simplicity, the current implementation would require restarting the
application to pick up changes. However, with a few minor changes, we could avoid this
inconvenience.

Registering a custom SecurityMetadataSource
Now, all that is left is for us to configure
FilterInvocationServiceSecurityMetadataSource. The only problem is that Spring
Security does not support configuring a custom
FilterInvocationServiceSecurityMetadataSource interface directly. This is not too
difficult, so we will register this SecurityMetadataSource with our
FilterSecurityInterceptor in our SecurityConfig file:

 // src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java

 @Override
 public void configure(final WebSecurity web) throws Exception {
 ...
 final HttpSecurity http = getHttp();
 web.postBuildAction(() -> {
 FilterSecurityInterceptor fsi = http.getSharedObject
 (FilterSecurityInterceptor.class);
 fsi.setSecurityMetadataSource(metadataSource);
 web.securityInterceptor(fsi);
 });
 }

This sets up our custom SecurityMetadataSource interface with the
FilterSecurityInterceptor object as the default metadata source.

Custom Authorization Chapter 13

[373]

Removing our antMatchers() method
Now that the database is being used to map our security configuration, we can remove the
antMatchers() method from our SecurityConfig.java file. Go ahead and remove
them, so that the configuration looks similar to the following code snippet:

 // src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java

 @Override
 protected void configure(HttpSecurity http) throws Exception {

 // No interceptor methods
 // http.authorizeRequests()
 // .antMatchers("/").permitAll()
 ...

 http.formLogin()
 ...

 http.logout()
 ...

If you use even one http antMatchers expression, then the custom
expression handler will not be invoked.

You should now be able to start the application and test to ensure that our URLs are
secured as they should be. Our users will not notice a difference, but we know that our URL
mappings are persisted in a database now.

Your code should now look like chapter13.01-calendar.

Custom Authorization Chapter 13

[374]

Creating a custom expression
The o.s.s.access.expression.SecurityExpresssionHandler interface is how
Spring Security abstracts how the Spring expressions are created and initialized. Just as
with the SecurityMetadataSource interface, there is an implementation for creating
expressions for web requests and creating expressions for securing methods. In this section,
we will explore how we can easily add new expressions.

Configuring a custom SecurityExpressionRoot
Let's assume that we want to support a custom web expression named isLocal that will
return true if the host is localhost and false otherwise. This new method could be used to
provide additional security for our SQL console by ensuring that it is only accessed from
the same machine that the web application is deployed from.

This is an artificial example that does not add any security benefits since the host comes
from the headers of the HTTP request. This means a malicious user could inject a header
stating the host is localhost even if they are requesting to an external domain.

All of the expressions that we have seen are available because the
SecurityExpressionHandler interface makes them available via an instance of
o.s.s.access.expression.SecurityExpressionRoot. If you open this object, you will
find the methods and properties we use in Spring expressions (that is, hasRole,
hasPermission, and so on), which are common in both web and method security. A
subclass provides the methods that are specific to web and method expressions. For
example, o.s.s.web.access.expression.WebSecurityExpressionRoot provides the
hasIpAddress method for web requests.

To create a custom web SecurityExpressionhandler, we will first need to create a
subclass of WebSecurityExpressionRoot that defines our isLocal method as follows:

 //src/main/java/com/packtpub/springsecurity/web/access/expression/
 CustomWebSecurityExpressionRoot.java

 public class CustomWebSecurityExpressionRoot extends
 WebSecurityExpressionRoot {

 public CustomWebSecurityExpressionRoot(Authentication a,
 FilterInvocation fi) {
 super(a, fi);
 }

Custom Authorization Chapter 13

[375]

 public boolean isLocal() {
 return "localhost".equals(request.getServerName());
 }
 }

It is important to note that getServerName() returns the value that is
provided in the Host header value. This means that a malicious user can
inject a different value into the header to bypass constraints. However,
most application servers and proxies can enforce the value of the Host
header. Please read the appropriate documentation before leveraging such
an approach to ensure that malicious users do not inject a Host header
value to bypass such a constraint.

Configuring a custom SecurityExpressionHandler
In order for our new method to become available, we need to create a custom
SecurityExpressionHandler interface that utilizes our new root object. This is as simple
as extending WebSecurityExpressionHandler, as follows:

 //src/main/java/com/packtpub/springsecurity/web/access/expression/
 CustomWebSecurityExpressionHandler.java

 @Component
 public class CustomWebSecurityExpressionHandler extends
 DefaultWebSecurityExpressionHandler {
 private final AuthenticationTrustResolver trustResolver =
 new AuthenticationTrustResolverImpl();

 protected SecurityExpressionOperations
 createSecurityExpressionRoot(Authentication authentication,
 FilterInvocation fi)
 {
 WebSecurityExpressionRoot root = new
 CustomWebSecurityExpressionRoot(authentication, fi);
 root.setPermissionEvaluator(getPermissionEvaluator());
 root.setTrustResolver(trustResolver);
 root.setRoleHierarchy(getRoleHierarchy());
 return root;
 }
 }

Custom Authorization Chapter 13

[376]

We perform the same steps that the superclass does, except that we use
CustomWebSecurityExpressionRoot, which contains the new method.
The CustomWebSecurityExpressionRoot becomes the root of our SpEL expression.

For further details, refer to the SpEL documentation within the Spring
Reference at http:/ ​/ ​static. ​springsource. ​org/ ​spring/ ​docs/ ​current/
spring- ​framework- ​reference/ ​html/ ​expressions. ​html.

Configuring and using
CustomWebSecurityExpressionHandler
Let's take a look at the following steps to configure
CustomWebSecurityExpressionHandler:

We now need to configure CustomWebSecurityExpressionHandler.1.
Fortunately, this can be done easily using the Spring Security namespace
configuration support. Add the following configuration to the
SecurityConfig.java file:

 // src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java

 http.authorizeRequests()
 .expressionHandler(customWebSecurityExpressionHandler);

Now, let's update our initialization SQL query to use the new expression. Update2.
the data.sql file so that it requires the user to be ROLE_ADMIN and requested
from the local machine. You will notice that we are able to write local instead of
isLocal, since SpEL supports Java Bean conventions:

 // src/main/resources/data.sql

 insert into
security_filtermetadata(id,ant_pattern,expression,sort_order)
 values (160, '/admin/**','local and hasRole("ADMIN")',60);

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html

Custom Authorization Chapter 13

[377]

Restart the application and access the H2 console using3.
localhost:8443/admin/h2 and admin1@example.com/admin1 to see the
admin console. If the H2 console is accessed using 127.0.0.1:8443/admin/h2
and admin1@example.com admin1, the access denied page will be displayed.

Your code should look like chapter13.02-calendar.

Alternative to a
CustomWebSecurityExpressionHandler
Another way to use a custom expression instead of using a
CustomWebSecurityExpressionHandler interface is to add a @Component web, as
follows:

 // src/main/java/com/packtpub/springsecurity/web/access/expression/
 CustomWebExpression.java

 @Component
 public class CustomWebExpression {
 public boolean isLocal(Authentication authentication,
 HttpServletRequest request) {
 return "localhost".equals(request.getServerName());
 }
}

Now, let's update our initialization SQL query to use the new expression. You will notice
that we are able to reference the @Component directly since SpEL supports Java Bean
conventions:

// src/main/resources/data.sql

insert into security_filtermetadata(id,ant_pattern,expression,sort_order)
values (160, '/admin/**','@customWebExpression.isLocal(authentication,
request) and hasRole("ADMIN")',60);

Custom Authorization Chapter 13

[378]

How does method security work?
The access decision mechanism for method security—whether or not a given request is
allowed—is conceptually the same as the access decision logic for web request access.
AccessDecisionManager polls a set of AccessDecisionVoters, each of which can
provide a decision to grant or deny access, or abstain from voting. The specific
implementation of AccessDecisionManager aggregates the voter decisions and arrives at
an overall decision to allow for the method invocation.

Web request access decision making is less complicated, due to the fact that the availability
of servlet filters makes interception (and summary rejection) of securable requests relatively
straightforward. As method invocation can happen from anywhere, including areas of code
that are not directly configured by Spring Security, Spring Security designers chose to use a
Spring-managed AOP approach to recognize, evaluate, and secure method invocations.

The following high-level flow illustrates the main players involved in authorization
decisions for method invocation:

Custom Authorization Chapter 13

[379]

We can see that Spring Security's
o.s.s.access.intercept.aopalliance.MethodSecurityInterceptor is invoked by
the standard Spring AOP runtime to intercept method calls of interest. From here, the logic
of whether or not to allow a method call is relatively straightforward, as per the previous
flow diagram.

At this point, we might wonder about the performance of the method security feature.
Obviously, MethodSecurityInterceptor can't be invoked for every method call in the
application—so how do annotations on methods or classes result in AOP interception?

First of all, AOP proxying isn't invoked for all Spring-managed beans by default. Instead, if
@EnableGlobalMethodSecurity is defined in the Spring Security configuration, a
standard Spring AOP o.s.beans.factory.config.BeanPostProcessor will be
registered that will introspect the AOP configuration to see if any AOP advisors indicate
that proxying (and the interception) is required. This workflow is standard Spring AOP
handling (known as AOP auto-proxying), and doesn't inherently have any functionality
specific to Spring Security. All registered BeanPostProcessor run upon initialization of
the spring ApplicationContext, after all, Spring bean configurations have occurred.

The AOP auto-proxy functionality queries all registered PointcutAdvisor to see if there
are AOP pointcuts that resolve method invocations that should have AOP advice applied.
Spring Security implements the
o.s.s.access.intercept.aopalliance.MethodSecurityMetadataSourceAdvisor

class, which examines any and all configured method security and sets up appropriate AOP
interception. Take note that only interfaces or classes with declared method security rules
will be proxied for AOP!

Be aware that it is strongly encouraged to declare AOP rules (and other
security annotations) on interfaces, and not on implementation classes.
The use of classes, while available using CGLIB proxying with Spring,
may unexpectedly change the behavior of your application, and is
generally less semantically correct than security declarations (through
AOP) on interfaces. MethodSecurityMetadataSourceAdvisor
delegates the decision to affect methods with the AOP advice to an
o.s.s.access.method.MethodSecurityMetadataSource instance.
The different forms of method security annotation each have their own
MethodSecurityMetadataSource implementation, which is used to
introspect each method and class in turn and add AOP advice to be
executed at runtime.

Custom Authorization Chapter 13

[380]

The following diagram illustrates how this process occurs:

Depending on the number of Spring beans configured in your application, and the number
of secured method annotations you have, adding method security proxying may increase
the time required to initialize your ApplicationContext. Once your Spring context is
initialized, however, there is a negligible performance impact on individual proxied beans.

Now that we have an understanding of how we can use AOP to apply Spring Security, let's
strengthen our grasp of Spring Security authorization by creating a custom
PermissionEvaluator.

Custom Authorization Chapter 13

[381]

Creating a custom PermissionEvaluator
In the previous chapter, we demonstrated that we could use Spring Security's built-in
PermissionEvaluator implementation, AclPermissionEvaluator, to restrict access to
our application. While powerful, this can often be more complicated than necessary. We
have also discovered how SpEL can formulate complex expressions that are able to secure
our application. While simple, one of the downsides of using complex expressions is that
the logic is not centralized. Fortunately, we can easily create a custom
PermissionEvaluator that is able to centralize our authorization logic and still avoid the
complexity of using ACLs.

CalendarPermissionEvaluator
A simplified version of our custom PermissionEvaluator that does not contain any
validation can be seen as follows:

//src/main/java/com/packtpub/springsecurity/access/CalendarPermissionEvalua
tor.java

public final class CalendarPermissionEvaluator implements
PermissionEvaluator {
 private final EventDao eventDao;

 public CalendarPermissionEvaluator(EventDao eventDao) {
 this.eventDao = eventDao;
 }

 public boolean hasPermission(Authentication authentication, Object
 targetDomainObject, Object permission) {
 // should do instanceof check since could be any domain object
 return hasPermission(authentication, (Event) targetDomainObject,
permission);
 }

 public boolean hasPermission(Authentication authentication,
 Serializable targetId, String targetType,
 Object permission) {
 // missing validation and checking of the targetType
 Event event = eventDao.getEvent((Integer)targetId);
 return hasPermission(authentication, event, permission);
 }

Custom Authorization Chapter 13

[382]

 private boolean hasPermission(Authentication authentication,
 Event event, Object permission) {
 if(event == null) {
 return true;
 }
 String currentUserEmail = authentication.getName();
 String ownerEmail = extractEmail(event.getOwner());
 if("write".equals(permission)) {
 return currentUserEmail.equals(ownerEmail);
 } else if("read".equals(permission)) {
 String attendeeEmail =
 extractEmail(event.getAttendee());
 return currentUserEmail.equals(attendeeEmail) ||
 currentUserEmail.equals(ownerEmail);
 }
 throw new IllegalArgumentException("permission
 "+permission+" is not supported.");
 }

 private String extractEmail(CalendarUser user) {
 if(user == null) {
 return null;
 }
 return user.getEmail();
 }
}

The logic is fairly similar to the Spring expressions that we have already used, except that it
differentiates read and write access. If the current user's username matches the owner's
email of the Event object, then both read and write access is granted. If the current user's
email matches the attendee's email, then read access is granted. Otherwise, access is denied.

It should be noted that a single PermissionEvaluator is used for every
domain object. So, in a real-world situation, we must perform
instanceof checks first. For example, if we were also securing our
CalendarUser objects, these could be passed into this same instance. For
a full example of these minor changes, refer to the sample code included in
the book.

Custom Authorization Chapter 13

[383]

Configuring CalendarPermissionEvaluator
We can then leverage the CustomAuthorizationConfig.java configuration that is
provided with this chapter to provide an ExpressionHandler that uses our
CalendarPermissionEvaluator, like so:

 //src/main/java/com/packtpub/springsecurity/configuration/
 CustomAuthorizationConfig.java

@Bean
public DefaultMethodSecurityExpressionHandler
defaultExpressionHandler(EventDao eventDao){
 DefaultMethodSecurityExpressionHandler deh = new
DefaultMethodSecurityExpressionHandler();
 deh.setPermissionEvaluator(
 new CalendarPermissionEvaluator(eventDao));
 return deh;
}

The configuration should look similar to the configuration from Chapter 12, Access Control
Lists, except that we now use our CalendarPermissionEvalulator class instead
of AclPermissionEvaluator.

Next, we inform Spring Security to use our customized ExpressionHandler by adding the
following configuration to SecurityConfig.java.

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va
 http.authorizeRequests().expressionHandler
 (customWebSecurityExpressionHandler);

In the configuration, we ensure that prePostEnabled is enabled and point the
configuration to our ExpressionHandler definition. Once again, the configuration should
look very similar to our configuration from Chapter 11, Fine-Grained Access Control.

https://cdp.packtpub.com/spring_security__third_edition/wp-admin/post.php?post=169&action=edit

Custom Authorization Chapter 13

[384]

Securing our CalendarService
Lastly, we can secure our CalendarService getEvent(int eventId) method with a
@PostAuthorize annotation. You will notice that this step is exactly the same as what we
did in Chapter 1, Anatomy of an Unsafe Application, and we have only changed the
implementation of PermissionEvaluator:

//src/main/java/com/packtpub/springsecurity/service/CalendarService.java

 @PostAuthorize("hasPermission(returnObject,'read')")
 Event getEvent(int eventId);

If you have not done so already, restart the application, log in
as username/password admin1@example.com/admin1, and visit the Conference Call event
(events/101) using the link on the Welcome page. The access denied page will be
displayed. However, we would, like ROLE_ADMIN users, to be able to access all events.

Benefits of a custom PermissionEvaluator
With only a single method being protected, it would be trivial to update the annotation to
check if the user has the role of ROLE_ADMIN or has permission. However, if we had
protected all of our service methods that use an event, it would have become quite
cumbersome. Instead, we could just update our CalendarPermissionEvaluator. Make
the following changes:

private boolean hasPermission(Authentication authentication, Event
event, Object permission) {
 if(event == null) {
 return true;
 }
 GrantedAuthority adminRole =
 new SimpleGrantedAuthority("ROLE_ADMIN");
 if(authentication.getAuthorities().contains(adminRole)) {
 return true;
 }
 ...
}

Custom Authorization Chapter 13

[385]

Now, restart the application and repeat the previous exercise. This time, the Conference
Call event will display successfully. You can see that the ability to encapsulate our
authorization logic can be extremely beneficial. However, sometimes it may be useful to
extend the expressions themselves.

Your code should look like chapter13.03-calendar.

Summary
After reading this chapter, you should have a firm understanding of how Spring Security
authorization works for HTTP requests and methods. With this knowledge, and the
provided concrete examples, you should also know how to extend authorization to meet
your needs. Specifically, in this chapter, we covered the Spring Security authorization
architecture for both HTTP requests and methods. We also demonstrated how to configure
secured URLs from a database.

We also saw how to create a custom PermissionEvaluator object and custom Spring
Security expression.

In the next chapter, we will explore how Spring Security performs session management. We
will also gain an understanding of how it can be used to restrict access to our application.

14
Session Management

This chapter discusses Spring Security's session management functionality. It starts off with
an example of how Spring Security defends against session fixation. We will then discuss
how concurrency control can be leveraged to restrict access to software licensed on a per-
user basis. We will also see how session management can be leveraged for administrative
functions. Last, we will explore how HttpSession is used in Spring Security and how we
can control its creation.

The following is a list of topics that will be covered in this chapter:

Session management/session fixation
Concurrency control
Managing logged in users
How HttpSession is used in Spring Security and how to control creation
How to use the DebugFilter class to discover where HttpSession was created

Configuring session fixation protection
As we are using the security namespace style of configuration, session fixation protection is
already configured on our behalf. If we wanted to explicitly configure it to mirror the
default settings, we would do the following:

 http.sessionManagement()
 .sessionFixation().migrateSession();

Session Management Chapter 14

[387]

Session fixation protection is a feature of the framework that you most likely won't even
notice unless you try to act as a malicious user. We'll show you how to simulate a session-
stealing attack; before we do, it's important to understand what session fixation does and
the type of attack it prevents.

Understanding session fixation attacks
Session fixation is a type of attack whereby a malicious user attempts to steal the session of
an unauthenticated user of your system. This can be done by using a variety of techniques
that result in the attacker obtaining the unique session identifier of the user (for example,
JSESSIONID). If the attacker creates a cookie or a URL parameter with the user's
JSESSIONID identifier in it, they can access the user's session.

Although this is obviously a problem, typically, if a user is unauthenticated, they haven't
entered any sensitive information. This becomes a more critical problem if the same session
identifier continues to be used after a user has been authenticated. If the same identifier is
used after authentication, the attacker may now gain access to the authenticated user's
session without even having to know their username or password!

At this point, you may scoff in disbelief and think this is extremely
unlikely to happen in the real world. In fact, session-stealing attacks
happen frequently. We would suggest that you spend some time reading
the very informative articles and case studies on the subject, published by
the Open Web Application Security Project (OWASP) organization
(http:/ ​/ ​www. ​owasp. ​org/ ​). Specifically, you will want to read the OWASP
top 10 lists. Attackers and malicious users are real, and they can do very
real damage to your users, your application, or your company if you don't
understand the techniques that they commonly use and know how to
avoid them.

The following diagram illustrates how a session fixation attack works:

http://www.owasp.org/
http://www.owasp.org/
http://www.owasp.org/
http://www.owasp.org/
http://www.owasp.org/
http://www.owasp.org/
http://www.owasp.org/
http://www.owasp.org/
http://www.owasp.org/
http://www.owasp.org/

Session Management Chapter 14

[388]

Now that we have seen how an attack like this works, we'll see what Spring Security can do
to prevent it.

Preventing session fixation attacks with Spring
Security
If we can prevent the same session that the user had prior to authentication from being used
after authentication, we can effectively render the attacker's knowledge of the session ID
useless. Spring Security session fixation protection solves this problem by explicitly creating
a new session when a user is authenticated and invalidating their old session.

Session Management Chapter 14

[389]

Let's take a look at the following diagram:

We can see that a new filter, o.s.s.web.session.SessionManagementFilter, is
responsible for evaluating if a particular user is newly authenticated. If the user is newly
authenticated, a configured
o.s.s.web.authentication.session.SessionAuthenticationStrategy interface
determines what to do.
o.s.s.web.authentication.session.SessionFixationProtectionStrategy will
create a new session (if the user already had one), and copy the contents of the existing
session to the new one. That's pretty much it—seems simple. However, as we can see in the
preceding diagram, it effectively prevents the malicious user from reusing the session ID
after the unknown user is authenticated.

Session Management Chapter 14

[390]

Simulating a session fixation attack
At this point, you may want to see what's involved in simulating a session fixation attack:

You'll first need to disable session fixation protection in the1.
SecurityConfig.java file by adding the sessionManagement() method as a
child of the http element.

You should start with the code from chapter14.00-calendar.

Let's take a look at the following code snippet:

 //src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java

 http.sessionManagement().sessionFixation().none();

Your code should now look like chapter14.01-calendar.

Next, you'll need to open two browsers. We'll initiate the session in Google2.
Chrome, steal it from there, and our attacker will log in using the stolen session in
Firefox. We will use the Google Chrome and the Firefox web developer add-on in
order to view and manipulate cookies. The Firefox web developer add-on can be
downloaded from https:/ ​/​addons. ​mozilla. ​org/ ​en-​US/ ​firefox/ ​addon/ ​web-
developer/ ​. Google Chrome's web developer tools are built-in.
Open the JBCP calendar home page in Google Chrome.3.

https://addons.mozilla.org/en-US/firefox/addon/web-developer/
https://addons.mozilla.org/en-US/firefox/addon/web-developer/
https://addons.mozilla.org/en-US/firefox/addon/web-developer/
https://addons.mozilla.org/en-US/firefox/addon/web-developer/
https://addons.mozilla.org/en-US/firefox/addon/web-developer/
https://addons.mozilla.org/en-US/firefox/addon/web-developer/
https://addons.mozilla.org/en-US/firefox/addon/web-developer/
https://addons.mozilla.org/en-US/firefox/addon/web-developer/
https://addons.mozilla.org/en-US/firefox/addon/web-developer/
https://addons.mozilla.org/en-US/firefox/addon/web-developer/
https://addons.mozilla.org/en-US/firefox/addon/web-developer/
https://addons.mozilla.org/en-US/firefox/addon/web-developer/
https://addons.mozilla.org/en-US/firefox/addon/web-developer/
https://addons.mozilla.org/en-US/firefox/addon/web-developer/
https://addons.mozilla.org/en-US/firefox/addon/web-developer/
https://addons.mozilla.org/en-US/firefox/addon/web-developer/
https://addons.mozilla.org/en-US/firefox/addon/web-developer/
https://addons.mozilla.org/en-US/firefox/addon/web-developer/
https://addons.mozilla.org/en-US/firefox/addon/web-developer/
https://addons.mozilla.org/en-US/firefox/addon/web-developer/
https://addons.mozilla.org/en-US/firefox/addon/web-developer/

Session Management Chapter 14

[391]

Next, from the main menu, navigate to Edit | Preferences | Under the Hood. In4.
the Privacy category, press the Content Settings... button. Next, in Cookies
Settings, press the All Cookies and Site Data... button. Finally, enter localhost
into the Search field, as follows:

Session Management Chapter 14

[392]

Select the JSESSIONID cookie, copy the value of Content to the clipboard, and5.
log in to the JBCP calendar application. If you repeat the View Cookie
Information command, you'll see that JSESSIONID did not change after you
logged in, making you vulnerable to a session fixation attack!
In Firefox, open the JBCP calendar website. You will have been assigned a session6.
cookie, which you can view by using Ctrl + F2 to open the bottom
Cookie console. Then type in cookie list [enter] to bring up cookies for the
current page.
To complete our hack, we'll click on the Edit Cookie option and paste in the7.
JSESSIONID cookie that we copied to the clipboard from Google Chrome, as
shown in the following screenshot:

Keep in mind that newer versions of Firefox include web developer tools, too.8.
However, you will need to ensure that you are using the extension and not the
built-in one, as it provides additional capabilities.

Our session fixation hack is complete! If you now reload the page in Firefox, you will see
that you are logged in as the same user who was logged in using Google Chrome, but
without the knowledge of the username and password. Are you scared of malicious users
yet?

Now, re-enable session fixation protection and try this exercise again. You'll see that, in this
case, the JSESSIONID changes after the user logs in. Based on our understanding of how
session fixation attacks occur, this means that we have reduced the likelihood of an
unsuspecting user falling victim to this type of attack. Excellent job!

Cautious developers should note that there are many methods of stealing session cookies,
some of which—such as XSS—may make even session fixation protected sites vulnerable.
Please consult the OWASP site for additional resources on preventing these types of attacks.

Session Management Chapter 14

[393]

Comparing the session-fixation-protection
options
The session-fixation-protection attribute has the following three options that allow
you to alter its behavior, as follows:

Attribute value Description

none() This option disables session fixation protection and (unless other
sessionManagement() attributes are non-default) does not
configure SessionManagementFilter.

migrateSession() When the user is authenticated and a new session is allocated, it
ensures that all attributes of the old session are moved to the new
session.

newSession() When the user is authenticated, a new session is created and no
attributes from the old (unauthenticated) session will be migrated.

In most cases, the default behavior of migrateSession() will be appropriate for sites that
wish to retain important attributes of the user's session (such as click interest and shopping
carts) after the user has been authenticated.

Restricting the number of concurrent
sessions per user
In the software industry, software is often sold on a per-user basis. This means that, as
software developers, we have an interest in ensuring that only a single session per user
exists, to combat the sharing of accounts. Spring Security's concurrent session control
ensures that a single user cannot have more than a fixed number of active sessions
simultaneously (typically one). Ensuring that this maximum limit is enforced involves
several components working in tandem to accurately track changes in user session activity.

Let's configure the feature, review how it works, and then test it out!

Session Management Chapter 14

[394]

Configuring concurrent session control
Now that we have understood the different components involved in concurrent session
control, setting it up should make much more sense. Let's take a look at the following steps
to configure concurrent session control:

Firstly, you update your security.xml file as follows:1.

 // src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java

 http.sessionManagement().maximumSessions(1)

Next, we need to enable o.s.s.web.session.HttpSessionEventPublisher2.
in the SecurityConfig.java deployment descriptor, so that the servlet
container will notify Spring Security (through HttpSessionEventPublisher)
of session life cycle events, as follows:

 // src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java

 @Bean
 public HttpSessionEventPublisher httpSessionEventPublisher() {
 return new HttpSessionEventPublisher();
 }

With these two configuration bits in place, concurrent session control will now be activated.
Let's see what it actually does, and then we'll demonstrate how it can be tested.

Understanding concurrent session control
Concurrent session control uses o.s.s.core.session.SessionRegistry to maintain a
list of active HTTP sessions and the authenticated users with which they are associated. As
sessions are created and expired, the registry is updated in real time based on the session
life cycle events published by HttpSessionEventPublisher to track the number of active
sessions per authenticated user.

Session Management Chapter 14

[395]

Refer to the following diagram:

An extension of SessionAuthenticationStrategy,
o.s.s.web.authentication.session.ConcurrentSessionControlStrategy is the
method by which new sessions are tracked and the method by which concurrency control is
actually enforced. Each time a user accesses the secured site, SessionManagementFilter
is used to check the active session against SessionRegistry. If the user's active session
isn't in the list of active sessions tracked in SessionRegistry, the least recently used
session is immediately expired.

Session Management Chapter 14

[396]

The secondary actor in the modified concurrent session control filter chain is
o.s.s.web.session.ConcurrentSessionFilter. This filter will recognize expired
sessions (typically, sessions that have been expired either by the servlet container or forcibly
by the ConcurrentSessionControlStrategy interface) and notify the user that their
session has expired.

Now that we have understood how concurrent session control works, it should be easy for
us to reproduce a scenario in which it is enforced.

Your code should now look like chapter14.02-calendar.

Testing concurrent session control
As we did when verifying session fixation protection, we will need to access two web
browsers by performing the following steps:

In Google Chrome, log in to the site as user1@example.com/user1.1.
Now, in Firefox, log in to the site as the same user.2.
Finally, go back to Google Chrome and take any action. You will see a message3.
indicating that your session has expired, as shown in the following screenshot:

If you were using this application and received this message, you'd probably be confused.
This is because it's obviously not a friendly method of being notified that only a single user
can access the application at a time. However, it does illustrate that the session has been
forcibly expired by the software.

Session Management Chapter 14

[397]

Concurrent session control tends to be a very difficult concept for new
Spring Security users to grasp. Many users try to implement it without
truly understanding how it works and what the benefits are. If you're
trying to enable this powerful feature, and it doesn't seem to be working
as you expect, make sure you have everything configured correctly and
then review the theoretical explanations in this section—hopefully, they
will help you understand what may be wrong!

When a session expiration event occurs, we should probably redirect the user to the login
page and provide them with a message to indicate what went wrong.

Configuring expired session redirect
Fortunately, there is a simple method for directing users to a friendly page (typically the
login page) when they are flagged by concurrent session control—simply specify the
expired-url attribute and set it to a valid page in your application. Update your
security.xml file as follows:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va

 http.sessionManagement()
 .maximumSessions(1)
 .expiredUrl("/login/form?expired")
 ;

In the case of our application, this will redirect the user to the standard login form. We will
then use the query parameter to display a friendly message indicating that we determined
that they had multiple active sessions, and should log in again. Update your login.html
page to use this parameter to display our message:

 //src/main/resources/templates/login.html

 ...
 <div th:if="${param.expired != null}" class="alert alert-success">
 Session Expired
 You have been forcibly logged out due to multiplesessions
 on the same account (only one activesession per user is allowed).
 </div>
 <label for="username">Username</label>

Session Management Chapter 14

[398]

Go ahead and give it a try by logging in as the user admin1@example.com/admin1 using
both Google Chrome and Firefox. This time, you should see a login page with a custom
error message.

Your code should now look like chapter14.03-calendar.

Common problems with concurrency control
There are a few common reasons that logging in with the same user does not trigger a
logout event. The first occurs when using custom UserDetails (as we did in Chapter 3,
Custom Authentication) while the equals and hashCode methods are not properly
implemented. This occurs because the default SessionRegistry implementation uses an
in-memory map to store UserDetails. In order to resolve this, you must ensure that you
have properly implemented the hashCode and equals methods.

The second problem occurs when restarting the application container while the user
sessions are persisted to a disk. When the container has started back up, the users who were
already logged in with a valid session are logged in. However, the in-memory map of
SessionRegistry that is used to determine if the user is already logged in will be empty.
This means that Spring Security will report that the user is not logged in, even though the
user is. To solve this problem, either a custom SessionRegistry is required along with
disabling session persistence within the container, or you must implement a container-
specific way to ensure that the persisted sessions get populated into the in-memory map at
startup.

Yet another reason is that at the time of writing, concurrency control is not implemented for
the remember-me feature. If users are authenticated with remember-me, that concurrency
control is not enforced. There is a JIRA to implement this feature, so refer to it for any
updates if your application requires both remember-me and concurrency control: https:/ ​/
jira.​springsource. ​org/ ​browse/ ​SEC- ​2028

The last common reason we will cover is that concurrency control will not work in a
clustered environment with the default SessionRegistry implementation. As mentioned
previously, the default implementation uses an in-memory map. This means that if user1
logs in to application server A, the fact that they are logged in will be associated with that
server. Thus, if user1 then authenticates to Application Server B, the previously associated
authentication will be unknown to application server B.

https://jira.springsource.org/browse/SEC-2028
https://jira.springsource.org/browse/SEC-2028
https://jira.springsource.org/browse/SEC-2028
https://jira.springsource.org/browse/SEC-2028
https://jira.springsource.org/browse/SEC-2028
https://jira.springsource.org/browse/SEC-2028
https://jira.springsource.org/browse/SEC-2028
https://jira.springsource.org/browse/SEC-2028
https://jira.springsource.org/browse/SEC-2028
https://jira.springsource.org/browse/SEC-2028
https://jira.springsource.org/browse/SEC-2028
https://jira.springsource.org/browse/SEC-2028
https://jira.springsource.org/browse/SEC-2028
https://jira.springsource.org/browse/SEC-2028

Session Management Chapter 14

[399]

Preventing authentication instead of forcing
logout
Spring Security can also prevent a user from being able to log in to the application if the
user already has a session. This means that instead of forcing the original user to be logged
out, Spring Security will prevent the second user from being able to log in. The
configuration changes can be seen as follows:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va

 http.sessionManagement()
 .maximumSessions(1)
 .expiredUrl("/login/form?expired")
 .maxSessionsPreventsLogin(true);

Make the updates and log in to the calendar application with Google Chrome. Now,
attempt to log in to the calendar application with Firefox using the same user. You should
see our custom error message from our login.html file.

Your code should now look like chapter14.04-calendar.

There is a disadvantage to this approach that may not be apparent without some thought.
Try closing Google Chrome without logging out and then opening it up again. Now,
attempt to log in to the application again. You will observe that you are unable to log in.
This is because when the browser is closed, the JSESSIONID cookie is deleted. However,
the application is not aware of this, so the user is still considered authenticated. You can
think of this as a kind of memory leak, since HttpSession still exists but there is no pointer
to it (the JSESSIONID cookie is gone). It is not until the session times out that our user will
be able to authenticate again. Thankfully, once the session times out, our
SessionEventPublisher interface will remove the user from our SessionRegistry
interface. What we can take away from this is that if a user forgets to log out and closes the
browser, they will not be able to log in to the application until the session times out.

Session Management Chapter 14

[400]

Just as in Chapter 7, Remember-Me Services, this experiment may not work
if the browser decides to remember a session even after the browser is
closed. Typically, this will happen if a plugin or the browser is configured
to restore sessions. In this event, you might want to delete the
JSESSIONID cookie manually to simulate the browser being closed.

Other benefits of concurrent session control
Another benefit of concurrent session control is that SessionRegistry exists to track
active (and, optionally, expired) sessions. This means that we can get runtime information
about what user activity exists in our system (for authenticated users, at least) by
performing the following steps:

You can even do this if you don't want to enable concurrent session control.1.
Simply set maximumSessions to -1, and session tracking will remain enabled,
even though no maximum will be enforced. Instead, we will use the explicit bean
configuration provided in the SessionConfig.java file of this chapter, as
follows:

 //src/main/java/com/packtpub/springsecurity/configuration/
 SessionConfig.java

 @Bean
 public SessionRegistry sessionRegistry(){
 return new SessionRegistryImpl();
 }

We have already added the import of the SessionConfig.java file to the2.
SecurityConfig.java file. So, all that we need to do is reference the custom
configuration in our SecurityConfig.java file. Go ahead and replace the
current sessionManagement and maximumSessions configurations with the
following code snippet:

 //src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java

 http.sessionManagement()
 .maximumSessions(-1)
 .sessionRegistry(sessionRegistry)
 .expiredUrl("/login/form?expired")
 .maxSessionsPreventsLogin(true);

Session Management Chapter 14

[401]

Your code should now look like chapter14.05-calendar.

Now, our application will allow an unlimited number of authentications for the same user.
However, we can use SessionRegistry to forcibly log out the users. Let's see how we can
use this information to enhance the security of our users.

Displaying active sessions for a user
You've probably seen how many websites allow a user to view and forcibly log out sessions
for their account. We can easily use this forcible logout functionality to do the same. We
have already provided UserSessionController, which obtains the active sessions for the
currently logged in user. You can see the implementation as follows:

 //src/main/java/com/packtpub/springsecurity/web/controllers/
 UserSessionController.java

 @Controller
 public class UserSessionController {
 private final SessionRegistry sessionRegistry;
 @Autowired
 public UserSessionController(SessionRegistry sessionRegistry) {
 this.sessionRegistry = sessionRegistry;
 }
 @GetMapping("/user/sessions/")
 public String sessions(Authentication authentication, ModelMap model) {
 List<SessionInformation> sessions = sessionRegistry.getAllSessions
 (authentication.getPrincipal(), false);
 model.put("sessions", sessions);
 return "user/sessions";
 }
 @DeleteMapping(value="/user/sessions/{sessionId}")
 public String removeSession(@PathVariable String sessionId,
 RedirectAttributes redirectAttrs) {
 SessionInformation sessionInformation = sessionRegistry.
 getSessionInformation(sessionId);
 if(sessionInformation != null) {
 sessionInformation.expireNow();
 }

Session Management Chapter 14

[402]

 redirectAttrs.addFlashAttribute("message", "Session was removed");
 return "redirect:/user/sessions/";
 }
 }

Our sessions method will use Spring MVC to automatically obtain the current Spring
Security Authentication. If we were not using Spring MVC, we could also get the current
Authentication from SecurityContextHolder, as discussed in Chapter 3, Custom
Authentication. The principal is then used to obtain all the SessionInformation objects for
the current user. The information is easily displayed by iterating over the
SessionInformation objects in our sessions.html file, as follows:

//src/main/resources/templates/sessions.html

...
<tr th:each="session : ${sessions}">
<td th:text="${#calendars.format(session.lastRequest, 'yyyy-MM-dd
HH:mm')}">
</td>
<td th:text="${session.sessionId}"></td>
<td>
<form action="#"
th:action="@{'/user/sessions/{id}'(id=${session.sessionId})}"
th:method="delete" cssClass="form-horizontal">
<input type="submit" value="Delete" class="btn"/>
</form>
</td>
</tr>
...

You can now safely start the JBCP calendar application and log in to it using
user1@example.com/user1 in Google Chrome. Now, log in using Firefox and click on the
user1@example.com link in the upper-right corner. You will then see both sessions listed
on the display as shown in the following screenshot:

Session Management Chapter 14

[403]

While in Firefox, click on the Delete button for the first session. This sends the request to
our deleteSession method of UserSessionsController. This indicates that the session
should be terminated. Now, navigate to any page within Google Chrome. You will see the
custom message saying the session has been forcibly terminated. While the message could
use updating, we see that this is a nice feature for users to terminate other active sessions.

Other possible uses include allowing an administrator to list and manage all active sessions,
displaying the number of active users on the site, or even extending the information to
include things like an IP address or location information.

How Spring Security uses the HttpSession
method?
We have already discussed how Spring Security uses SecurityContextHolder to
determine the currently logged in user. However, we have not explained how
SecurityContextHolder gets automatically populated by Spring Security. The secret to
this lies in the o.s.s.web.context.SecurityContextPersistenceFilter filter and
the o.s.s.web.context.SecurityContextRepository interface. Let's take a look at the
following diagram:

Session Management Chapter 14

[404]

Here is an explanation for each step shown in the preceding diagram:

At the beginning of each web request, SecurityContextPersistenceFilter1.
is responsible for obtaining the current SecurityContext implementation using
SecurityContextRepository.
Immediately afterwards, it sets SecurityContext on2.
SecurityContextHolder.
For the remainder of the web request, SecurityContext is available via3.
SecurityContextHolder. For example, if a Spring MVC controller or
CalendarService wanted to access SecurityContext, it could use
SecurityContextHolder to access it.
Then, at the end of each request, SecurityContextPersistenceFilter gets4.
the SecurityContext from SecurityContextHolder.
Immediately afterwards, SecurityContextPersistenceFilter saves5.
SecurityContext in SecurityContextRepository. This ensures that if
SecurityContext is updated at any point during the web requests (that is,
when a user creates a new account, as done in Chapter 3, Custom Authentication)
SecurityContext is saved.
Lastly, SecurityContextPersistenceFilter clears6.
SecurityContextHolder.

The question that now arises is how is this related to HttpSession? This is all tied together
by the default SecurityContextRepository implementation, which uses HttpSession.

The HttpSessionSecurityContextRepository
interface
The default implementation of SecurityContextRepository,
o.s.s.web.context.HttpSessionSecurityContextRepository, uses HttpSession
to retrieve and store the current SecurityContext implementation. There are no other
SecurityContextRepository implementations provided out of the box. However, since
the usage of HttpSession is abstracted behind the SecurityContextRepository
interface, we could easily write our own implementation if we desired.

https://cdp.packtpub.com/spring_security__third_edition/wp-admin/post.php?post=42&action=edit

Session Management Chapter 14

[405]

Configuring how Spring Security uses
HttpSession
Spring Security has the ability to configure when the session is created by Spring Security.
This can be done with the http element's create-session attribute. A summary of the
options can be seen in the following table:

Attribute value Description

ifRequired Spring Security will create a session only if one is required (default
value).

always Spring Security will proactively create a session if one does not exist.

never Spring Security will never create a session, but will make use of one if the
application does create it. This means if there is a HttpSession method,
SecurityContext will be persisted or retrieve from it.

stateless Spring Security will not create a session and will ignore the session for
obtaining a Spring Authentication. In such instances,
NullSecurityContextRepository is used, which will always state
that the current SecurityContext is null.

In practice, controlling session creation can be more difficult than it first appears. This is
because the attributes only control a subset of Spring Security's usage of HttpSession. It
does not apply to any other components, such as JSPs, in the application. To help figure out
when the HttpSession method was created, we can add Spring Security's DebugFilter.

Debugging with Spring Security's DebugFilter
Let's take a look at the following steps and learn about how to debug with DebugFilter of
Spring Security:

Update your SecurityConfig.java file to have a session policy of NEVER. Also,1.
add the debug flag to true on the @EnableWebSecurity annotation, so that we
can track when the session was created. The updates can be seen as follows:

 //src/main/java/com/packtpub/springsecurity/configuration/
 SecurityConfig.java

 @Configuration
 @Enable WebSecurity(debug = true)

Session Management Chapter 14

[406]

 public class SecurityConfig extends WebSecurityConfigurerAdapter {
 ...
 http.sessionManagement()
 .sessionCreationPolicy(SessionCreationPolicy.NEVER);

When you start up the application, you should see something similar to the2.
following code written to standard output. If you have not already, ensure that
you have logging enabled across all levels of the Spring Security debugger
category:

*
 ********** Security debugging is enabled.

 ********** This may include sensitive information.

 ********** Do not use in a production system!

*

Now, clear out your cookies (this can be done in Firefox with Shift + Ctrl + Delete),3.
start up the application, and navigate directly to http://localhost:8080.
When we look at the cookies, as we did earlier in the chapter, we can see that
JSESSIONID is created even though we stated that Spring Security should never
create HttpSession. Look at the logs again, and you will see a call stack of the
code that created HttpSession as follows:

 **
 2017-07-25 18:02:31.802 INFO 71368 --- [nio-8080-exec-1]
 Spring Security Debugger :
 **
 New HTTP session created: 2A708D1C3AAD508160E6189B69D716DB

In this instance, our JSP page is responsible for creating the new HttpSession4.
method. In fact, all JSPs will create a new HttpSession method by default unless
you include the following code at the top of each JSP:

 <%@ page session="false" %>

There are a number of other uses for DebugFilter, which we encourage you to explore on
your own, for example, determining when a request will match a particular URL, which
Spring Security filters are being invoked, and so on.

Session Management Chapter 14

[407]

Summary
After reading this chapter, you should be familiar with how Spring Security manages
sessions and protects against session fixation attacks. We also know how to use Spring
Security's concurrency control to prevent the same user from being authenticated multiple
times.

We also explored the utilization of concurrency control to allow a user to terminate sessions
associated with their account. Also, we saw how to configure Spring Security's creation of
sessions. We also covered how to use Spring Security's DebugFilter filter to troubleshoot
issues related to Spring.

We also learned about security, including determining when a HttpSession method was
created and what caused it to be created.

This concludes our discussion about Spring Security's session management. In the next
chapter, we will discuss some specifics about integrating Spring Security with other
frameworks.

15
Additional Spring Security

Features
In this chapter, we will explore several additional Spring Security features that we have not
covered so far in this book, including the following topics:

Cross-Site Scripting (XSS)
Cross-Site Request Forgery (CSRF)
Synchronizer tokens
Clickjacking

We will understand how to include various HTTP headers to protect against common
security vulnerabilities, using the following methods:

Cache-Control

Content-Type Options

HTTP Strict Transport Security (HSTS)
X-Frame-Options

X-XSS-Protection

Before you read this chapter, you should already have an understanding of how Spring
Security works. This means you should already be able to set up authentication and
authorization in a simple web application. If you are unable to do this, you will want to
ensure you have read up to Chapter 3, Custom Authentication, before proceeding with this
chapter. If you keep the basic concepts of Spring Security in mind and you understand the
framework you are integrating with, then integrating with other frameworks is fairly
straightforward.

Additional Spring Security Features Chapter 15

[409]

Security vulnerabilities
In the age of the internet, there is a multitude of possible vulnerabilities that can be
exploited. A great resource to learn more about web-based vulnerabilities is The Open Web
Application Security Project (OWASP), which is located at https:/ ​/​www. ​owasp. ​org.

In addition to being a great resource to understand various vulnerabilities, OWASP
categorizes the top 10 vulnerabilities based on industry trends.

Cross-Site Scripting
XSS attacks involve malicious scripts that have been injected into a trusted site.

XSS attacks occur when an attacker exploits a given web application that is allowing
unventilated input to be sent into the site generally in the form of browser-based scripts,
which are then executed by a different user of the website.

There are many forms that attackers can exploit, based on validated or unencoded
information provided to websites.

At the core of this issue is expecting a user to trust the site's information that is being sent.
The end user's browser has no way to know that the script should not be trusted because
there has been an implicit trust of the website they're browsing. Because it thinks the script
came from a trusted source, the malicious script can access any cookies, session tokens, or
other sensitive information retained by the browser and used with that website.

XSS can be described by the following sequence diagram:

https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
https://www.owasp.org

Additional Spring Security Features Chapter 15

[410]

Cross-Site Request Forgery
CSRF is an attack that tricks the victim into submitting a malicious request. This type of
attack inherits or hijacks the identity and privileges of the victim and performs
unauthorized functions and access on the victim's behalf.

For web applications, most browsers automatically include credentials associated with the
site, which includes a user session, cookie, IP address, Windows domain credentials, and so
forth.

So, if a user is currently authenticated on a site, that given site will have no way to
distinguish between the forged request sent by the victim and a legitimate court request.

CSRF attacks target functionality that causes a state change on the server, such as changing
the victim's email address or password, or engaging in a financial transaction.

This forces the victim to retrieve data that doesn't benefit an attacker because the attacker
does not receive the response; the victim does. Thus, CSRF attacks target state-changing
requests.

The following sequence diagram details how a CSRF attack would occur:

Additional Spring Security Features Chapter 15

[411]

There are several different design measures that may be taken to attempt to prevent CSRF,
however, measures such as secret cookies, HTTP POST requests, multistep transactions,
URL rewriting, and HTTPS, in no way prevent this type of attack.

OWASP's top 10 security vulnerabilities list details CSRF as the eighth
most common attack at https:/ ​/​www. ​owasp. ​org/ ​index. ​php/ ​Cross- ​Site_
Request_ ​Forgery_ ​(CSRF).

Synchronizer tokens
A solution to this is to use the synchronizer token pattern. This solution is to ensure that
each request requires, in addition to our session cookie, a randomly generated token as an
HTTP parameter. When a request is submitted, the server must look up the expected value
for the parameter and compare it to the actual value in the request. If the values do not
match, the request should fail.

The Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet recommends
the synchronizer token pattern as a viable solution for CSRF attacks:
https:/ ​/​www. ​owasp. ​org/ ​index. ​php/ ​Cross- ​Site_ ​Request_ ​Forgery_
(CSRF)_ ​Prevention_ ​Cheat_ ​Sheet#General_ ​Recommendation:_
Synchronizer_ ​Token_ ​Pattern

Relaxing the expectation is to only require the token for each HTTP request that updates
state. This can be safely done since the same origin policy ensures the evil site cannot read
the response. Additionally, we do not want to include the random token in HTTP GET, as
this can cause the tokens to be leaked.

Let's take a look at how our example would change. Assume the randomly generated token
is present in an HTTP parameter named _csrf. For example, the request to transfer money
would look like as follows:

POST /transfer HTTP/1.1
Host: bank.example.com
Cookie: JSESSIONID=randomid; Domain=bank.example.com; Secure;
HttpOnly
Content-Type: application/x-www-form-urlencoded
amount=100.00&routingNumber=1234&account=9876&_csrf=<secure-random
token>

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern

Additional Spring Security Features Chapter 15

[412]

You will notice that we added the _csrf parameter with a random value. Now, the
malicious website will not be able to guess the correct value for the _csrf parameter
(which must be explicitly provided on the malicious website) and the transfer will fail when
the server compares the actual token to the expected token.

The following diagram shows a standard use case for a synchronizer token pattern:

Synchronizer token support in Spring Security
Spring Security provides synchronizer token support that is turned on by default. You
might have noticed from the previous chapters that in our SecurityConfig.java file, we
have disabled CSRF protection, as shown in the following code snippet:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityC
onfig.java

protected void configure(HttpSecurity http) throws Exception {
...
// CSRF protection is enabled by default.
http.csrf().disable();
...
}

Additional Spring Security Features Chapter 15

[413]

Up to this point in the book, we have disabled synchronizer token protection so we could
focus on other security concerns.

If we start the application at this point, we can run through the security and there will be no
synchronizer token support added to any of the pages.

You should start with the code from chapter16.00-calendar.

When to use CSRF protection
It is recommended you use CSRF protection for any request that could be processed by a
browser or by normal users. If you are only creating a service that is used by non-browser
clients, you will most likely want to disable CSRF protection.

CSRF protection and JSON
A common question is: do I need to protect JSON requests made by JavaScript? The short
answer is, it depends. However, you must be very careful, as there are CSRF exploits that
can impact JSON requests. For example, a malicious user can create a CSRF with JSON
using the following form:

 <form action="https://example.com/secureTransaction" method="post"
 enctype="text/plain">
 <input name='{"amount":100,"routingNumber":"maliciousRoutingNumber",
 "account":"evilsAccountNumber", "ignore_me":"' value='test"}'
 type='hidden'>
 <input type="submit" value="Win Money!"/>
 </form>This will produce the following JSON structure{ "amount":
 100,"routingNumber": "maliciousRoutingNumber","account":
 "maliciousAccountNumber","ignore_me": "=test"
 }

Additional Spring Security Features Chapter 15

[414]

If an application were not validating the Content-Type method, then it would be exposed to
this exploit. Depending on the setup, a Spring MVC application that validates the Content-
Type method could still be exploited by updating the URL suffix to end with .json, as
shown in the following code:

 <form action="https://example.com/secureTransaction.json" method="post"
 enctype="text/plain">
 <input name='{"amount":100,"routingNumber":"maliciousRoutingNumber",
 "account":"maliciousAccountNumber", "ignore_me":"' value='test"}'
 type='hidden'>
 <input type="submit" value="Win Money!"/>
 </form>

CSRF and stateless browser applications
What if your application is stateless? That doesn't necessarily mean you are protected. In
fact, if a user does not need to perform any actions in the web browser for a given request,
they are likely still vulnerable to CSRF attacks.

For example, consider an application using a custom cookie that contains all of the states
within it for authentication instead of the JSESSIONID cookie. When the CSRF attack
happens, the custom cookie will be sent with the request in the same manner that the
JSESSIONID cookie was sent in our previous example.

Users using basic authentication are also vulnerable to CSRF attacks, since the browser will
automatically include the username and password in any requests, in the same manner,
that the JSESSIONID cookie was sent in our previous example.

Using Spring Security CSRF protection
So, what are the steps necessary to use Spring Security to protect our site against CSRF
attacks? The steps for using Spring Security's CSRF protection are as follows:

Use proper HTTP verbs.1.
Configure CSRF protection.2.
Include the CSRF token.3.

Additional Spring Security Features Chapter 15

[415]

Using proper HTTP verbs
The first step to protecting against CSRF attacks is to ensure your website uses proper
HTTP verbs. Specifically, before Spring Security's CSRF support can be of use, you need to
be certain that your application is using PATCH, POST, PUT, and/or DELETE for anything that
modifies state.

This is not a limitation of Spring Security's support, but instead a general requirement for
proper CSRF prevention. The reason is that including private information in an HTTP
GET method can cause the information to be leaked.

Refer to RFC 2616, Section 15.1.3, Encoding Sensitive Information in URI's for general guidance
on using POST instead of GET for sensitive information (https:/ ​/​www. ​w3. ​org/​Protocols/
rfc2616/​rfc2616- ​sec15. ​html#sec15. ​1.​3).

Configuring CSRF protection
The next step is to include Spring Security's CSRF protection within your application. Some
frameworks handle invalid CSRF tokens by invaliding the user's session, but this causes its
own problems. Instead, by default, Spring Security's CSRF protection will produce HTTP
403 access denied. This can be customized by configuring AccessDeniedHandler to
process InvalidCsrfTokenException differently.

For passivity reasons, if you are using the XML configuration, CSRF protection must be
explicitly enabled using the <csrf> element. Refer to the <csrf> element's documentation
for additional customizations.

SEC-2347 is logged to ensure Spring Security 4.x's XML namespace configuration will
enable CSRF protection by default (https:/ ​/​github. ​com/ ​spring- ​projects/ ​spring-
security/​issues/ ​2574).

Default CSRF support
CSRF protection is enabled by default with Java configuration. Refer to the Javadoc of
csrf() for additional customizations regarding how CSRF protection is configured.

Just to be verbose in this configuration, we are going to add the CSRS method to our
SecurityConfig.java file as follows:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va
 @Override

https://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html#sec15.1.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html#sec15.1.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html#sec15.1.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html#sec15.1.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html#sec15.1.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html#sec15.1.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html#sec15.1.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html#sec15.1.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html#sec15.1.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html#sec15.1.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html#sec15.1.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html#sec15.1.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html#sec15.1.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html#sec15.1.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html#sec15.1.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html#sec15.1.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html#sec15.1.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html#sec15.1.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html#sec15.1.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html#sec15.1.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html#sec15.1.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html#sec15.1.3
https://github.com/spring-projects/spring-security/issues/2574
https://github.com/spring-projects/spring-security/issues/2574
https://github.com/spring-projects/spring-security/issues/2574
https://github.com/spring-projects/spring-security/issues/2574
https://github.com/spring-projects/spring-security/issues/2574
https://github.com/spring-projects/spring-security/issues/2574
https://github.com/spring-projects/spring-security/issues/2574
https://github.com/spring-projects/spring-security/issues/2574
https://github.com/spring-projects/spring-security/issues/2574
https://github.com/spring-projects/spring-security/issues/2574
https://github.com/spring-projects/spring-security/issues/2574
https://github.com/spring-projects/spring-security/issues/2574
https://github.com/spring-projects/spring-security/issues/2574
https://github.com/spring-projects/spring-security/issues/2574
https://github.com/spring-projects/spring-security/issues/2574
https://github.com/spring-projects/spring-security/issues/2574
https://github.com/spring-projects/spring-security/issues/2574
https://github.com/spring-projects/spring-security/issues/2574

Additional Spring Security Features Chapter 15

[416]

 public void configure(HttpSecurity http) throws Exception {
 http.csrf();
 }

Including the CSRF token in the <Form> submissions
The last step is to ensure that you include the CSRF token in all PATCH, POST, PUT, and
DELETE methods. One way to approach this is to use the _csrf request attribute to obtain
the current CsrfToken token. An example of doing this with a JSP is shown as follows:

 <c:url var="logoutUrl" value="/logout"/>
 <form action="${logoutUrl}" method="post">
 <input type="submit" value="Log out" />
 <input type="hidden"name="${_csrf.parameterName}"
value="${_csrf.token}"/>
 </form>

Including the CSRF token using the Spring Security JSP
tag library
If CSRF protection is enabled, this tag inserts a hidden form field with the correct name and
value for the CSRF protection token. If CSRF protection is not enabled, this tag has no
output.

Normally, Spring Security automatically inserts a CSRF form field for any <form:form>
tags you use, but if for some reason you cannot use <form:form>, csrfInput is a handy
replacement.

You should place this tag within an HTML <form></form> block, where you would
normally place other input fields. Do not place this tag within a Spring
<form:form></form:form> block. Spring Security handles Spring forms automatically as
follows:

 <form method="post" action="/logout">
 <sec:csrfInput />
 ...
 </form>

Additional Spring Security Features Chapter 15

[417]

Default CSRF token support
If you are using the Spring MVC <form:form> tag, or Thymeleaf 2.1+, and you replace
@EnableWebSecurity with @EnableWebMvcSecurity, the CsrfToken token is
automatically included for you (using the CsrfRequestDataValue token we have been
processing).

So, for this book, we have been using Thymeleaf for all of our web pages. Thymeleaf has
CSRF support enabled by default if we enable CSRF support in Spring Security.

You should start with the code from chapter16.01-calendar.

If we start up the JBCP calendar application and navigate to the login page at
https://localhost:8443/login.html, we can view the generated source for the
login.html page, as follows:

 <form method="POST" action="/login" ...>
 ...
 <input type="hidden" name="_csrf"
value="e86c9744-5b7d-4d5f-81d5-450463222908">
 </form>

Ajax and JSON requests
If you are using JSON, then it is not possible to submit the CSRF token within an HTTP
parameter. Instead, you can submit the token within a HTTP header. A typical pattern
would be to include the CSRF token within your <meta> HTML tags. An example with a
JSP is as follows:

 <html>
 <head>
 <meta name="_csrf" content="${_csrf.token}"/>
 <!-- default header name is X-CSRF-TOKEN -->
 <meta name="_csrf_header" content="${_csrf.headerName}"/>
 ...
 </head>
 …

Additional Spring Security Features Chapter 15

[418]

Instead of manually creating the meta tags, you can use the simpler csrfMetaTags tag
from the Spring Security JSP tag library.

The csrfMetaTags tag
If CSRF protection is enabled, this tag inserts meta tags containing the CSRF protection
token form field, header names, and CSRF protection token value. These meta tags are
useful for employing CSRF protection within JavaScript in your applications.

You should place the csrfMetaTags tag within an HTML <head></head> block, where
you would normally place other meta tags. Once you use this tag, you can access the form
field name, header name, and token value easily using JavaScript, as follows:

<html>
 <head>
 ...
 <sec:csrfMetaTags />
 <script type="text/javascript" language="javascript">
 var csrfParameter =
$("meta[name='_csrf_parameter']").attr("content");
 var csrfHeader =
$("meta[name='_csrf_header']").attr("content");
 var csrfToken = $("meta[name='_csrf']").attr("content");
 ...
 <script>
 </head>
 ...

If CSRF protection is not enabled, csrfMetaTags outputs nothing.

jQuery usage
You can then include the token within all of your Ajax requests. If you were using jQuery,
this could be done with the following code snippet:

$(function () {
var token = $("meta[name='_csrf']").attr("content");
var header = $("meta[name='_csrf_header']").attr("content");
$(document).ajaxSend(function(e, xhr, options) {
 xhr.setRequestHeader(header, token);
});
});

Additional Spring Security Features Chapter 15

[419]

Using the cujoJS's rest.js module
As an alternative to jQuery, we recommend using the rest.js module of cujoJS. The
rest.js module provides advanced support for working with HTTP requests and
responses in RESTful ways. A core capability is the ability to contextualize the HTTP client,
adding behavior as needed by chaining interceptors onto the client, as follows:

 var client = rest.chain(csrf, {
 token: $("meta[name='_csrf']").attr("content"),
 name: $("meta[name='_csrf_header']").attr("content")
 });

The configured client can be shared with any component of the application that needs to
make a request to the CSRF protected resource. One significant difference between rest.js
and jQuery is that the only requests made with the configured client will contain the CSRF
token, versus in jQuery, where all requests will include the token. The ability to determine
which requests receive the token helps guard against leaking the CSRF token to a third-
party.

Please refer to the rest.js reference documentation for more information
on rest.js
(https:/ ​/​github. ​com/ ​cujojs/ ​rest/ ​tree/ ​master/ ​docs).

CSRF caveats
There are a few caveats when implementing CSRF in Spring Security that you need to be
aware of.

Timeouts
One issue is that the expected CSRF token is stored in the HttpSession method, so as soon
as the HttpSession method expires, your configured AccessDeniedHandler handler will
receive InvalidCsrfTokenException. If you are using the default
AccessDeniedHandler handler, the browser will get an HTTP 403 and display a poor
error message.

https://github.com/cujojs/rest/tree/master/docs
https://github.com/cujojs/rest/tree/master/docs
https://github.com/cujojs/rest/tree/master/docs
https://github.com/cujojs/rest/tree/master/docs
https://github.com/cujojs/rest/tree/master/docs
https://github.com/cujojs/rest/tree/master/docs
https://github.com/cujojs/rest/tree/master/docs
https://github.com/cujojs/rest/tree/master/docs
https://github.com/cujojs/rest/tree/master/docs
https://github.com/cujojs/rest/tree/master/docs
https://github.com/cujojs/rest/tree/master/docs
https://github.com/cujojs/rest/tree/master/docs
https://github.com/cujojs/rest/tree/master/docs
https://github.com/cujojs/rest/tree/master/docs
https://github.com/cujojs/rest/tree/master/docs
https://github.com/cujojs/rest/tree/master/docs
https://github.com/cujojs/rest/tree/master/docs
https://github.com/cujojs/rest/tree/master/docs
https://github.com/cujojs/rest/tree/master/docs

Additional Spring Security Features Chapter 15

[420]

You might ask why the expected CsrfToken token isn't stored in a cookie. This is because
there are known exploits in which headers (specifying the cookies) can be set by another
domain.

This is the same reason Ruby on Rails no longer skips CSRF checks when
the header X-Requested-With is present (http:/ ​/​weblog. ​rubyonrails.
org/​2011/ ​2/ ​8/ ​csrf- ​protection- ​bypass- ​in-​ruby- ​on- ​rails/ ​).

The Web Application Security Consortium (http:/ ​/​www. ​webappsec. ​org) has a detailed thread
on using CSRF and an HTTP 307 redirect to perform exploit CSRF cookies.

See this www.webappsec.org thread for details on how to perform the
exploit at http:/ ​/ ​lists. ​webappsec. ​org/ ​pipermail/ ​websecurity_ ​lists.
webappsec. ​org/ ​2011- ​February/ ​007533. ​html.

Another disadvantage is that by removing the state (the timeout), you lose the ability to
forcibly terminate the token if something is compromised.

A simple way to mitigate an active user experiencing a timeout is to have some JavaScript
that lets the user know their session is about to expire. The user can click a button to
continue and refresh the session.

Alternatively, specifying a custom AccessDeniedHandler handler allows you to
process InvalidCsrfTokenException any way you like, as we can see in the following
code:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityC
onfig.java

@Override
public void configure(HttpSecurity http) throws Exception {
 http.exceptionHandling()
 .accessDeniedHandler(accessDeniedHandler);
}
@Bean
public CustomAccessDeniedHandler accessDeniedHandler(){
 return new CustomAccessDeniedHandler();
}

http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://www.webappsec.org
http://www.webappsec.org
http://www.webappsec.org
http://www.webappsec.org
http://www.webappsec.org
http://www.webappsec.org
http://www.webappsec.org
http://www.webappsec.org
http://www.webappsec.org
http://www.webappsec.org/
http://lists.webappsec.org/pipermail/websecurity_lists.webappsec.org/2011-February/007533.html
http://lists.webappsec.org/pipermail/websecurity_lists.webappsec.org/2011-February/007533.html
http://lists.webappsec.org/pipermail/websecurity_lists.webappsec.org/2011-February/007533.html
http://lists.webappsec.org/pipermail/websecurity_lists.webappsec.org/2011-February/007533.html
http://lists.webappsec.org/pipermail/websecurity_lists.webappsec.org/2011-February/007533.html
http://lists.webappsec.org/pipermail/websecurity_lists.webappsec.org/2011-February/007533.html
http://lists.webappsec.org/pipermail/websecurity_lists.webappsec.org/2011-February/007533.html
http://lists.webappsec.org/pipermail/websecurity_lists.webappsec.org/2011-February/007533.html
http://lists.webappsec.org/pipermail/websecurity_lists.webappsec.org/2011-February/007533.html
http://lists.webappsec.org/pipermail/websecurity_lists.webappsec.org/2011-February/007533.html
http://lists.webappsec.org/pipermail/websecurity_lists.webappsec.org/2011-February/007533.html
http://lists.webappsec.org/pipermail/websecurity_lists.webappsec.org/2011-February/007533.html
http://lists.webappsec.org/pipermail/websecurity_lists.webappsec.org/2011-February/007533.html
http://lists.webappsec.org/pipermail/websecurity_lists.webappsec.org/2011-February/007533.html
http://lists.webappsec.org/pipermail/websecurity_lists.webappsec.org/2011-February/007533.html
http://lists.webappsec.org/pipermail/websecurity_lists.webappsec.org/2011-February/007533.html
http://lists.webappsec.org/pipermail/websecurity_lists.webappsec.org/2011-February/007533.html
http://lists.webappsec.org/pipermail/websecurity_lists.webappsec.org/2011-February/007533.html
http://lists.webappsec.org/pipermail/websecurity_lists.webappsec.org/2011-February/007533.html
http://lists.webappsec.org/pipermail/websecurity_lists.webappsec.org/2011-February/007533.html
http://lists.webappsec.org/pipermail/websecurity_lists.webappsec.org/2011-February/007533.html
http://lists.webappsec.org/pipermail/websecurity_lists.webappsec.org/2011-February/007533.html
http://lists.webappsec.org/pipermail/websecurity_lists.webappsec.org/2011-February/007533.html
http://lists.webappsec.org/pipermail/websecurity_lists.webappsec.org/2011-February/007533.html
http://lists.webappsec.org/pipermail/websecurity_lists.webappsec.org/2011-February/007533.html
http://lists.webappsec.org/pipermail/websecurity_lists.webappsec.org/2011-February/007533.html

Additional Spring Security Features Chapter 15

[421]

Logging in
In order to protect against forged login requests, the login form should be protected against
CSRF attacks, too. Since the CsrfToken token is stored in HttpSession, this means an
HttpSession mehthod will be created as soon as the CsrfToken attribute is accessed.
While this sounds bad in a RESTful/stateless architecture, the reality is that the state is
necessary to implement practical security. Without the state, we have nothing we can do if a
token is compromised. Practically speaking, the CSRF token is quite small in size and
should have a negligible impact on our architecture.

An attacker may forge a request to log the victim into a target website
using the attacker's credentials; this is known as login CSRF (https:/ ​/ ​en.
wikipedia. ​org/ ​wiki/ ​Cross- ​site_ ​request_ ​forgery#Forging_ ​login_
requests).

Logging out
Adding CSRF will update the LogoutFilter filter to only use HTTP POST. This ensures
that logging out requires a CSRF token and that a malicious user cannot forcibly log out
your users.

One approach is to use a <form> tag for logout. If you want an HTML link, you can use
JavaScript to have the link perform an HTTP POST (which can be in a hidden form). For
browsers with JavaScript disabled, you can optionally have the link take the user to a logout
confirmation page that will perform the HTTP POST.

If you want to use HTTP GET with logout, you can do so, but remember, this is generally
not recommended. For example, the following Java configuration will perform logout when
the logout URL pattern is requested with any HTTP method:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityC
onfig.java

@Override
protected void configure(HttpSecurity http) throws Exception {
 http.logout()
 .logoutRequestMatcher(
 new AntPathRequestMatcher("/logout"));
}

https://en.wikipedia.org/wiki/Cross-site_request_forgery#Forging_login_requests
https://en.wikipedia.org/wiki/Cross-site_request_forgery#Forging_login_requests
https://en.wikipedia.org/wiki/Cross-site_request_forgery#Forging_login_requests
https://en.wikipedia.org/wiki/Cross-site_request_forgery#Forging_login_requests
https://en.wikipedia.org/wiki/Cross-site_request_forgery#Forging_login_requests
https://en.wikipedia.org/wiki/Cross-site_request_forgery#Forging_login_requests
https://en.wikipedia.org/wiki/Cross-site_request_forgery#Forging_login_requests
https://en.wikipedia.org/wiki/Cross-site_request_forgery#Forging_login_requests
https://en.wikipedia.org/wiki/Cross-site_request_forgery#Forging_login_requests
https://en.wikipedia.org/wiki/Cross-site_request_forgery#Forging_login_requests
https://en.wikipedia.org/wiki/Cross-site_request_forgery#Forging_login_requests
https://en.wikipedia.org/wiki/Cross-site_request_forgery#Forging_login_requests
https://en.wikipedia.org/wiki/Cross-site_request_forgery#Forging_login_requests
https://en.wikipedia.org/wiki/Cross-site_request_forgery#Forging_login_requests
https://en.wikipedia.org/wiki/Cross-site_request_forgery#Forging_login_requests
https://en.wikipedia.org/wiki/Cross-site_request_forgery#Forging_login_requests
https://en.wikipedia.org/wiki/Cross-site_request_forgery#Forging_login_requests
https://en.wikipedia.org/wiki/Cross-site_request_forgery#Forging_login_requests
https://en.wikipedia.org/wiki/Cross-site_request_forgery#Forging_login_requests
https://en.wikipedia.org/wiki/Cross-site_request_forgery#Forging_login_requests
https://en.wikipedia.org/wiki/Cross-site_request_forgery#Forging_login_requests

Additional Spring Security Features Chapter 15

[422]

Security HTTP response headers
The following sections discuss Spring Security's support for adding various security
headers to the response.

Default security headers
Spring Security allows users to easily inject default security headers to assist in protecting
their application. The following is a list of the current default security headers provided by
Spring Security:

Cache-Control

Content-Type Options

HTTP Strict Transport Security
X-Frame-Options

X-XSS-Protection

While each of these headers is considered best practice, it should be noted that not all clients
utilize these headers, so additional testing is encouraged. For passivity reasons, if you are
using Spring Security's XML namespace support, you must explicitly enable the security
headers. All of the default headers can be easily added using the <headers> element with
no child elements.

SEC-2348 is logged to ensure Spring Security 4.x's XML namespace configuration will
enable Security headers by default (https:/ ​/ ​github. ​com/ ​spring- ​projects/ ​spring-
security/​issues/ ​2575).

If you are using Spring Security's Java configuration, all of the default security headers are
added by default. They can be disabled using Java configuration, as follows:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityC
onfig.java

@Override
protected void configure(HttpSecurity http) throws Exception {
 http.headers().disable();
}

https://github.com/spring-projects/spring-security/issues/2575
https://github.com/spring-projects/spring-security/issues/2575
https://github.com/spring-projects/spring-security/issues/2575
https://github.com/spring-projects/spring-security/issues/2575
https://github.com/spring-projects/spring-security/issues/2575
https://github.com/spring-projects/spring-security/issues/2575
https://github.com/spring-projects/spring-security/issues/2575
https://github.com/spring-projects/spring-security/issues/2575
https://github.com/spring-projects/spring-security/issues/2575
https://github.com/spring-projects/spring-security/issues/2575
https://github.com/spring-projects/spring-security/issues/2575
https://github.com/spring-projects/spring-security/issues/2575
https://github.com/spring-projects/spring-security/issues/2575
https://github.com/spring-projects/spring-security/issues/2575
https://github.com/spring-projects/spring-security/issues/2575
https://github.com/spring-projects/spring-security/issues/2575
https://github.com/spring-projects/spring-security/issues/2575
https://github.com/spring-projects/spring-security/issues/2575

Additional Spring Security Features Chapter 15

[423]

The following code adds the security headers to the response. This is activated by default
when using the default constructor of WebSecurityConfigurerAdapter. Accepting the
default provided by WebSecurityConfigurerAdapter, or only invoking the headers()
method without invoking additional methods, is the equivalent of the following code
snippet:

@Override
protected void configure(HttpSecurity http) throws Exception {
 http
 .headers()
 .contentTypeOptions()
 .and()
 .xssProtection()
 .and()
 .cacheControl()
 .and()
 .httpStrictTransportSecurity()
 .and()
 .frameOptions()
 .and()
 ...;
}

As soon as you specify any headers that should be included, then only those headers will be
included. For example, the following configuration will include support for X-Frame-
Options only:

@Override
protected void configure(HttpSecurity http) throws Exception {
 ...
 http.headers().frameOptions();
}

Cache-Control
In the past, Spring Security required you to provide your own Cache-Control method for
your web application. This seemed reasonable at the time, but browser caches have evolved
to include caches for secure connections as well. This means that a user may view an
authenticated page, log out, and then a malicious user can use the browser history to view
the cached page.

Additional Spring Security Features Chapter 15

[424]

To help mitigate this, Spring Security has added Cache-Control support, which will insert
the following headers into your response:

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0

Simply adding the headers() method with no child elements will automatically add
Cache-Control and quite a few other protection options. However, if you only want
Cache-Control, you can enable this feature using Spring Security's Java Configuration
with the cacheControl() method, as follows:

@Override
protected void configure(HttpSecurity http) throws Exception {
 http.headers()
 .cacheControl();
}

If you want to cache specific responses, your application can selectively invoke
HttpServletResponse.setHeader(String,String) to override the header set by
Spring Security. This is useful to ensure things such as CSS, JavaScript, and images are
properly cached.

When using Spring Web MVC, this is typically done within your configuration. For
example, the following configuration will ensure that the cache headers are set for all of
your resources:

@EnableWebMvc
public class WebMvcConfiguration
extends WebMvcConfigurerAdapter {
 @Override
 public void addResourceHandlers(
 ResourceHandlerRegistry registry) {
 registry
 .addResourceHandler("/resources/**")
 .addResourceLocations("/resources/")
 .setCachePeriod(3_155_6926);
 }
 // ...
}

Additional Spring Security Features Chapter 15

[425]

Content-Type Options
Historically, browsers, including Internet Explorer, would try to guess the content type of a
request using content sniffing. This allowed browsers to improve the user experience by
guessing the content type of resources that had not specified the content type. For example,
if a browser encountered a JavaScript file that did not have the content type specified, it
would be able to guess the content type and then execute it.

There are many additional things one should do, such as only displaying
the document in a distinct domain, ensuring the Content-Type header is
set, sanitizing the document, and so on, when allowing content to be
uploaded. However, these measures are out of the scope of what Spring
Security provides. It is also important to point out that when disabling
content sniffing, you must specify the content type in order for things to
work properly.

The problem with content sniffing is that this allows malicious users to use polyglots (a file
that is valid as multiple content types) to execute XSS attacks. For example, some sites may
allow users to submit a valid postscript document to a website and view it. A malicious
user might create a postscript document that is also a valid JavaScript file and execute an
XSS attack with it (http:/ ​/​webblaze. ​cs. ​berkeley. ​edu/ ​papers/ ​barth- ​caballero- ​song.
pdf).

Content sniffing can be disabled by adding the following header to our response:

 X-Content-Type-Options: nosniff

Just as with the Cache-Control element, the nosniff directive is added by default when
using the headers() method with no child elements. The X-Content-Type-Options header
is added by default within the Spring Security Java configuration. If you want more control
over the headers, you can explicitly specify the content type options with the following
code:

@Override
protected void configure(HttpSecurity http) throws Exception {
 http.headers()
 .contentTypeOptions();
}

http://webblaze.cs.berkeley.edu/papers/barth-caballero-song.pdf
http://webblaze.cs.berkeley.edu/papers/barth-caballero-song.pdf
http://webblaze.cs.berkeley.edu/papers/barth-caballero-song.pdf
http://webblaze.cs.berkeley.edu/papers/barth-caballero-song.pdf
http://webblaze.cs.berkeley.edu/papers/barth-caballero-song.pdf
http://webblaze.cs.berkeley.edu/papers/barth-caballero-song.pdf
http://webblaze.cs.berkeley.edu/papers/barth-caballero-song.pdf
http://webblaze.cs.berkeley.edu/papers/barth-caballero-song.pdf
http://webblaze.cs.berkeley.edu/papers/barth-caballero-song.pdf
http://webblaze.cs.berkeley.edu/papers/barth-caballero-song.pdf
http://webblaze.cs.berkeley.edu/papers/barth-caballero-song.pdf
http://webblaze.cs.berkeley.edu/papers/barth-caballero-song.pdf
http://webblaze.cs.berkeley.edu/papers/barth-caballero-song.pdf
http://webblaze.cs.berkeley.edu/papers/barth-caballero-song.pdf
http://webblaze.cs.berkeley.edu/papers/barth-caballero-song.pdf
http://webblaze.cs.berkeley.edu/papers/barth-caballero-song.pdf
http://webblaze.cs.berkeley.edu/papers/barth-caballero-song.pdf
http://webblaze.cs.berkeley.edu/papers/barth-caballero-song.pdf
http://webblaze.cs.berkeley.edu/papers/barth-caballero-song.pdf
http://webblaze.cs.berkeley.edu/papers/barth-caballero-song.pdf

Additional Spring Security Features Chapter 15

[426]

HTTP Strict Transport Security
When you type in your bank's website, do you enter mybank.example.com, or do you
enter https://mybank.example.com? If you omit the HTTPS protocol, you are
potentially vulnerable to man in the middle attacks. Even if the website performs a redirect
to https://mybank.example.com, a malicious user could intercept the initial HTTP
request and manipulate the response (redirect to https://mibank.example.com and
steal their credentials).

Many users omit the HTTPS protocol, and this is why HSTS was created.

In accordance with RFC6797, the HSTS header is only injected into HTTPS responses. In
order for the browser to acknowledge the header, the browser must first trust the CA that
signed the SSL certificate used to make the connection, not just the SSL certificate (https:/ ​/
tools.​ietf.​org/​html/ ​rfc6797).

Once mybank.example.com is added as an HSTS host, a browser can know beforehand
that any request to mybank.example.com should be interpreted as
https://mybank.example.com. This greatly reduces the possibility of a man in the
middle attack occurring.

One way for a site to be marked as an HSTS host is to have the host preloaded into the
browser. Another is to add the Strict-Transport-Security header to the response. For
example, the following would instruct the browser to treat the domain as an HSTS host for
a year (there are approximately 31,536,000 seconds in a year):

 Strict-Transport-Security: max-age=31536000 ; includeSubDomains

The optional includeSubDomains directive instructs Spring Security that subdomains
(such as secure.mybank.example.com) should also be treated as an HSTS domain.

As with the other headers, Spring Security adds the previous header to the response when
the headers() method is specified with no child elements, but it is automatically added
when you are using Java configuration. You can also only use HSTS headers with the
hsts() method, as shown in the following code:

@Override
protected void configure(HttpSecurity http) throws Exception {
 http.headers()
 .hsts();
}

https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc6797

Additional Spring Security Features Chapter 15

[427]

X-Frame-Options
Allowing your website to be added to a frame can be a security issue. For example, using
clever CSS styling, users could be tricked into clicking on something that they did not
intend to.

View a Clickjacking video demo here at https:/ ​/​www. ​youtube. ​com/​watch? ​v=​3mk0RySeNsU.

For example, a user that is logged in to their bank might click a button that grants access to
other users. This sort of attack is known as Clickjacking.

Read more about Clickjacking at https:/ ​/​www. ​owasp. ​org/ ​index. ​php/ ​Clickjacking.

Another modern approach to dealing with Clickjacking is using a content security policy.
Spring Security does not provide support for this as the specification has not been released,
and it is quite a bit more complicated. However, you could use the static headers feature to
implement this. To stay up to date on this issue and to see how you can implement it with
Spring Security, refer to SEC-2117 at https:/ ​/​github. ​com/ ​spring- ​projects/ ​spring-
security/​issues/ ​2342.

There are a number of ways to mitigate Clickjacking attacks. For example, to protect legacy
browsers from Clickjacking attacks, you can use frame-breaking code. While not perfect, a
frame-breaking code is the best you can do for legacy browsers.

A more modern approach to address Clickjacking is to use the X-Frame-Options header, as
follows:

 X-Frame-Options: DENY

The X-Frame-Options response header instructs the browser to prevent any site with this
header in the response from being rendered within a frame. As with the other response
headers, this is automatically included when the headers() method is specified with no
child elements. You can also explicitly specify the frame-options element to control which
headers are added to the response, as follows:

@Override
protected void configure(HttpSecurity http) throws Exception {
 http.headers()
 .frameOptions();
}

If you want to change the value for the X-Frame-Options header, then you can use a
XFrameOptionsHeaderWriter instance.

https://www.youtube.com/watch?v=3mk0RySeNsU
https://www.youtube.com/watch?v=3mk0RySeNsU
https://www.youtube.com/watch?v=3mk0RySeNsU
https://www.youtube.com/watch?v=3mk0RySeNsU
https://www.youtube.com/watch?v=3mk0RySeNsU
https://www.youtube.com/watch?v=3mk0RySeNsU
https://www.youtube.com/watch?v=3mk0RySeNsU
https://www.youtube.com/watch?v=3mk0RySeNsU
https://www.youtube.com/watch?v=3mk0RySeNsU
https://www.youtube.com/watch?v=3mk0RySeNsU
https://www.youtube.com/watch?v=3mk0RySeNsU
https://www.youtube.com/watch?v=3mk0RySeNsU
https://www.youtube.com/watch?v=3mk0RySeNsU
https://www.youtube.com/watch?v=3mk0RySeNsU
https://www.youtube.com/watch?v=3mk0RySeNsU
https://www.owasp.org/index.php/Clickjacking
https://www.owasp.org/index.php/Clickjacking
https://www.owasp.org/index.php/Clickjacking
https://www.owasp.org/index.php/Clickjacking
https://www.owasp.org/index.php/Clickjacking
https://www.owasp.org/index.php/Clickjacking
https://www.owasp.org/index.php/Clickjacking
https://www.owasp.org/index.php/Clickjacking
https://www.owasp.org/index.php/Clickjacking
https://www.owasp.org/index.php/Clickjacking
https://www.owasp.org/index.php/Clickjacking
https://www.owasp.org/index.php/Clickjacking
https://www.owasp.org/index.php/Clickjacking
https://www.owasp.org/index.php/Clickjacking
https://www.owasp.org/index.php/Clickjacking
https://github.com/spring-projects/spring-security/issues/2342
https://github.com/spring-projects/spring-security/issues/2342
https://github.com/spring-projects/spring-security/issues/2342
https://github.com/spring-projects/spring-security/issues/2342
https://github.com/spring-projects/spring-security/issues/2342
https://github.com/spring-projects/spring-security/issues/2342
https://github.com/spring-projects/spring-security/issues/2342
https://github.com/spring-projects/spring-security/issues/2342
https://github.com/spring-projects/spring-security/issues/2342
https://github.com/spring-projects/spring-security/issues/2342
https://github.com/spring-projects/spring-security/issues/2342
https://github.com/spring-projects/spring-security/issues/2342
https://github.com/spring-projects/spring-security/issues/2342
https://github.com/spring-projects/spring-security/issues/2342
https://github.com/spring-projects/spring-security/issues/2342
https://github.com/spring-projects/spring-security/issues/2342
https://github.com/spring-projects/spring-security/issues/2342
https://github.com/spring-projects/spring-security/issues/2342

Additional Spring Security Features Chapter 15

[428]

Some browsers have built-in support for filtering out reflected XSS attacks. This is by no
means foolproof, but it does assist with XSS protection.

Filtering is typically enabled by default, so adding the header just ensures it is enabled and
instructs the browser as to what to do when an XSS attack is detected. For example, the
filter might try to change the content in the least invasive way to still render everything. At
times, this type of replacement can become an XSS vulnerability in itself. Instead, it is best
to block the content, rather than attempt to fix it. To do this, we can add the following
header:

 X-XSS-Protection: 1; mode=block

This header is included by default when the headers() method is specified with no child
elements. We can explicitly state it using the xssProtection element, as follows:

@Override
protected void configure(HttpSecurity http) throws Exception {
 http.headers()
 .xssProtection();
}

Custom Headers
Spring Security has mechanisms to make it convenient to add more common security
headers to your application. However, it also provides hooks to enable the adding of
custom headers.

Static headers
There may be times you wish to inject custom security headers into your application that
are not supported out of the box. For example, perhaps you wish to have early support for a
content security policy in order to ensure that resources are only loaded from the same
origin. Since support for a content security policy has not been finalized, browsers use one
of two common extension headers to implement the feature. This means we will need to
inject the policy twice. An example of the headers can be seen in the following code snippet:

X-Content-Security-Policy: default-src 'self'
X-WebKit-CSP: default-src 'self'

Additional Spring Security Features Chapter 15

[429]

When using Java configuration, these headers can be added to the response using the
header() method, as follows:

@Override
protected void configure(HttpSecurity http) throws Exception {
 http.headers()
 .addHeaderWriter(
 new StaticHeadersWriter(
 "X-Content-Security-Policy",
 "default-src 'self'"))
 .addHeaderWriter(
 new StaticHeadersWriter(
 "X-WebKit-CSP",
 "default-src 'self'"));
}

The HeadersWriter instance
When the namespace or Java configuration does not support the headers you want, you can
create a custom HeadersWriter instance or even provide a custom implementation of
HeadersWriter.

Let's take a look at an example of using a custom instance of
XFrameOptionsHeaderWriter. Perhaps you want to allow the framing of content for the
same origin. This is easily supported by setting the policy attribute to SAMEORIGIN, but let's
take a look at a more explicit example using the ref attribute, as shown in the following
code snippet:

@Override
protected void configure(HttpSecurity http) throws Exception {
 http.headers()
 .addHeaderWriter(
 new XFrameOptionsHeaderWriter(
 XFrameOptionsMode.SAMEORIGIN));
}

Additional Spring Security Features Chapter 15

[430]

The DelegatingRequestMatcherHeaderWriter class
At times, you may want to only write a header for certain requests. For example, perhaps
you want to only protect your login page from being framed. You could use the
DelegatingRequestMatcherHeaderWriter class to do so. When using Java
configuration, this can be done with the following code:

@Override
protected void configure(HttpSecurity http) throws Exception {
 DelegatingRequestMatcherHeaderWriter headerWriter =
 new DelegatingRequestMatcherHeaderWriter(
 new AntPathRequestMatcher("/login"),
 new XFrameOptionsHeaderWriter());
 http.headers()
 .addHeaderWriter(headerWriter);
}

Summary
In this chapter, we covered several security vulnerabilities, as well employing Spring
Security to circumvent those vulnerabilities. After reading this chapter, you should
understand the threat of CSRF and use of the synchronizer tokens to prevent CSRF.

You should also know how to include various HTTP headers to protect against common
security vulnerabilities using the Cache-Control, Content-Type Options, HSTS, X-
Frame-Options, and X-XSS-Protection methods.

In the next chapter, we will discuss how to migrate from Spring Security 3.x to Spring
Security 4.2.

16
Migration to Spring Security 4.2

 In this final chapter, we will review information relating to common migration issues when
moving from Spring Security 3 to Spring Security 4.2. We'll spend much more time
discussing the differences between Spring Security 3 and Spring Security 4, because this is
what most users will struggle with. This is due to the fact that the updates from Spring
Security 3 to Spring Security 4.2 contain a lot of non-passive refactoring.

At the end of the chapter, we will also highlight some of the new features that can be found
in Spring Security 4.2. However, we do not explicitly cover changes from Spring Security 3
to Spring Security 4.2. This is because by explaining the differences between Spring Security
3 and Spring Security 4, users should be able to update to Spring Security 4.2 with ease
since the changes to Spring Security 4.2 are passive.

During the course of this chapter, we will cover the following topics:

Reviewing important enhancements in Spring Security 4.2.
Understanding configuration changes required in your existing Spring version.
Reviewing Security 3 applications when moving them to Spring Security 4.2.
Illustrating the overall movement of important classes and packages in Spring
Security 4.
Highlighting some of the new features found in Spring Security 4.2. Once you
have completed the review of this chapter, you will be in a good position to
migrate an existing application from Spring Security 3 to Spring Security 4.2.
Migrating from Spring Security 3.

You may be planning to migrate an existing application to Spring Security 4.2, or you may
be trying to add functionality to a Spring Security 3 application and are looking for
guidance in the pages of this book. We'll try to address both of your concerns in this
chapter.

Migration to Spring Security 4.2 Chapter 16

[432]

First, we'll run through the important differences between Spring Security 3 and 4.2—both
in terms of features and configuration. Second, we'll provide some guidance on mapping
configuration or class name changes. This will better enable you to translate the examples in
the book from Spring Security 4.2 back to Spring Security 3 (where applicable).

A very important migration note is that Spring Security 3+ mandates a migration to Spring
Framework 4 and Java 5 (1.5) or greater. Be aware that in many cases, migrating these other
components may have a greater impact on your application than the upgrade of Spring
Security!

Introduction
As exploits against applications evolve, so must Spring Security. In a major release version,
the Spring Security team took the opportunity to make some non-passive changes that
focused on the following things:

Ensuring Spring Security is more secure by default (https:/ ​/​www. ​owasp. ​org/
index.​php/ ​Establish_ ​secure_ ​defaults)
Minimizing information leakage (https:/ ​/​www. ​owasp. ​org/ ​index. ​php/
Information_ ​Leakage)
Removing deprecated APIs

A complete list of non-passive changes between 3.x and 4.x can be found in JIRA at https:/
/​jira.​spring.​io/ ​browse/ ​SEC- ​2916? ​jql=
project%20%3D%20SEC%20AND%20fixVersion%20in%20(4. ​0.​0%2C%204. ​0. ​0.​M1%2C%204. ​0.​0.
M2%2C%204.​0.​0.​RC1%2C%204. ​0. ​0. ​RC2)%20AND%20labels%20%3D%20passivity.

Sample migration
The Spring Security team has created a sample project illustrating all of the changes when
migrating from 3.x to 4.x and has made the project available on GitHub.

The sample includes both XML and JavaConfig examples and can be found at https:/ ​/
github.​com/​spring- ​projects/ ​spring- ​security- ​migrate- ​3- ​to-​4/ ​.

https://www.owasp.org/index.php/Establish_secure_defaults
https://www.owasp.org/index.php/Establish_secure_defaults
https://www.owasp.org/index.php/Establish_secure_defaults
https://www.owasp.org/index.php/Establish_secure_defaults
https://www.owasp.org/index.php/Establish_secure_defaults
https://www.owasp.org/index.php/Establish_secure_defaults
https://www.owasp.org/index.php/Establish_secure_defaults
https://www.owasp.org/index.php/Establish_secure_defaults
https://www.owasp.org/index.php/Establish_secure_defaults
https://www.owasp.org/index.php/Establish_secure_defaults
https://www.owasp.org/index.php/Establish_secure_defaults
https://www.owasp.org/index.php/Establish_secure_defaults
https://www.owasp.org/index.php/Establish_secure_defaults
https://www.owasp.org/index.php/Establish_secure_defaults
https://www.owasp.org/index.php/Establish_secure_defaults
https://www.owasp.org/index.php/Establish_secure_defaults
https://www.owasp.org/index.php/Establish_secure_defaults
https://www.owasp.org/index.php/Establish_secure_defaults
https://www.owasp.org/index.php/Information_Leakage
https://www.owasp.org/index.php/Information_Leakage
https://www.owasp.org/index.php/Information_Leakage
https://www.owasp.org/index.php/Information_Leakage
https://www.owasp.org/index.php/Information_Leakage
https://www.owasp.org/index.php/Information_Leakage
https://www.owasp.org/index.php/Information_Leakage
https://www.owasp.org/index.php/Information_Leakage
https://www.owasp.org/index.php/Information_Leakage
https://www.owasp.org/index.php/Information_Leakage
https://www.owasp.org/index.php/Information_Leakage
https://www.owasp.org/index.php/Information_Leakage
https://www.owasp.org/index.php/Information_Leakage
https://www.owasp.org/index.php/Information_Leakage
https://www.owasp.org/index.php/Information_Leakage
https://www.owasp.org/index.php/Information_Leakage
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://jira.spring.io/browse/SEC-2916?jql=project%20%3D%20SEC%20AND%20fixVersion%20in%20(4.0.0%2C%204.0.0.M1%2C%204.0.0.M2%2C%204.0.0.RC1%2C%204.0.0.RC2)%20AND%20labels%20%3D%20passivity
https://github.com/spring-projects/spring-security-migrate-3-to-4/
https://github.com/spring-projects/spring-security-migrate-3-to-4/
https://github.com/spring-projects/spring-security-migrate-3-to-4/
https://github.com/spring-projects/spring-security-migrate-3-to-4/
https://github.com/spring-projects/spring-security-migrate-3-to-4/
https://github.com/spring-projects/spring-security-migrate-3-to-4/
https://github.com/spring-projects/spring-security-migrate-3-to-4/
https://github.com/spring-projects/spring-security-migrate-3-to-4/
https://github.com/spring-projects/spring-security-migrate-3-to-4/
https://github.com/spring-projects/spring-security-migrate-3-to-4/
https://github.com/spring-projects/spring-security-migrate-3-to-4/
https://github.com/spring-projects/spring-security-migrate-3-to-4/
https://github.com/spring-projects/spring-security-migrate-3-to-4/
https://github.com/spring-projects/spring-security-migrate-3-to-4/
https://github.com/spring-projects/spring-security-migrate-3-to-4/
https://github.com/spring-projects/spring-security-migrate-3-to-4/
https://github.com/spring-projects/spring-security-migrate-3-to-4/
https://github.com/spring-projects/spring-security-migrate-3-to-4/
https://github.com/spring-projects/spring-security-migrate-3-to-4/
https://github.com/spring-projects/spring-security-migrate-3-to-4/
https://github.com/spring-projects/spring-security-migrate-3-to-4/
https://github.com/spring-projects/spring-security-migrate-3-to-4/
https://github.com/spring-projects/spring-security-migrate-3-to-4/

Migration to Spring Security 4.2 Chapter 16

[433]

Enhancements in Spring Security 4.2
There are quite a few notable changes in Spring Security 4.2, and this release also brings
early support for Spring Framework 5. You can find the changelogs for 4.2.0.M1, 4.2.0.RC1,
and 4.2.0.RELEASE, which covers over 80 issues. The community contributed the
overwhelming majority of these features.

Significant enhancements in Spring Security 4.2, improved since Spring Security 3 include
the following features and their support numbers:

Web improvements:
The following items are related to Spring Security's interaction with Web-based
applications:

#3812: Jackson support
#4116: Referrer policy
#3938: Added HTTP response splitting prevention
#3949: Added bean reference support to @AuthenticationPrincipal
#3978: Support for Standford WebAuth and Shibboleth using the newly added
RequestAttributeAuthenticationFilter

#4076: Document proxy server configuration
#3795: ConcurrentSessionFilter supports InvalidSessionStrategy
#3904: Added CompositeLogoutHandler

Spring Security Configuration improvements:
The following items are related to the configuration of Spring Security:

#3956: Central configuration of the default role prefix. See the issue for details
#4102: Custom default configuration in WebSecurityConfigurerAdapter
#3899: concurrency-control@max-sessions supports unlimited sessions.
#4097: intercept-url@request-matcher-ref adds more powerful request
matching support to the XML namespace
#3990: Support for constructing RoleHierarchy from Map (such as YML).
#4062: Custom cookiePath to CookieCsrfTokenRepository.

Migration to Spring Security 4.2 Chapter 16

[434]

#3794: Allowing the configuration of InvalidSessionStrategy on
SessionManagementConfigurer

#4020: Fixing exposed beans for defaultMethodExpressionHandler can
prevent Method Security

Miscellaneous changes in Spring Security 4.x
The following items are miscellaneous changes that are worth noting as many of them
might impact upgrading to Spring Security 4.x:

#4080: Spring 5 support
#4095 - Added UserBuilder
#4018: Fixes after csrf() is invoked, future MockMvc invocations use original
CsrfTokenRepository

General dependency version updates

Note that the listed numbers refer to the GitHub pull requests or issues.

Other, more innocuous changes, encompassed a general restructuring and cleaning up of
the code base and the configuration of the framework so that the overall structure and
usage makes much more sense. The authors of Spring Security have added extensibility
where none previously existed, especially in the areas of login and URL redirection.

If you are already working in a Spring Security 3 environment, you may not find
compelling reasons to upgrade if you aren't pushing the boundaries of the framework.
However, if you have found limitations in the available extension points, code structure, or
configurability of Spring Security 3, you'll welcome many of the minor changes that we
discuss in detail in the remainder of this chapter.

Changes to configuration in Spring Security 4
Many of the changes in Spring Security 4 will be visible in the namespace style of
configuration in XML-based configuration. We will be covering mostly Java-based
configuration in this chapter, but will also note some notable XML-based changes.
Although this chapter cannot cover all of the minor changes in detail, we'll try to cover
those changes that will be most likely to affect you as you move to Spring Security 4.

Migration to Spring Security 4.2 Chapter 16

[435]

Deprecations
A number of deprecations were removed in Spring Security 4 to clean up clutter.

The following is the final commit for the XML and JavaConfig deprecations, which
contained 177 changed files with 537 additions and 5,023 deletions: https:/ ​/ ​github. ​com/
spring-​projects/ ​spring- ​security/ ​commit/
6e204fff72b80196a83245cbc3bd0cd401feda00.

If you are using the XML namespace or Java-based configuration, there are many instances
where you will be shielded from deprecation. If you (or a non-spring library you use) do
not use an API directly, then you will not be impacted. You can easily search your
workspace to find these listed deprecations.

The spring-security-core deprecations
This section described all of the deprecated APIs within the spring-security-core
module.

org.springframework.security.access.SecurityConfig
The SecurityConfig.createSingleAttributeList(String) interface was removed
in favor of using SecurityConfig.createList(String…). This means that if you have
something like as follows:

 List<ConfigAttribute> attrs = SecurityConfig.createSingleAttributeList
 ("ROLE_USER");

It will need to be replaced with the following code:

 List<ConfigAttribute> attrs = SecurityConfig.createList("ROLE_USER");

UserDetailsServiceWrapper
UserDetailsServiceWrapper was deprecated in favor of using
RoleHierarchyAuthoritiesMapper. For example, you may have something like as
follows:

@Bean
public AuthenticationManager
authenticationManager(List<AuthenticationProvider> providers) {

https://github.com/spring-projects/spring-security/commit/6e204fff72b80196a83245cbc3bd0cd401feda00
https://github.com/spring-projects/spring-security/commit/6e204fff72b80196a83245cbc3bd0cd401feda00
https://github.com/spring-projects/spring-security/commit/6e204fff72b80196a83245cbc3bd0cd401feda00
https://github.com/spring-projects/spring-security/commit/6e204fff72b80196a83245cbc3bd0cd401feda00
https://github.com/spring-projects/spring-security/commit/6e204fff72b80196a83245cbc3bd0cd401feda00
https://github.com/spring-projects/spring-security/commit/6e204fff72b80196a83245cbc3bd0cd401feda00
https://github.com/spring-projects/spring-security/commit/6e204fff72b80196a83245cbc3bd0cd401feda00
https://github.com/spring-projects/spring-security/commit/6e204fff72b80196a83245cbc3bd0cd401feda00
https://github.com/spring-projects/spring-security/commit/6e204fff72b80196a83245cbc3bd0cd401feda00
https://github.com/spring-projects/spring-security/commit/6e204fff72b80196a83245cbc3bd0cd401feda00
https://github.com/spring-projects/spring-security/commit/6e204fff72b80196a83245cbc3bd0cd401feda00
https://github.com/spring-projects/spring-security/commit/6e204fff72b80196a83245cbc3bd0cd401feda00
https://github.com/spring-projects/spring-security/commit/6e204fff72b80196a83245cbc3bd0cd401feda00
https://github.com/spring-projects/spring-security/commit/6e204fff72b80196a83245cbc3bd0cd401feda00
https://github.com/spring-projects/spring-security/commit/6e204fff72b80196a83245cbc3bd0cd401feda00
https://github.com/spring-projects/spring-security/commit/6e204fff72b80196a83245cbc3bd0cd401feda00
https://github.com/spring-projects/spring-security/commit/6e204fff72b80196a83245cbc3bd0cd401feda00

Migration to Spring Security 4.2 Chapter 16

[436]

 return new ProviderManager(providers);
}
@Bean
public AuthenticationProvider
authenticationProvider(UserDetailsServiceWrapper
userDetailsService) {
 DaoAuthenticationProvider provider = new
DaoAuthenticationProvider();
 provider.setUserDetailsService(userDetailsService);
 return provider;
}
@Bean
public UserDetailsServiceWrapper
userDetailsServiceWrapper(RoleHierarchy roleHierarchy) {
 UserDetailsServiceWrapper wrapper = new
UserDetailsServiceWrapper();
 wrapper.setRoleHierarchy(roleHierarchy);
 wrapper.setUserDetailsService(userDetailsService());
 return wrapper;
}

It will need to be replaced to something like this:

@Bean
public AuthenticationManager
authenticationManager(List<AuthenticationProvider> providers) {
 return new ProviderManager(providers);
}
@Bean
public AuthenticationProvider
authenticationProvider(UserDetailsService userDetailsService,
GrantedAuthoritiesMapper authoritiesMapper) {
 DaoAuthenticationProvider provider = new
DaoAuthenticationProvider();
 provider.setUserDetailsService(userDetailsService);
 provider.setAuthoritiesMapper(authoritiesMapper);
 return provider;
}
@Bean
public RoleHierarchyAuthoritiesMapper
roleHierarchyAuthoritiesMapper(RoleHierarchy roleHierarchy) {
 return new RoleHierarchyAuthoritiesMapper(roleHierarchy);
}

Migration to Spring Security 4.2 Chapter 16

[437]

UserDetailsWrapper
UserDetailsWrapper was deprecated in favor of using
RoleHierarchyAuthoritiesMapper. Typically it users would not use the
UserDetailsWrapper class directly. However, if they are, they can use
RoleHierarchyAuthoritiesMapper, for example, the following code may be present:

 UserDetailsWrapper authenticate = new UserDetailsWrapper
 (userDetails, roleHiearchy);

If so, then it needs to be replaced by the following code snippet:

 Collection<GrantedAuthority> allAuthorities = roleHiearchy.
 getReachableGrantedAuthorities(userDetails.getAuthorities());
 UserDetails authenticate = new User(userDetails.getUsername(),
 userDetails.getPassword(), allAuthorities);

AbstractAccessDecisionManager
The default constructor for AbstractAccessDecisionManager has been deprecated along
with the setDecisionVoters method. Naturally, this impacts the AffirmativeBased,
ConsensusBased, and UnanimousBased subclasses. For example, you may be using the
following code snippet:

 AffirmativeBased adm = new AffirmativeBased();
 adm.setDecisionVoters(voters);

If so, it needs to be migrated to the following code snippet:

 AffirmativeBased adm = new AffirmativeBased(voters);

AuthenticationException
The constructor that accepts extraInformation within AuthenticationException was
removed to prevent the accidental leaking of the UserDetails object. Specifically, we
removed the following code:

 public AccountExpiredException(String msg, Object extraInformation) {
 ...
 }

Migration to Spring Security 4.2 Chapter 16

[438]

This impacts the subclasses AccountStatusException, AccountExpiredException,
BadCredentialsException, CredentialsExpiredException, DisabledException,
LockedException, and UsernameNotFoundException. If you are using any of these
constructors, simply remove the additional argument. For example, the following code
snippet is changed:

 new LockedException("Message", userDetails);

The preceding code snippet should be changed to the following code snippet:

 new LockedException("Message");

AnonymousAuthenticationProvider
The AnonymousAuthenticationProvider default constructor and the setKey method
were deprecated in favor of using the constructor injection. For example, you may have the
following code snippet:

 AnonymousAuthenticationProvider provider = new
 AnonymousAuthenticationProvider();
 provider.setKey(key);

The preceding code snippet should be changed to the following code:

 AnonymousAuthenticationProvider provider = new
 AnonymousAuthenticationProvider(key);

AuthenticationDetailsSourceImpl
The AuthenticationDetailsSourceImpl class was deprecated in favor of writing a
custom AuthenticationDetailsSource. For example, you may have the following:

 AuthenticationDetailsSourceImpl source = new
 AuthenticationDetailsSourceImpl();
 source.setClazz(CustomWebAuthenticationDetails.class);

Migration to Spring Security 4.2 Chapter 16

[439]

You should implement the AuthenticationDetailsSource class directly to return
the CustomSource object:

public class CustomWebAuthenticationDetailsSource implements
AuthenticationDetailsSource<HttpServletRequest,
WebAuthenticationDetails> {
 public WebAuthenticationDetails
buildDetails(HttpServletRequest context) {
 return new CustomWebAuthenticationDetails(context);
 }
}

ProviderManager
The ProviderManager class has removed the deprecated default constructor and the
corresponding setter methods in favor of using constructor injection. It has also removed
the clearExtraInformation property, since the AuthenticationException exception
had the extra information property removed.

For example, you may have something like the following:

ProviderManager provider = new ProviderManager();
provider.setParent(parent);
provider.setProviders(providers);
provider.setClearExtraInformation(true);

If so, the preceding code should be changed to the following code:

ProviderManager provider = new ProviderManager(providers, parent);

The clearExtraInformation property was removed since the
AuthenticationException exception had the extra information property removed. There
is no replacement for this.

RememberMeAuthenticationProvider
The RememberMeAuthenticationProvider class had the default constructor and the
setKey method removed in favor of the constructor injection. For example, take a look at
the following code:

 RememberMeAuthenticationProvider provider = new
 RememberMeAuthenticationProvider();
 provider.setKey(key);

Migration to Spring Security 4.2 Chapter 16

[440]

The preceding code snippet should be migrated to the following:

 RememberMeAuthenticationProvider provider = new
 RememberMeAuthenticationProvider(key);

GrantedAuthorityImpl
GrantedAuthorityImpl was removed in favor of SimpleGrantedAuthority, or
implementing your own GrantAuthority object. For example:

 new GrantedAuthorityImpl(role);

This should be replaced with the following:

 new SimpleGrantedAuthority(role);

InMemoryDaoImpl
InMemoryDaoImpl was replaced in favor of InMemoryUserDetailsManager. For
example:

InMemoryDaoImpl uds = new InMemoryDaoImpl();
uds.setUserProperties(properties);

This should be replaced with:

InMemoryUserDetailsManager uds = new
InMemoryUserDetailsManager(properties);
spring-security-web

The spring-security-web deprecations
This section described all of the deprecated APIs within the spring-security-web
module.

FilterChainProxy
FilterChainProxy removed the setFilterChainMap method in favor of constructor
injection. For example, you may have the following:

FilterChainProxy filter = new FilterChainProxy();
filter.setFilterChainMap(filterChainMap);

Migration to Spring Security 4.2 Chapter 16

[441]

It should be replaced with:

FilterChainProxy filter = new
FilterChainProxy(securityFilterChains);

FilterChainProxy also removed getFilterChainMap in favor of using
getFilterChains, for example:

 FilterChainProxy securityFilterChain = ...
 Map<RequestMatcher,List<Filter>> mappings =
 securityFilterChain.getFilterChainMap();
 for(Map.Entry<RequestMatcher, List<Filter>> entry :
mappings.entrySet()) {
 RequestMatcher matcher = entry.getKey();
 boolean matches = matcher.matches(request);
 List<Filter> filters = entry.getValue();
 }

This should be replaced with the following code:

 FilterChainProxy securityFilterChain = ...
 List<SecurityFilterChain> mappings =
securityFilterChain.getFilterChains();
 for(SecurityFilterChain entry : mappings) {
 boolean matches = entry.matches(request);
 List<Filter> filters = entry.getFilters();
 }

ExceptionTranslationFilter
The default constructor for ExceptionTranslationFilter and the
setAuthenticationEntryPoint method was removed in favor of using the constructor
injection:

ExceptionTranslationFilter filter = new
ExceptionTranslationFilter();
filter.setAuthenticationEntryPoint(entryPoint);
filter.setRequestCache(requestCache);

Migration to Spring Security 4.2 Chapter 16

[442]

This can be replaced with the following code:

 ExceptionTranslationFilter filter = new
 ExceptionTranslationFilter(entryPoint, requestCache);

AbstractAuthenticationProcessingFilter
The AbstractAuthenticationProcessingFilter class had its
successfulAuthentication(HttpServletRequest,HttpServletResponse,Authent

ication) method removed. So, your application may override the following method:

 protected void successfulAuthentication(HttpServletRequest request,
 HttpServletResponse response, Authentication authResult) throws
IOException,
 ServletException {
 }

It should be replaced with the following code:

 protected void successfulAuthentication(HttpServletRequest request,
 HttpServletResponse response, FilterChain chain, Authentication
 authResult) throws IOException, ServletException {
 }

AnonymousAuthenticationFilter
The AnonymousAuthenticationFilter class had the default constructor and the setKey
and setPrincipal methods removed in favor of the constructor injection. For example,
take a look at the following code snippet:

 AnonymousAuthenticationFilter filter = new
 AnonymousAuthenticationFilter();
 filter.setKey(key);
 filter.setUserAttribute(attrs);

This should be replaced with the following code:

 AnonymousAuthenticationFilter filter = new
 AnonymousAuthenticationFilter(key,attrs.getPassword(),
 attrs.getAuthorities());

Migration to Spring Security 4.2 Chapter 16

[443]

LoginUrlAuthenticationEntryPoint
The LoginUrlAuthenticationEntryPoint default constructor and the
setLoginFormUrl method was removed in favor of the constructor injection. For example:

 LoginUrlAuthenticationEntryPoint entryPoint = new
 LoginUrlAuthenticationEntryPoint();
 entryPoint.setLoginFormUrl("/login");

This should be replaced with the following code:

 LoginUrlAuthenticationEntryPoint entryPoint = new
 LoginUrlAuthenticationEntryPoint(loginFormUrl);

PreAuthenticatedGrantedAuthoritiesUserDetailsService
The PreAuthenticatedGrantedAuthoritiesUserDetailsService interface removed
createuserDetails in favor of createUserDetails.

The new method has a correction in the case (U instead of u).

This means that if you have a subclass of the
PreAuthenticatedGrantedAuthoritiesUserDetailsService class that overrides the
createuserDetails, SubclassPreAuthenticatedGrantedAuthoritiesUserDetails
Service extends PreAuthenticatedGrantedAuthoritiesUserDetailsService.

{
 @Override
 protected UserDetails createuserDetails(Authentication token,
 Collection<? extends GrantedAuthority> authorities) {
 // customize
 }
}

Migration to Spring Security 4.2 Chapter 16

[444]

It should be changed to override createUserDetails:

public class SubclassPreAuthenticatedGrantedAuthoritiesUserDetailsService
extends PreAuthenticatedGrantedAuthoritiesUserDetailsService {
 @Override
 protected UserDetails createUserDetails(Authentication token,
 Collection<? extends GrantedAuthority> authorities) {
 // customize
 }
}

AbstractRememberMeServices
AbstractRememberMeServices and its subclasses
PersistentTokenBasedRememberMeServices and TokenBasedRememberMeServices
removed the default constructor, the setKey, and the setUserDetailsService methods
in favor of constructor injection.

PersistentTokenBasedRememberMeServices
The changes to the AbstractRememberMeServices and its subclasses had a usage similar
to the following example:

PersistentTokenBasedRememberMeServices services = new
PersistentTokenBasedRememberMeServices();
services.setKey(key);
services.setUserDetailsService(userDetailsService);
services.setTokenRepository(tokenRepository);

But the implementation usage should now be replaced with:

PersistentTokenBasedRememberMeServices services = new
PersistentTokenBasedRememberMeServices(key, userDetailsService,
tokenRepository);

Migration to Spring Security 4.2 Chapter 16

[445]

RememberMeAuthenticationFilter
The RememberMeAuthenticationFilter default constructor, the
setAuthenticationManager, and setRememberMeServices methods were removed in
favor of the constructor injection, like so:

RememberMeAuthenticationFilter filter = new
RememberMeAuthenticationFilter();
filter.setAuthenticationManager(authenticationManager);
filter.setRememberMeServices(rememberMeServices);

This should be replaced with:

RememberMeAuthenticationFilter filter = new
RememberMeAuthenticationFilter(authenticationManager,rememberMeServices);

TokenBasedRememberMeServices
AbstractRememberMeServices and its subclasses
PersistentTokenBasedRememberMeServices and TokenBasedRememberMeServices
removed the default constructor, the setKey, and the setUserDetailsService methods
in favor of the constructor injection. For example:

TokenBasedRememberMeServices services = new TokenBasedRememberMeServices();
services.setKey(key);
services.setUserDetailsService(userDetailsService);

This should be replaced with:

TokenBasedRememberMeServices services = new
TokenBasedRememberMeServices(key, userDetailsService);

ConcurrentSessionControlStrategy
ConcurrentSessionControlStrategy was replaced with
ConcurrentSessionControlAuthenticationStrategy. Previously,
ConcurrentSessionControlStrategy could not be decoupled from
SessionFixationProtectionStrategy. Now it is completely decoupled. For example:

ConcurrentSessionControlStrategy strategy = new
ConcurrentSessionControlStrategy(sessionRegistry);

Migration to Spring Security 4.2 Chapter 16

[446]

This can be replaced with:

List<SessionAuthenticationStrategy> delegates = new
ArrayList<SessionAuthenticationStrategy>();
delegates.add(new
ConcurrentSessionControlAuthenticationStrategy(sessionRegistry));
delegates.add(new SessionFixationProtectionStrategy());
delegates.add(new RegisterSessionAuthenticationStrategy(sessionRegistry));
CompositeSessionAuthenticationStrategy strategy = new
CompositeSessionAuthenticationStrategy(delegates);

SessionFixationProtectionStrategy
SessionFixationProtectionStrategy removed the setRetainedAttributes method
in favor of users subclassing SessionFixationProtectionStrategy and overriding
the extractAttributes method. Look at the following code:

SessionFixationProtectionStrategy strategy = new
SessionFixationProtectionStrategy();
strategy.setRetainedAttributes(attrsToRetain);

It should be replaced with:

public class AttrsSessionFixationProtectionStrategy extends
SessionFixationProtectionStrategy {
 private final Collection<String> attrsToRetain;
 public AttrsSessionFixationProtectionStrategy(
 Collection<String> attrsToRetain) {
 this.attrsToRetain = attrsToRetain;
 }
 @Override
 protected Map<String, Object> extractAttributes(HttpSession session)
{
 Map<String,Object> attrs = new HashMap<String, Object>();
 for(String attr : attrsToRetain) {
 attrs.put(attr, session.getAttribute(attr));
 }
 return attrs;
 }
}
SessionFixationProtectionStrategy strategy = new
AttrsSessionFixationProtectionStrategy(attrsToRetain);

Migration to Spring Security 4.2 Chapter 16

[447]

BasicAuthenticationFilter
The BasicAuthenticationFilter default constructor, the
setAuthenticationManager, and the setRememberMeServices methods were removed
in favor of the constructor injection:

BasicAuthenticationFilter filter = new BasicAuthenticationFilter();
filter.setAuthenticationManager(authenticationManager);
filter.setAuthenticationEntryPoint(entryPoint);
filter.setIgnoreFailure(true);

This should be replaced with:

BasicAuthenticationFilter filter = new
BasicAuthenticationFilter(authenticationManager,entryPoint);

Using this constructor automatically sets ignoreFalure to true.

SecurityContextPersistenceFilter
SecurityContextPersistenceFilter removed the setSecurityContextRepository
in favor of the constructor injection. For example:

SecurityContextPersistenceFilter filter = new
SecurityContextPersistenceFilter();
filter.setSecurityContextRepository(securityContextRepository);

This should be replaced with:

SecurityContextPersistenceFilter filter = new
SecurityContextPersistenceFilter(securityContextRepository);

RequestCacheAwareFilter
RequestCacheAwareFilter removed the setRequestCache in favor of the constructor
injection. For example:

RequestCacheAwareFilter filter = new RequestCacheAwareFilter();
filter.setRequestCache(requestCache);

Migration to Spring Security 4.2 Chapter 16

[448]

This should be replaced with:

RequestCacheAwareFilter filter = new RequestCacheAwareFilter(requestCache);

ConcurrentSessionFilter
ConcurrentSessionFilter removed the default constructor, the setExpiredUrl, and
the setSessionRegistry methods in favor of the constructor injection. For example:

ConcurrentSessionFilter filter = new ConcurrentSessionFilter();
filter.setSessionRegistry(sessionRegistry);
filter.setExpiredUrl("/expired");

This should be replaced with:

ConcurrentSessionFilter filter = new
ConcurrentSessionFilter(sessionRegistry,"/expired");

SessionManagementFilter
SessionManagementFilter removed the setSessionAuthenticationStrategy
method in favor of the constructor injection. For example:

SessionManagementFilter filter = new
SessionManagementFilter(securityContextRepository);
filter.setSessionAuthenticationStrategy(sessionAuthenticationStrategy);

This should be replaced with:

SessionManagementFilter filter = new
SessionManagementFilter(securityContextRepository,
sessionAuthenticationStrategy);

RequestMatcher
The RequestMatcher and its implementations have moved from the
org.springframework.security.web.util package to
org.springframework.security.web.util.matcher. Specifically:

org.springframework.security.web.util.RequestMatcher
org.springframework.security.web.util.matcher.RequestMatcher
org.springframework.security.web.util.AntPathRequestMatcher
org.springframework.security.web.util.matcher.AntPathRequestMatcher
org.springframework.security.web.util.AnyRequestMatcher

Migration to Spring Security 4.2 Chapter 16

[449]

org.springframework.security.web.util.matcher.AnyRequestMatcher.INSTANCE
org.springframework.security.web.util.ELRequestMatcher
org.springframework.security.web.util.matcher.ELRequestMatcher
org.springframework.security.web.util.IpAddressMatcher
org.springframework.security.web.util.matcher.IpAddressMatcher
org.springframework.security.web.util.RequestMatcherEditor
org.springframework.security.web.util.matcher.RequestMatcherEditor
org.springframework.security.web.util.RegexRequestMatcher
org.springframework.security.web.util.matcher.RegexRequestMatcher

WebSecurityExpressionHandler
WebSecurityExpressionHandler was removed in favor of using
SecurityExpressionHandler<FilterInvocation>.

This means you may have the following:

WebSecurityExpressionHandler handler = ...

This needs to be updated to:

SecurityExpressionHandler<FilterInvocation> handler = ...

You can implement WebSecurityExpressionHandler like so:

public class CustomWebSecurityExpressionHandler implements
WebSecurityExpressionHandler {
 ...
}

Then it must be updated to:

public class CustomWebSecurityExpressionHandler implements
SecurityExpressionHandler<FilterInvocation> {
 ...
}

Migration to Spring Security 4.2 Chapter 16

[450]

@AuthenticationPrincipal
org.springframework.security.web.bind.annotation.AuthenticationPrincipa

l has been deprecated in favor of
org.springframework.security.core.annotation.AuthenticationPrincipal.
For example:

import
org.springframework.security.web.bind.annotation.AuthenticationPrincipal;
// ...

@RequestMapping("/messages/inbox")
public ModelAndView findMessagesForUser(@AuthenticationPrincipal CustomUser
customUser) {
 // .. find messages for this user and return them ...
}

This should be replaced with:

import
org.springframework.security.core.annotation.AuthenticationPrincipal;
// ...

@RequestMapping("/messages/inbox")
public ModelAndView findMessagesForUser(@AuthenticationPrincipal CustomUser
customUser) {
 // .. find messages for this user and return them ...
}

Migrating default filter URLs
A number of servlet filters had their default URLs switched to help guard against
information leakage.

There were many URLs that were changed and the following commit contains 125 changed
files with 8,122 additions and 395 deletions: https:/ ​/​github. ​com/ ​spring- ​projects/
spring-​security/ ​commit/ ​c67ff42b8abe124b7956896c78e9aac896fd79d9.

https://github.com/spring-projects/spring-security/commit/c67ff42b8abe124b7956896c78e9aac896fd79d9
https://github.com/spring-projects/spring-security/commit/c67ff42b8abe124b7956896c78e9aac896fd79d9
https://github.com/spring-projects/spring-security/commit/c67ff42b8abe124b7956896c78e9aac896fd79d9
https://github.com/spring-projects/spring-security/commit/c67ff42b8abe124b7956896c78e9aac896fd79d9
https://github.com/spring-projects/spring-security/commit/c67ff42b8abe124b7956896c78e9aac896fd79d9
https://github.com/spring-projects/spring-security/commit/c67ff42b8abe124b7956896c78e9aac896fd79d9
https://github.com/spring-projects/spring-security/commit/c67ff42b8abe124b7956896c78e9aac896fd79d9
https://github.com/spring-projects/spring-security/commit/c67ff42b8abe124b7956896c78e9aac896fd79d9
https://github.com/spring-projects/spring-security/commit/c67ff42b8abe124b7956896c78e9aac896fd79d9
https://github.com/spring-projects/spring-security/commit/c67ff42b8abe124b7956896c78e9aac896fd79d9
https://github.com/spring-projects/spring-security/commit/c67ff42b8abe124b7956896c78e9aac896fd79d9
https://github.com/spring-projects/spring-security/commit/c67ff42b8abe124b7956896c78e9aac896fd79d9
https://github.com/spring-projects/spring-security/commit/c67ff42b8abe124b7956896c78e9aac896fd79d9
https://github.com/spring-projects/spring-security/commit/c67ff42b8abe124b7956896c78e9aac896fd79d9
https://github.com/spring-projects/spring-security/commit/c67ff42b8abe124b7956896c78e9aac896fd79d9
https://github.com/spring-projects/spring-security/commit/c67ff42b8abe124b7956896c78e9aac896fd79d9
https://github.com/spring-projects/spring-security/commit/c67ff42b8abe124b7956896c78e9aac896fd79d9
https://github.com/spring-projects/spring-security/commit/c67ff42b8abe124b7956896c78e9aac896fd79d9

Migration to Spring Security 4.2 Chapter 16

[451]

JAAS
Unfortunately, we did not have space to discuss Spring Security's JAAS integration.
However, there is a JAAS sample application included in the Spring Security samples at
https:/​/​docs.​spring. ​io/ ​spring- ​security/ ​site/ ​docs/ ​current/ ​reference/ ​htmlsingle/
#jaas-​sample. In fact, there is also excellent documentation about JAAS integration,
available in the Spring Security reference at https:/ ​/​docs. ​spring. ​io/ ​spring- ​security/
site/​docs/​current/ ​reference/ ​htmlsingle/ ​#jaas. When looking at the JAAS reference
documentation, you will notice that, from Spring Security 4.2 onwards, support was added
for using JAAS login modules with arbitrary JAAS configuration implementations. Spring
Security 4.2 also added the jaas-api-provision attribute to the <http> element, which
ensures that the JAAS Subject is populated for applications that may also rely on the JAAS
Subject.

Summary
This chapter reviewed the major and minor changes that you will find when upgrading an
existing Spring Security 3 project to Spring Security 4.2. In this chapter, we have reviewed
the significant enhancements to the framework that are likely to motivate an upgrade. We
also examined upgrade requirements, dependencies and common types of code, and
configuration changes that will prevent applications from working post-upgrade. We also
covered investigation (at a high level) of the overall code-reorganization changes that the
Spring Security authors made as part of codebase restructuring.

If this is the first chapter you've read, we hope that you return to the rest of the book and
use this chapter as a guide to allow your upgrade to Spring Security 4.2 to proceed as
smoothly as possible!

https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas-sample
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas-sample
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas-sample
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas-sample
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas-sample
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas-sample
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas-sample
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas-sample
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas-sample
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas-sample
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas-sample
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas-sample
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas-sample
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas-sample
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas-sample
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas-sample
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas-sample
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas-sample
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas-sample
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas-sample
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas-sample
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas-sample
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas-sample
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas-sample
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas-sample
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas-sample
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jaas

17
Microservice Security with

OAuth 2 and JSON Web
Tokens

In this chapter, we will take a look at microservices-based architectures and look at how
OAuth 2 with JSON Web Tokens (JWT) plays a role in securing microservices in a Spring-
based application.

The following is a list of topics that will be covered in this chapter:

The general difference between monolithic applications and microservices
Comparing service-oriented architectures (SOA) with microservices
The conceptual architecture of OAuth 2 and how it provides your services with
trustworthy client access
Types of OAuth 2 access tokens
Types of OAuth 2 grant types
Examining JWT and their general structure
Implementing a resource server and authentication server used to grant access
rights to clients in order to access OAuth 2 resources
Implementing a RESTful client to gain access to resources through an OAuth 2
grant flow

Microservice Security with OAuth 2 and JSON Web Tokens Chapter 17

[453]

We have quite a few items to cover in this chapter, but before we dig into the details of how
to start leveraging Spring Security to implement OAuth 2 and JWT, we first want to create a
baseline of the calendar application that does not have Thymeleaf or any other browser-
based user interface.

After removing all Thymeleaf configuration and resources, the various controllers have
been converted to JAX-RS REST controllers.

You should start with the code from chapter16.00-calendar.

What are microservices?
Microservices are an architectural approach that allows the development of physically
separated modular applications which are autonomous, enabling agility, rapid
development, continuous deployment, and scaling.

An application is built as a set of services, similar to SOA, such that services communicate
through standard APIs, for example, JSON or XML, and this allows the aggregation of
language-agnostic services. Basically, a service can be written in the best language for the
task the service is being created for.

Each service runs in its own process and is location neutral, thus it can be located anywhere
on the access network.

Monoliths
The microservices approach is the opposite of the traditional monolithic software approach,
which consists of tightly integrated modules that ship infrequently and have to scale as a
single unit. Traditional Java EE applications and the JBCP calendar application in this book
are examples of monolithic applications. Take a look at the following diagram which
depicts the monolithic architecture:

Microservice Security with OAuth 2 and JSON Web Tokens Chapter 17

[454]

Although the monolithic approach fits well for some organizations and some applications,
microservices is becoming popular with companies that need more options for agility and
scalability in their ecosystem.

Microservice Security with OAuth 2 and JSON Web Tokens Chapter 17

[455]

Microservices
A microservice architecture is a collection of small discrete services where each service
implements a specific business capability. These services run their own process and
communicate via an HTTP API usually using a RESTful service approach. These services
are created to serve only one specific business function, such as user management,
administrative roles, an e-commerce cart, a search engine, social media integration, and
many others. Take a look at the following diagram which depicts the microservices
architecture:

Each service can be deployed, upgraded, scaled, restarted, and removed independently of
other services in the application and other systems in the enterprise.

Microservice Security with OAuth 2 and JSON Web Tokens Chapter 17

[456]

Because each service is created independently of the other, they can each be written in
different programming languages and use different data storage. Centralized service
management is virtually non-existent and these services use lightweight HTTP, REST, or
Thrift APIs for communicating among themselves.

The Apache Thrift software framework can be downloaded from https:/
/​thrift. ​apache. ​org. It is a framework for developing scalable cross-
language services that combines a software stack with a code generation
engine to build services that work efficiently and seamlessly between C++,
Java, Python, PHP, Ruby, Erlang, Perl, Haskell, C#, Cocoa, JavaScript,
Node.js, Smalltalk, and other languages.

Service-oriented architectures
You might be asking yourself, "Isn’t this the same as SOA?" Not exactly, you could say
microservices achieve what SOA promised in the first place.

An SOA is a style of software design where services are exposed to other components
through a language-agnostic, communication protocol over a computer network.

The basic principle of SOA is to be independent of vendors, products, and technologies.

The definition of a service is a discrete unit of functionality that can be accessed remotely
and acted upon and updated independently, such as retrieving a credit card statement
online.

Although similar, SOA and microservices are still different types of architectures.

A typical SOA is often implemented inside deployment monoliths and is more platform
driven, while microservices can be independently deployable and, therefore, offer more
flexibility in all dimensions.

The key difference, of course, is the size; the word micro says it all. Microservices tend to be
significantly smaller than regular SOA services. As Martin Fowler said:

"We should think about SOA as a superset of microservices."

 —Martin Fowler

https://thrift.apache.org
https://thrift.apache.org
https://thrift.apache.org
https://thrift.apache.org
https://thrift.apache.org
https://thrift.apache.org
https://thrift.apache.org
https://thrift.apache.org

Microservice Security with OAuth 2 and JSON Web Tokens Chapter 17

[457]

Microservice security
Microservices can provide great flexibility but also introduce challenges that must be
addressed.

Service communication
Monolithic applications use in‑memory communication between processes, while
microservices communicate over the network. The move to network communication raises
issues of not only speed but also security.

Tight coupling
Microservices use many datastores rather than a few. This creates the opportunity for
implicit service contracts between microservices and services that are tightly coupled.

Technical complexity
Microservices can create additional complexity, which can create security gaps. If the team
does not have the correct experience, then managing these complexities can quickly become
unmanageable.

The OAuth 2 specification
There is sometimes a misconception that OAuth 2 is an evolution from OAuth 1, but it is a
completely different approach. OAuth1 specification requires signatures, so you would
have to use cryptographic algorithms to create generate and validate those signatures that
are no longer required for OAuth 2. The OAuth 2 encryption is now handled by TLS, which
is required.

Microservice Security with OAuth 2 and JSON Web Tokens Chapter 17

[458]

OAuth 2 RFC-6749, The OAuth 2.0 Authorization Framework (https:/ ​/
tools. ​ietf. ​org/ ​html/ ​rfc6749):
The OAuth 2.0 authorization framework enables a third-party application to
obtain limited access to an HTTP service, either on behalf of a resource owner by
orchestrating an approval interaction between the resource owner and the HTTP
service, or by allowing the third-party application to obtain access on its own
behalf.

This specification replaces and makes obsolate the OAuth 1.0 protocol
described in RFC 5849, The OAuth 1.0 Protocol (https:/ ​/​tools. ​ietf. ​org/
html/ ​rfc5849). ​

To properly understand how to utilize OAuth 2, we need to identify certain roles and the
collaboration between these roles. Let's define each of the roles that are participating in the
OAuth 2 authorization process:

Resource owner: The resource owner is the entity capable of granting access to a
protected resource that is located on a resource server
Authorization server: The authorization server is a centralized security gateway
for issuing access tokens to the client after successfully authenticating the
resource owner and obtaining authorization
Resource server: The resource server is the server hosting the protected resources
and is capable of dissecting and responding to protected resource requests using
the OAuth 2 access token
Microservice client: The client is the application making resource requests that
are protected on behalf of the resource owner, but with their authorization

Access tokens
An OAuth 2 access token, commonly referred to as access_token in code samples,
represents a credential that can be used by a client to access an API.

Access token
An access token usually has a limited lifetime and is used to enable the client to access
protected resources when including this token in the HTTP request header for each request.

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc5849
https://tools.ietf.org/html/rfc5849
https://tools.ietf.org/html/rfc5849
https://tools.ietf.org/html/rfc5849
https://tools.ietf.org/html/rfc5849
https://tools.ietf.org/html/rfc5849
https://tools.ietf.org/html/rfc5849
https://tools.ietf.org/html/rfc5849
https://tools.ietf.org/html/rfc5849
https://tools.ietf.org/html/rfc5849
https://tools.ietf.org/html/rfc5849
https://tools.ietf.org/html/rfc5849
https://tools.ietf.org/html/rfc5849

Microservice Security with OAuth 2 and JSON Web Tokens Chapter 17

[459]

Refresh token
A refresh token has a longer lifetime and is used to get a new access token once the access
token has expired, but without the need to send credentials to the server again.

Grant types
Grant types are methods that a client can use to gain an access token that represents the
permissions granted. There are different grant types that allow different types of access
based on the needs of your application. Each grant type can support a different OAuth 2
flow without worrying about the technical aspects of the implementation.

Authorization code
The authorization code grant type, defined in RFC 6749, Section 4.1 (https:/ ​/​tools. ​ietf.
org/​html/​rfc6749), is a redirection-based flow where the browser receives an authorization
code from anauthorization server and sends this to the client. The client will then interact
with the authorization server and exchange the authorization code for access_token and,
optionally, id_token and refresh_token. The client can now use this access_token to
call the protected resource on behalf of the user.

Implicit
The implicit grant type, defined in RFC 6749, Section 4.1 (https:/ ​/​tools. ​ietf. ​org/ ​html/
rfc6749), is similar to the authorization code grant type, but the client application receives
access_token directly, without the need for authorization_code. This happens
because the client application, which is usually a JavaScript application running within a
browser and is less trusted than a client application running on the server, cannot be trusted
with client_secret (which is required in the authorization code grant type). The implicit
grant type does not send a refresh token to the application due to limited trust.

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749

Microservice Security with OAuth 2 and JSON Web Tokens Chapter 17

[460]

Password credentials
The resource owner password grant type, defined in RFC 6749, Section 4.3 (https:/ ​/​tools.
ietf.​org/​html/​rfc6749), can be used directly as an authorization grant to obtain
access_token and, optionally, refresh_token. This grant is used when there is a high
degree of trust between the user and the client and when other authorization grant flows
are not available. This grant type eliminates the need for the client to store the user
credentials by exchanging the credentials with a long-lived access_token or
refresh_token.

Client credentials
The Client Credentials Grant's, defined in RFC 6749, Section 4.4 (https:/ ​/​tools. ​ietf. ​org/
html/​rfc6749#section- ​4. ​4), is for a non-interactive client (CLI), a daemon, or another
service running. The client can directly ask the authorization server for access_token by
using client-provided credentials (client id and client secret) to authenticate.

JSON Web Tokens
JWT is an open standard, RFC 7519 (https:/ ​/​tools. ​ietf. ​org/​html/ ​rfc7519) that defines
a compact and self-contained format for securely transmitting information between parties
in the form of a JSON object. This information can be verified and trusted because it is
digitally signed. JWTs can be signed using a secret (with the hash-based message
authentication code (HMAC) algorithm) or a public/private key pair using
the Rivest–Shamir–Adleman (RSA) encryption algorithm.

JWT RFC- 7519 (https:/ ​/​tools. ​ietf. ​org/ ​html/ ​ rfc7519):
JSON Web Token (JWT) is a compact, URL-safe means of representing claims to
be transferred between two parties. The claims in a JWT are encoded as a JSON
object that is used as the payload of a JSON Web Signature (JWS) structure or as
the plaintext of a JSON Web Encryption (JWE) structure, enabling the claims to
be digitally signed or integrity protected with a Message Authentication Code
(MAC) and/or encrypted.

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749#section-4.4
https://tools.ietf.org/html/rfc6749#section-4.4
https://tools.ietf.org/html/rfc6749#section-4.4
https://tools.ietf.org/html/rfc6749#section-4.4
https://tools.ietf.org/html/rfc6749#section-4.4
https://tools.ietf.org/html/rfc6749#section-4.4
https://tools.ietf.org/html/rfc6749#section-4.4
https://tools.ietf.org/html/rfc6749#section-4.4
https://tools.ietf.org/html/rfc6749#section-4.4
https://tools.ietf.org/html/rfc6749#section-4.4
https://tools.ietf.org/html/rfc6749#section-4.4
https://tools.ietf.org/html/rfc6749#section-4.4
https://tools.ietf.org/html/rfc6749#section-4.4
https://tools.ietf.org/html/rfc6749#section-4.4
https://tools.ietf.org/html/rfc6749#section-4.4
https://tools.ietf.org/html/rfc6749#section-4.4
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/%20rfc7519
https://tools.ietf.org/html/%20rfc7519
https://tools.ietf.org/html/%20rfc7519
https://tools.ietf.org/html/%20rfc7519
https://tools.ietf.org/html/%20rfc7519
https://tools.ietf.org/html/%20rfc7519
https://tools.ietf.org/html/%20rfc7519
https://tools.ietf.org/html/%20rfc7519
https://tools.ietf.org/html/%20rfc7519
https://tools.ietf.org/html/%20rfc7519
https://tools.ietf.org/html/%20rfc7519
https://tools.ietf.org/html/%20rfc7519
https://tools.ietf.org/html/%20rfc7519

Microservice Security with OAuth 2 and JSON Web Tokens Chapter 17

[461]

JWT is used to carry information related to the identity and characteristics (claims) of the
client bearing the token. JWT is a container and is signed by the server in order to avoid
client tampering. This token is created during the authentication process and is verified by
the authorization server before any processing. It is used by a resource server to allow a
client to present a token representing its "identity card" to the resource server, and allows
the resource server to verify the validity and integrity of the token in a stateless, secure
manner.

Token structure
The structure of a JWT adheres to the following three-part structure including a header,
payload, and signature:

 [Base64Encoded(HEADER)] . [Base64Encoded (PAYLOAD)] .
[encoded(SIGNATURE)]

Encoded JWT
The following code snippet is the complete encoded access_token that is returned based
on the client request:

 eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE1MDk2MTA2ODks
 InVzZXJfbmFtZSI6InVzZXIxQGV4YW1wbGUuY29tIiwiYXV0aG9yaXRpZXMiOlsi
 Uk9MRV9VU0VSIl0sImp0aSI6Ijc1NTRhZGM4LTBhMjItNDBhYS05YjQ5LTU4MTU2N
 DBhNDUzNyIsImNsaWVudF9pZCI6Im9hdXRoQ2xpZW50MSIsInNjb3BlIjpb
Im9wZW5pZCJdfQ.iM5BqXj70ET1e5uc5UKgws1QGDv6NNZ4iVEHimsp1Pnx6WXuFwtpHQoerH_F
-
 pTkbldmYWOwLC8NBDHElLeDi1VPFCt7xuf5Wb1VHe-uwslupz3maHsgdQNGcjQwIy7_U-
 SQr0wmjcc5Mc_1BWOq3-pJ65bFV1v2mjIo3R1TAKgIZ091WG0e8DiZ5AQase
 Yy43ofUWrJEXok7kUWDpnSezV96PDiG56kpyjF3x1VRKPOrm8CZuylC57wclk-
 BjSdEenN_905sC0UpMNtuk9ENkVMOpa9_Redw356qLrRTYgKA-qpRFUpC-3g5
 CXhCDwDQM3jyPvYXg4ZW3cibG-yRw

Header
The encoded header for our access_token JWT is base64 encoded, as shown in the
following code:

 eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9

Microservice Security with OAuth 2 and JSON Web Tokens Chapter 17

[462]

By decoding the encoded header, we have the following payload:

 {
 "alg": "RS256",
 "typ": "JWT"
 }

Payload
The encoded payload for our access_token JWT is base64 encoded, as shown here:

 eyJleHAiOjE1MDk2MTA2ODksInVzZXJfbmFtZSI6InVzZXIxQGV4YW1wbGUuY29
 tIiwiYXV0aG9yaXRpZXMiOlsiUk9MRV9VU0VSIl0sImp0aSI6Ijc1NTR
 hZGM4LTBhMjItNDBhYS05YjQ5LTU4MTU2NDBhNDUzNyIsImNsaWVudF9pZCI6I
 m9hdXRoQ2xpZW50MSIsInNjb3BlIjpbIm9wZW5pZCJdfQ

By decoding the encoded payload, we have the following payload claims:

 {
 "exp": 1509610689,
 "jti": "7554adc8-0a22-40aa-9b49-5815640a4537",
 "client_id": "oauthClient1",
 "authorities": [
 "ROLE_USER"
],
 "scope": [
 "openid"
],
 "user_name": "user1@example.com"
 }

Signature
The encoded payload for our access_token has been encoded with a private key by the
authorization server, as seen in the following code:

 iM5BqXj70ET1e5uc5UKgws1QGDv6NNZ4iVEHimsp1Pnx6WXuFwtpHQoerH_F-
 pTkbldmYWOwLC8NBDHElLeDi1VPFCt7xuf5Wb1VHe-uwslupz3maHsgdQNGcjQwIy7_U-
 SQr0wmjcc5Mc_1BWOq3-
pJ65bFV1v2mjIo3R1TAKgIZ091WG0e8DiZ5AQaseYy43ofUWrJEXok7kUWDpn
 SezV96PDiG56kpyjF3x1VRKPOrm8CZuylC57wclk-
 BjSdEenN_905sC0UpMNtuk9ENkVMOpa9_Redw356qLrRTYgKA-qpRFUp
 C-3g5CXhCDwDQM3jyPvYXg4ZW3cibG-yRw

Microservice Security with OAuth 2 and JSON Web Tokens Chapter 17

[463]

The following is pseudo code for the creation of a JWT signature:

 var encodedString = base64UrlEncode(header) + ".";
 encodedString += base64UrlEncode(payload);
 var privateKey = “[-----PRIVATE KEY-----]”;
 var signature = SHA256withRSA(encodedString, privateKey);
 var JWT = encodedString + "." + base64UrlEncode(signature);

OAuth 2 support in Spring Security
The Spring Security OAuth project provides support for using Spring Security with OAuth
2 authorization using the standard Spring Framework and Spring Security programming
models and configuration idioms.

Resource owner
The resource owner can be one or multiple sources, and in the context of the JBCP calendar,
it is going to have the calendar application as the resource owner. The JBCP calendar will
not have any specific configuration that is needed to denote its ownership aside from
configuring the resource server.

Resource server
The @EnableResourceServer annotation denotes the intention for the containing
application to enable a Spring Security filter that authenticates requests via an incoming
OAuth2 token:

 //src/main/java/com/packtpub/springsecurity/configuration/
 OAuth2ResourceServerConfig.java

 @EnableResourceServer
 public class OAuth2ResourceServerConfig
 extends ResourceServerConfigurerAdapter {...}

Microservice Security with OAuth 2 and JSON Web Tokens Chapter 17

[464]

The @EnableResourceServer annotation denotes the intention for the containing
application to enable an OAuth2AuthenticationProcessingFilter filter that
authenticates requests via an incoming OAuth 2 token. The
OAuth2AuthenticationProcessingFilter filter requires web security to be enabled
using the @EnableWebSecurity annotation somewhere in the application. The
@EnableResourceServer annotation registers a custom
WebSecurityConfigurerAdapter class with a hardcoded @Order of 3. It is currently not
possible to change the order of this WebSecurityConfigurerAdapter class due to
technical limitations in the Spring Framework. To deal with this limitation, it is advised not
to use other security adapters with the order of 3, and Spring Security will complain in the
event that you do set one in the same order:

//o.s.s.OAuth
2.config.annotation.web.configuration.ResourceServerConfiguration.class

 @Configuration
 public class ResourceServerConfiguration
 extends WebSecurityConfigurerAdapter implements Ordered {
 private int order = 3;
 ...
 }

Authorization server
To enable the authorization server capability, we include the
@EnableAuthorizationServer annotation in our configuration. The addition of this
annotation will put an o.s.s.OAuth
2.provider.endpoint.AuthorizationEndpoint interface and an o.s.s.OAuth
2.provider.endpoint.TokenEndpoint interface into context. The developer will be
responsible for securing the AuthorizationEndpoint (/oauth/authorize) with
the @EnableWebSecurity configuration. The TokenEndpoint (/oauth/token) will be
automatically secured using HTTP basic authentication based on the OAuth 2 client
credentials:

 //src/main/java/com/packtpub/springsecurity/configuration/
 OAuth2AuthorizationServerConfig.java

 @Configuration
 @EnableAuthorizationServer
 public class OAuth 2AuthorizationServerConfig {...}

Microservice Security with OAuth 2 and JSON Web Tokens Chapter 17

[465]

RSA JWT access token converter keypair
In order to create a secure JWT encoded signature, we will create a custom RSA keystore
that we will use to create a custom o.s.s.OAuth
2.provider.token.storeJwtAccessTokenConverter interface:

$ keytool -genkey -alias jbcpOAuth 2client -keyalg RSA \
-storetype PKCS12 -keystore jwtConverterStore.p12 \
-storepass changeit \
-dname "CN=jwtAdmin1@example.com,OU=JBCP Calendar,O=JBCP,L=Park
City,S=Utah,C=US"

This will create a PKCS12 certificate called jwtConverterStore.p12, which needs to be
copied into the ./src/main/resources/key directory.

OAuth 2 resource configuration properties
We want to externalize the properties required to configure our JWT resources by providing
keyPair attributes, including keystore, alias, and storePassword for our generated
certificate, as you can see in our application.yml
file, src/main/resources/application.yml:

 # OAuth 2 Configuration:
 security:
 OAuth 2:
 # Resource Config:
 resource:
 jwt:
 keyPair:
 keystore: keys/jwtConverterStore.p12
 alias: jbcpOAuth 2client
 storePassword: changeit

OAuth 2 client configuration properties
We need to configure the client details for the client authentication, grants, and OAuth 2
scopes, as you can see in the application.yml
file, src/main/resources/application.yml:

OAuth 2 Configuration:
security:
OAuth 2:
 # Client Config:

Microservice Security with OAuth 2 and JSON Web Tokens Chapter 17

[466]

 client:
 # Basic Authentication credentials for OAuth 2
 clientId: oauthClient1
 clientSecret: oauthClient1Password
 authorizedGrantTypes: password,refresh_token
 scope: openid

JWT access token converter
The final step for creating JWT tokens is creating a custom JwtAccessTokenConverter
that will use the generated RSA certificate for our JWT signatures. To do this, we need to
pull our keyPair configuration and configure a custom JwtAccessTokenConverter as
seen in the OAuth2AuthorizationServerConfig.java file:

 //src/main/java/com/packtpub/springsecurity/configuration/
 OAuth2AuthorizationServerConfig.java

 public class OAuth2AuthorizationServerConfig {
 @Value("${security.OAuth 2.resource.jwt.keyPair.keystore}")
 private String keystore;
 @Value("${security.OAuth 2.resource.jwt.keyPair.alias}")
 private String keyPairAlias;
 @Value("${security.OAuth 2.resource.jwt.keyPair.storePassword}")
 private String keyStorePass;
 @Bean
 public JwtAccessTokenConverter jwtAccessTokenConverter() {
 JwtAccessTokenConverter converter = new
 JwtAccessTokenConverter();
 KeyPair keyPair = new KeyStoreKeyFactory
 (new ClassPathResource(keystore),
 keyStorePass.toCharArray()).getKeyPair(keyPairAlias);
 converter.setKeyPair(keyPair);
 return converter;
 }
 }

Microservice Security with OAuth 2 and JSON Web Tokens Chapter 17

[467]

The UserDetailsService object
We will use CalendarUser credentials to assign an authorized GrantedAuthority to the
client. In order to do this, we must either configure our CalendarUserDetailsService
class or qualify it with the name userDetailsService, as you can see in the following
CalendarUserDetailsService.java file:

 //src/main/java/com/packtpub/springsecurity/core/userdetails/
 CalendarUserDetailsService.java

 @Component("userDetailsService")
 public class CalendarUserDetailsService
 implements UserDetailsService {...}

Another alternative to defining a custom name for our @Component annotation is to define
an @Bean declaration, which we can accomplish using the following entry in our
SecurityConfig.java file:

//src/main/java/com/packtpub/springsecurity/configuration/SecurityConfig.ja
va

 @Bean
 public CalendarUserDetailsService userDetailsService
 (CalendarUserDao calendarUserDao) {
 return new CalendarUserDetailsService(calendarUserDao);
 }

Running the OAuth 2 server application
At this point, we can start the application and we will be ready to send OAuth 2 requests.

At this point, your code should look like this: chapter16.01-calendar.

Server requests
We can test the application with either a command-line tool such as cURL or HTTPie, or you
could also use a REST client plugin such as Postman to send requests to the server.

Microservice Security with OAuth 2 and JSON Web Tokens Chapter 17

[468]

HTTPie: a CLI, cURL-like tool for humans, HTTPie (pronounced aitch-tee-
tee-pie) is a command-line HTTP client. Its goal is to make CLI interaction
with web services as human-friendly as possible. It provides a simple
HTTP command that allows for sending arbitrary HTTP requests using a
simple and natural syntax, and displays colorized output. HTTPie can be
used for testing, debugging, and generally interacting with HTTP servers
(https:/ ​/​httpie. ​org).

Token requests
When we make the initial token request, we should get a successful response similar to the
following:

 $ http -a oauthClient1:oauthClient1Password -f POST
 localhost:8080/oauth/token
 grant_type=password username=user1@example.com password=user1
 HTTP/1.1 200
 Cache-Control: no-cache, no-store, max-age=0, must-revalidate
 Cache-Control: no-store
 Content-Type: application/json;charset=UTF-8
 Date: Thu, 09 Nov 2017 20:29:26 GMT
 Expires: 0
 Pragma: no-cache
 Pragma: no-cache
 Transfer-Encoding: chunked
 X-Application-Context: application:default
 X-Content-Type-Options: nosniff
 X-Frame-Options: DENY
 X-XSS-Protection: 1; mode=block
 {
 "access_token": "eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE1MT
 AzMDI1NjYsInVzZXJfbmFtZSI6InVzZXIxQGV4YW1wbGUuY29tIiwiYXV0aG9yaXRpZ
 XMiOlsiUk9MRV9VU0VSIl0sImp0aSI6ImYzNzYzMWI4LWI0OGEtNG
 Y1MC1iNGQyLTVlNDk1NTRmYzZjZSIsImNsaWVudF9pZCI6Im9hdXRoQ
 2xpZW50MSIsInNjb3BlIjpbIm9wZW5pZCJdfQ.d5I2ZFX9ia_43eeD5X3JO6i_uF1Zw-
 SaZ1CWbphQlYI3oCq6Xr9Yna5fvvosOZoWjb8pyo03EPVCig3mobhO6AF
 18802XOlBRx3qb0FGmHZzDoPw3naTDHlhE97ctlIFIcuJVqi34T60cvii
 uXmcE1tJ-H6-7AB04-wZl_WaucoO8-K39GvPyVabWBfSpfv0nbhh_XMNiB
 PnN8u5mqSKI9xGjYhjxXspRyy--
 zXx50Nqj1aYzxexy8Scawrtt2F87o1IesOodoPEQGTgVVieIilplwkMLhMvJfxhyMOt
 ohR63XOGBSI4dDz58z3zOlk9P3k2Uq5FmkqwNNkduKceSw","expires_in": 43199,
 "jti": "f37631b8-b48a-4f50-b4d2-5e49554fc6ce","refresh_token":
 "eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyX25hbWUiOiJ1c2VyM
 UBleGFtcGxlLmNvbSIsInNjb3BlIjpbIm9wZW5pZCJdLCJhdGkiOiJmMzc2MzF
 iOC1iNDhhLTRmNTAtYjRkMi01ZTQ5NTU0ZmM2Y2UiLCJleHAiOjE1MTI4NTEzNjYs

https://httpie.org
https://httpie.org
https://httpie.org
https://httpie.org
https://httpie.org
https://httpie.org
https://httpie.org

Microservice Security with OAuth 2 and JSON Web Tokens Chapter 17

[469]

 ImF1dGhvcml0aWVzIjpbIlJPTEVfVVNFUiJdLCJqdGkiOiJjODM2OGI4NS0xNTk5L
 TQ0NTgtODQ2Mi1iNGFhNDg1OGIzY2IiLCJjbGllbnRfaWQiOiJvYXV0aENsaWVudDEifQ.
 RZJ2GbEvcmFbZ3SVHmtFnSF_O2kv-
 TmN56tddW2GkG0gIRr612nN5DVlfWDKorrftmmm64x8bxuV2CcFx8Rm4SSWuoYv
 j4oxMXZzANqXWLwj6Bei4z5uvuu00g6PtJvy5Twjt7GWCvEF82PBoQL-
 bTM3RNSKmPnYPBwOGaRFTiSTdKsHCcbrg-
 H84quRKCjXTl7Q6l8ZUxAf1eqWlOYEhRiGHtoULzdOvL1_W0OoWrQds1EN5g
 AuoTTSI3SFLnEE2MYu6cNznJFgTqmVs1hYmX1hiXUhmCq9nwYpWei-
 bu0MaXCa9LRjDRl9E6v86vWJiBVzd9qQilwTM2KIvgiG7w", "scope": "openid",
 "token_type": "bearer"
 }

Specifically, we have been granted an access token that can be used in subsequent requests.
The following is the access_token that will be used as our bearer:

 eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE1MTAzMDI1
 NjYsInVzZXJfbmFtZSI6InVzZXIxQGV4YW1wbGUuY29tIiwiYXV0aG9yaXRpZXM
 iOlsiUk9MRV9VU0VSIl0sImp0aSI6ImYzNzYzMWI4LWI0OGEtNGY1MC1iNGQyL
 TVlNDk1NTRmYzZjZSIsImNsaWVudF9pZCI6Im9hdXRoQ2xpZW50MSIsInNjb
 3BlIjpbIm9wZW5pZCJdfQ.d5I2ZFX9ia_43eeD5X3JO6i_uF1Zw-
 SaZ1CWbphQlYI3oCq6Xr9Yna5fvvosOZoWjb8pyo03EPVCig3mobhO6AF18802XO
 lBRx3qb0FGmHZzDoPw3naTDHlhE97ctlIFIcuJVqi34T60cviiuXmcE1tJ-H6-7AB04-
wZl_WaucoO8-
 K39GvPyVabWBfSpfv0nbhh_XMNiBPnN8u5mqSKI9xGjYhjxXspRyy--
 zXx50Nqj1aYzxexy8Scawrtt2F87o1IesOodoPEQGTgVVieIilplwkMLhMvJfxhyMOto
 hR63XOGBSI4dDz58z3zOlk9P3k2Uq5FmkqwNNkduKceSw

Now we will take the access_token and use that token to initiate additional requests to
the server with the following format:

$ http localhost:8080/ "Authorization: Bearer [access_token]"

When adding the access_token we received in the first request, we should get the
following request:

 $ http localhost:8080/ 'Authorization: Bearer
 eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE1MTAzMD
 I1NjYsInVzZXJfbmFtZSI6InVzZXIxQGV4YW1wbGUuY29tIiwiYXV0aG9yaXRp
 ZXMiOlsiUk9MRV9VU0VSIl0sImp0aSI6ImYzNzYzMWI4LWI0OGEtNGY1MC1iNGQyLT
 VlNDk1NTRmYzZjZSIsImNsaWVudF9pZCI6Im9hdXRoQ2xpZW50MSIsInNjb3BlIjpb
 Im9wZW5pZCJdfQ.d5I2ZFX9ia_43eeD5X3JO6i_uF1Zw-
 SaZ1CWbphQlYI3oCq6Xr9Yna5fvvosOZoWjb8pyo03EPVCig3mobhO6AF18802XOl
 BRx3qb0FGmHZzDoPw3naTDHlhE97ctlIFIcuJVqi34T60cviiuXmcE1tJ-H6-7AB04-
wZl_WaucoO8-
 K39GvPyVabWBfSpfv0nbhh_XMNiBPnN8u5mqSKI9xGjYhjxXspRyy--
 zXx50Nqj1aYzxexy8Scawrtt2F87o1IesOodoPEQGTgVVieIilplwkMLhMvJf
 xhyMOtohR63XOGBSI4dDz58z3zOlk9P3k2Uq5FmkqwNNkduKceSw'
 HTTP/1.1 200

Microservice Security with OAuth 2 and JSON Web Tokens Chapter 17

[470]

 Cache-Control: no-cache, no-store, max-age=0, must-revalidate
 Content-Length: 55
 Content-Type: text/plain;charset=UTF-8
 Date: Thu, 09 Nov 2017 20:44:00 GMT
 Expires: 0
 Pragma: no-cache
 X-Application-Context: application:default
 X-Content-Type-Options: nosniff
 X-Frame-Options: DENY
 X-XSS-Protection: 1; mode=block

 {'message': 'welcome to the JBCP Calendar Application'}

We can continue to make subsequent requests with the same access_token, such as
retrieving the events for the current user:

 $ http localhost:8080/events/my 'Authorization: Bearer
 eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE1MTAzMDI1NjYsI
 nVzZXJfbmFtZSI6InVzZXIxQGV4YW1wbGUuY29tIiwiYXV0aG9yaXRpZXMiOlsiU
 k9MRV9VU0VSIl0sImp0aSI6ImYzNzYzMWI4LWI0OGEtNGY1MC1iNGQyLTVlNDk1NT
 RmYzZjZSIsImNsaWVudF9pZCI6Im9hdXRoQ2xpZW50MSIsInNjb3BlIjpbIm9wZW5pZ
 CJdfQ.d5I2ZFX9ia_43eeD5X3JO6i_uF1Zw-
 SaZ1CWbphQlYI3oCq6Xr9Yna5fvvosOZoWjb8pyo03EPVCig3mobhO6AF18802XO
 lBRx3qb0FGmHZzDoPw3naTDHlhE97ctlIFIcuJVqi34T60cviiuXmcE1tJ-H6-7AB04-
wZl_WaucoO8-
 K39GvPyVabWBfSpfv0nbhh_XMNiBPnN8u5mqSKI9xGjYhjxXspRyy--
zXx50Nqj1aYzxexy8Scawrtt2F87o1IesOodoPEQGTgVVieIilplwkMLhMvJfxhyMOtohR63
 XOGBSI4dDz58z3zOlk9P3k2Uq5FmkqwNNkduKceSw'
 HTTP/1.1 200
 Cache-Control: no-cache, no-store, max-age=0, must-revalidate
 Content-Type: application/json;charset=UTF-8
 Date: Thu, 09 Nov 2017 20:57:17 GMT
 Expires: 0
 Pragma: no-cache
 Transfer-Encoding: chunked
 X-Application-Context: application:default
 X-Content-Type-Options: nosniff
 X-Frame-Options: DENY
 X-XSS-Protection: 1; mode=block
 {
 "currentUser": [
 {
 "description": "This is going to be a great birthday",
 "id": 100,
 "summary": "Birthday Party",

Microservice Security with OAuth 2 and JSON Web Tokens Chapter 17

[471]

 "when": 1499135400000
 }
]
 }

Now that we have our OAuth 2 server ready to issue access_tokens for clients, we now
can create a microservices client to interact with our system.

Microservices client
We start our new client application by enabling this application as an OAuth 2 client with
the addition of the @EnableOAuth2Client annotation. The addition of the
@EnableOAuth2Client annotation will allow this application to retrieve and use
authorization code grants from one or more OAuth2 authorization server. Client
applications that use client credential grants do not need AccessTokenRequest or the
scoped RestOperations (the state is global for the applications), but they should still use
the filter to trigger OAuth2RestOperations to obtain a token when necessary.
Applications that use password grants need to set the authentication properties in
OAuth2ProtectedResourceDetails before using the RestOperations method, which
we will configure shortly. Let's take a look at the following steps and see how it is done:

We need to set up a few properties that will be used to configure the client, as1.
shown in the following JavaConfig.java file:

//src/main/java/com/packtpub/springsecurity/configuration/JavaC
onfig.java

 @Configuration
 @EnableOAuth 2Client
 public class JavaConfig {
 @Value("${oauth.token.uri}")
 private String tokenUri;
 @Value("${oauth.resource.id}")
 private String resourceId;
 @Value("${oauth.resource.client.id}")
 private String resourceClientId;
 @Value("${oauth.resource.client.secret}")
 private String resourceClientSecret;
 @Value("${oauth.resource.user.id}")
 private String resourceUserId;
 @Value("${oauth.resource.user.password}")
 private String resourceUserPassword;
 @Autowired
 private DataSource dataSource;

Microservice Security with OAuth 2 and JSON Web Tokens Chapter 17

[472]

 ...
 }

In addition to several standard properties we need to execute the OAuth 22.
RESTful operations, we also need to create a dataSource to
hold oauth_client_token that will be retrieved upon the initial request, then
used in subsequent operations for a given resource. Now let's
create ClientTokenServices for managing oauth_client_token, as shown
in the following JavaConfig.java file:

//src/main/java/com/packtpub/springsecurity/configuration/JavaC
onfig.java

 @Bean
 public ClientTokenServices clientTokenServices() {
 return new JdbcClientTokenServices(dataSource);
 }

Now we create the OAuth2RestTemplate that will manage the OAuth23.
communication. We will start by creating a
ResourceOwnerPasswordResourceDetails to hold the resource connection
details, then construct an OAuth2RestTemplate to be used as an
OAuth2RestOperations for the client request:

//src/main/java/com/packtpub/springsecurity/configuration/J
avaConfig.java

@Bean
public OAuth2RestOperationsOAuth2RestOperations() {
 ResourceOwnerPasswordResourceDetails resource =
 new
ResourceOwnerPasswordResourceDetails();
 resource.setAccessTokenUri(tokenUri);
 resource.setId(resourceId);
 resource.setClientId(resourceClientId);
 resource.setClientSecret(resourceClientSecret);
 resource.setGrantType("password");
 resource.setScope(Arrays.asList("openid"));
 resource.setUsername(resourceUserId);
 resource.setPassword(resourceUserPassword);
 return new OAuth 2RestTemplate(resource);
}

Microservice Security with OAuth 2 and JSON Web Tokens Chapter 17

[473]

Configuring the OAuth 2 client
Now that we have enabled our @EnableOAuth2Client annotation and set up a
ResourceOwnerPasswordResourceDetails object, we need to configure the properties
used to connect to the resource server and authentication server:

 //src/main/resources/application.yml

 oauth:
 url: ${OAUTH_URL:http://localhost:8080}
 token:
 uri: ${OAUTH_URL:http://localhost:8080}/oauth/token
 resource:
 id: microservice-test
 # Client BASIC Authentication for Authentication Server
 client:
 id: ${OAUTH_CLIENT_ID:oauthClient1}
 secret: ${OAUTH_CLIENT_SECRET:oauthClient1Password}
 # Resource Password Credentials
 user:
 id: ${OAUTH_USER_ID:user1@example.com}
 password: ${OAUTH_USER_PASSWORD:user1}

We now have the pieces in place and can start making requests with the
OAuth2RestOperations object. We will start by creating RestController to pull remote
details and display them as a result of RESTful requests, as shown in our
OAuth2EnabledEventsController.java file:

 //src/main/java/com/packtpub/springsecurity/web/controllers/
 OAuth2EnabledEventsController.java

 @RestController
 public class OAuth2EnabledEventsController {
 @Autowired
 private OAuth2RestOperations template;
 @Value("${base.url:http://localhost:8888}")
 private String baseUrl;
 @Value("${oauth.url:http://localhost:8080}")
 private String baseOauthUrl;
 @GetMapping("/events/my")
 public String eventsMy() {
 @SuppressWarnings("unchecked")
 String result = template.getForObject(baseOauthUrl+"/events/my",
 String.class);
 return result;
 }
 }

Microservice Security with OAuth 2 and JSON Web Tokens Chapter 17

[474]

We now should have the same codebase for a client application.

Your code should look like chapter16.01-calendar-client.

We need to ensure that the chapter16.01-calendar application is running and ready to
take OAuth 2 requests from clients. We can then start the chapter16.01-calendar-
client application, which will expose several RESTful endpoints, including one to access
the configured user events located at /events/my on the remote resource, and will return
the following result by running http://localhost:8888/events/my:

 {
 "currentUser": [
 {
 "id": 100,
 "summary": "Birthday Party",
 "description": "This is going to be a great birthday",
 "when": 1499135400000
 }
]
 }

Summary
In this chapter, you learned the general difference between monolithic applications and
microservices and compared SOA with microservices. You also learned the conceptual
architecture of OAuth 2 and how it provides your services with trustworthy client access,
and learned about the types of OAuth 2 access tokens and the types of OAuth 2 grant types.

We examined the JWT and their general structure, implemented a resource server and
authentication server used to grant access rights to clients in order to access OAuth 2
resources, and implemented a RESTful client to gain access to resources through an OAuth
2 grant flow.

Additional Reference Material
In this appendix, we will cover some reference material that we feel is helpful (and largely
undocumented) but too comprehensive to insert in the chapters.

Getting started with the JBCP calendar
sample code
As we described in Chapter 1, Anatomy of an Unsafe Application, we have assumed, that you
have installed a JDK. You can download a JDK from Oracle's website http:/​/​www.​oracle.
com/​technetwork/​java/​javase/​downloads/​index.​html. You will need to have JDK 8
installed in order run the code samples. The codebase uses many JDK 8 features that are not
compatible with JDK 7, and there has not been an attempt to sort out various JDK 9 issues
with the IDEs as well as project dependencies.

Gradle Build Tool
All of the code in this book has been built using the Gradle Build Tool and is organized in a
chapter-by-chapter multimodule build. You can find instructions and options for getting
Gradle locally at https:/​/​gradle.​org/​install/​.

A local installation of Gradle is not required as the root of the source code already has the
Gradle wrapper installed. The Gradle wrapper can be installed in any submodule. You can
find additional information about the Gradle wrapper at https:/​/​docs.​gradle.​org/
current/​userguide/​gradle_​wrapper.​html.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://gradle.org/install/
https://gradle.org/install/
https://gradle.org/install/
https://gradle.org/install/
https://gradle.org/install/
https://gradle.org/install/
https://gradle.org/install/
https://gradle.org/install/
https://gradle.org/install/
https://gradle.org/install/
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://docs.gradle.org/current/userguide/gradle_wrapper.html

Additional Reference Material Appendix

[476]

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http:/​/​www.​packtpub.​com. If you
purchased this book from elsewhere, you can visit http:/​/​www.​packtpub.
com/​support and register to have the files emailed directly to you.

Gradle IDE plugins
The codebase has been configured with the IntelliJ and Eclipse IDE plugin. This means
Gradle can create all of the necessary IDE project files instead of manually importing the
codebase, although you are not forced to use these plugins.

To use these plugins, open a Terminal or Command Prompt window to the root of the
codebase. To execute the plugin, issue the following command on OSX or Linux:

$./gradlew idea

After running this task, there will be several IDEA project files in each directory, as shown
in the following screenshot:

If you are on a Windows machine, you will issue the following command:

C:\jbcdcalendar> gradlew.bat idea

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Additional Reference Material Appendix

[477]

The previous examples execute the gradlew script, which is the Gradle wrapper, and then
give the command for the IDE files to create. IntelliJ project files are created with the idea
task, and STS or any Eclipse-based IDE’s project files are created with the eclipse task.

After running the Eclipse task, there will be several Eclipse project files and directories in
each directory:

IntelliJ IDEA
Most of the diagrams used in this book were taken from IntelliJ IDEA from Jet Brains
(https:/​/​www.​jetbrains.​com/​idea/​). IDEA has a wonderful support for multimodule
Gradle builds.

IDEA will allow you to import an existing project, or you can simply open the
build.gradle file from the root of the source code base and IDEA will create the necessary
project files for you.

https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/

Additional Reference Material Appendix

[478]

Once you have created the IDEA project files with the Gradle idea task, you can import the
entire project using the Import Project option, as shown in the following screenshot:

Then, you will be prompted to select various options for how IDEA will execute this Gradle
build, as shown in the following screenshot:

Additional Reference Material Appendix

[479]

A special note for IDEA importing of Gradle projects
In the previous listing, you will notice that there is an option to use Gradle
wrapper task configuration, versus the option that was selected, which is
to use the default Gradle wrapper (recommended) option. The only
difference is the use of the Gradle wrapper task configuration option,
which will create a Gradle wrapper instance in each and every project
directory. This will be helpful if you want to execute build commands on a
Terminal or command line and not have to install a local version of
Gradle. Otherwise, IDEA handles the Gradle wrapper calls for all projects.

Additional Reference Material Appendix

[480]

Once the project is imported, you will be able to work with any of the chapters, and the
layout will look as shown in the following screenshot:

Additional Reference Material Appendix

[481]

Spring Tool Suite or Eclipse
If using STS, we assume that you have access to Spring Tool Suite (STS) 3.9.1. You can
download STS from https:/​/​spring.​io/​tools/​sts. STS version 3.9.1 is based on Eclipse
Oxygen 1a (4.7.1a) and you can find more information about the Oxygen release at https:/
/​www.​eclipse.​org/​ide/​.

Creating a new workspace
It is best to create a fresh workspace in order to minimize discrepancies with your
environment, which can be done by performing the following steps:

When you first open STS, it will prompt you for the workspace location. If you1.
were previously using STS, you may need to go to File | Switch Workspace |
Other to create a new workspace. We recommend entering a workspace location
that does not contain any spaces. For example, take a look at the following
screenshot:

https://spring.io/tools/sts
https://spring.io/tools/sts
https://spring.io/tools/sts
https://spring.io/tools/sts
https://spring.io/tools/sts
https://spring.io/tools/sts
https://spring.io/tools/sts
https://spring.io/tools/sts
https://spring.io/tools/sts
https://spring.io/tools/sts
https://spring.io/tools/sts
https://www.eclipse.org/ide/
https://www.eclipse.org/ide/
https://www.eclipse.org/ide/
https://www.eclipse.org/ide/
https://www.eclipse.org/ide/
https://www.eclipse.org/ide/
https://www.eclipse.org/ide/
https://www.eclipse.org/ide/
https://www.eclipse.org/ide/
https://www.eclipse.org/ide/
https://www.eclipse.org/ide/

Additional Reference Material Appendix

[482]

Once you have created a new workspace, you will want to exit the welcome2.
screen by clicking on the close button on the Welcome tab, as shown in the
following screenshot:

A sample code structure
The sample code is structured in a .zip file and contains folders of a multimodule Gradle
project. Each folder is named chapterNN, where NN is the chapter number. Each
chapterNN folder has additional folders containing each milestone project with the format
chapterNN.mm-calendar, where NN is the chapter number and mm is the milestone within
that chapter. For simplicity, we recommend that you extract the source to a path that does
not contain any spaces. Each milestone is a checkpoint within the chapter and allows you to
easily compare your code with the book's code. For example, chapter02.03-calendar
contains the milestone number 03 within Chapter 2, Getting Started with Spring Security, of
the calendar application. The location of the preceding project would be
~/jbcpcalendar/chapter02/chapter02.03-calendar.

Additional Reference Material Appendix

[483]

Chapter 1, Anatomy of an Unsafe Application, and Chapter 2, Getting Started with Spring
Security, have been created as Spring IO projects, not using Spring Boot as a project base.
Chapter 3, Custom Authentication, converted the calendar project to a Spring Boot codebase,
and in Chapter 5, Authentication with Spring Data, JDBC was replaced with Spring Data as
the persistence mechanism.

In order to keep each chapter as independent as possible, most chapters in the book are
built off of Chapter 9, Opening up to OpenID, or Chapter 15, Additional Spring Security
Features. This means that, in most cases, you can read through Chapter 9, Opening up to
OpenID, and then skip around to the other parts of the book. However, this also means that
it is important to start each chapter with the chapter's milestone 00 source code rather than
continuing to work on the code from the previous chapter. This ensures that your code
starts in the same place that the chapter does.

While you can get through the entire book without performing any of the steps, we
recommend starting each chapter with milestone 00 and implementing the steps in the
book. This will ensure that you get the most out of the book. You can use the milestone
versions to copy large portions of code or to compare your code if you run into problems.

Importing the samples
Before we can import this Gradle project into Eclipse, you must install a Gradle plugin from
the Eclipse marketplace. There are only two options at the time of writing this book. One is
the Gradle IDE pack (http:/​/​marketplace.​eclipse.​org/​content/​gradle-​ide-​pack), but
this project is not being maintained, and if you do install this plugin, Eclipse will warn you
and suggest that you migrate to the Buildship Gradle Integration plugin (http:/​/
marketplace.​eclipse.​org/​content/​buildship-​gradle-​integration). Once installed, you
will have an option to import an existing Gradle project.

http://marketplace.eclipse.org/content/gradle-ide-pack
http://marketplace.eclipse.org/content/gradle-ide-pack
http://marketplace.eclipse.org/content/gradle-ide-pack
http://marketplace.eclipse.org/content/gradle-ide-pack
http://marketplace.eclipse.org/content/gradle-ide-pack
http://marketplace.eclipse.org/content/gradle-ide-pack
http://marketplace.eclipse.org/content/gradle-ide-pack
http://marketplace.eclipse.org/content/gradle-ide-pack
http://marketplace.eclipse.org/content/gradle-ide-pack
http://marketplace.eclipse.org/content/gradle-ide-pack
http://marketplace.eclipse.org/content/gradle-ide-pack
http://marketplace.eclipse.org/content/gradle-ide-pack
http://marketplace.eclipse.org/content/gradle-ide-pack
http://marketplace.eclipse.org/content/gradle-ide-pack
http://marketplace.eclipse.org/content/gradle-ide-pack
http://marketplace.eclipse.org/content/gradle-ide-pack
http://marketplace.eclipse.org/content/gradle-ide-pack
http://marketplace.eclipse.org/content/buildship-gradle-integration
http://marketplace.eclipse.org/content/buildship-gradle-integration
http://marketplace.eclipse.org/content/buildship-gradle-integration
http://marketplace.eclipse.org/content/buildship-gradle-integration
http://marketplace.eclipse.org/content/buildship-gradle-integration
http://marketplace.eclipse.org/content/buildship-gradle-integration
http://marketplace.eclipse.org/content/buildship-gradle-integration
http://marketplace.eclipse.org/content/buildship-gradle-integration
http://marketplace.eclipse.org/content/buildship-gradle-integration
http://marketplace.eclipse.org/content/buildship-gradle-integration
http://marketplace.eclipse.org/content/buildship-gradle-integration
http://marketplace.eclipse.org/content/buildship-gradle-integration
http://marketplace.eclipse.org/content/buildship-gradle-integration
http://marketplace.eclipse.org/content/buildship-gradle-integration
http://marketplace.eclipse.org/content/buildship-gradle-integration
http://marketplace.eclipse.org/content/buildship-gradle-integration

Additional Reference Material Appendix

[484]

Starting with our fresh workspace, perform the following steps:

Go to File | Import and select Existing Gradle Project, as shown in the following1.
screenshot:

Additional Reference Material Appendix

[485]

Click on Next >, as shown in the following screenshot:2.

Additional Reference Material Appendix

[486]

Click on Next > as shown in the following screenshot:3.

Make sure that you keep the defaults unless you want to use a local installation of
Gradle.

Additional Reference Material Appendix

[487]

Browse to the location you exported the code to and select the parent folder of the4.
code. You will see all of the projects listed. You can select the projects you are
interested in or leave all of the projects selected. If you decide to import all of the
projects, you can easily focus on the current chapter since the naming
conventions will ensure that the projects are sorted in the order that they are
presented in the book:

Additional Reference Material Appendix

[488]

Click on Finish. All of the selected projects will be imported. If you have not used5.
Gradle frequently, it will take a while to download your dependencies.

An internet connection is required to download the dependencies.

Updated instructions for running the projects will be found in the README.md files in each
section. This ensures that, as updates are made to STS, the code can still be built and run
with the latest tools.

Running the samples
There are a few things that are necessary in order to run the sample applications within
IDEA or STS. In all of the projects, a Tomcat plugin has been configured in Gradle to run the
embedded instance to help you get started faster.

Starting the samples within IDEA
Running milestone projects can be done by creating a Run/Debug Configuration entry
for each project.

Starting with our fresh workspace, perform the following steps:

Go to File | Run and select Edit Configurations..., as shown in the following1.
screenshot:

Additional Reference Material Appendix

[489]

You will be presented with options to add new configurations. Select the plus (+)2.
sign in the upper-left corner to choose a new Gradle configuration, as shown in
the following screenshot:

Now, you can give it a name like chapter15.00 (bootRun) and select the3.
actual milestone directory for this configuration. Finally, enter bootRun under
the Tasks option to execute, as shown in the following screenshot:

Additional Reference Material Appendix

[490]

Select the configuration you want to execute; click on the green run button or use4.
the Shift + F10 key, as shown in the following screenshot:

Gradle tasks
In Chapter 1, Anatomy of an Unsafe Application, and Chapter 2, Getting Started with Spring
Security, the Gradle task to run the project will be tomcatRun. For the rest of the chapters in
the book, Spring Boot has been used, and the Gradle task to start the project will be
bootRun.

Starting the samples within STS
In STS, a run configuration is also created and the same information needs to be included
for each milestone project to run, as depicted in the following screenshot:

Additional Reference Material Appendix

[491]

Using HTTPS within STS
Some of the chapters' sample code (that is, Chapter 8, Client Certificate Authentication with
TLS, Chapter 9, Opening up to OAuth2, and Chapter 10, Single Sign-On with the Central
Authentication Service) requires the use of HTTPS in order for the sample code to work.

All of the projects have been configured to run HTTPS; most of the configuration is
managed in properties or YAM files.

Now, when you run the sample code on the embedded Tomcat server from Gradle, you can
connect to http://localhost:8080 or to https://localhost:8443.

HTTPS setup in Tomcat
In this section, we outline how to set up HTTPS in Tomcat to provide TLS to our
application. All of the included projects are running in an embedded Tomcat instance, but
we will cover the certificate creation process as well as some tips for running these
applications in a standalone Tomcat instance.

Generating a server certificate
If you do not already have a certificate, you must first generate one. If you wish, you can
skip this step and use the tomcat.keystore file, which contains a certificate that is located
in the etc directory in the book's sample source. Enter the following command lines at the
Command Prompt:

$ keytool -genkey -alias jbcpcalendar -keypass changeit -keyalg RSA \
-keystore tomcat.keystore
Enter keystore password: changeit
Re-enter new password: changeitWhat is your first and last name? [Unknown]:
localhost
What is the name of your organizational unit? [Unknown]: JBCP Calendar
What is the name of your organization? [Unknown]: JBCP
What is the name of your City or Locality? [Unknown]: Anywhere
What is the name of your State or Province? [Unknown]: UT
What is the two-letter country code for this unit? [Unknown]: US
Is CN=localhost, OU=JBCP Calendar, O=JBCP, L=Anywhere, ST=UT, C=US correct?
[no]: yes

Additional Reference Material Appendix

[492]

Most of the values are self-explanatory, but you will want to ensure that the answer to
"What is your first and last name?" is the host that you will be accessing your web
application from. This is necessary to ensure that the SSL handshake will succeed.

You should now have a file in the current directory named tomcat.keystore. You can
view its contents using the following command from within the same directory:

$ keytool -list -v -keystore tomcat.keystore
Enter keystore password: changeit
Keystore type: JKS
Keystore provider: SUN
...
Alias name: jbcpcalendar
...
Owner: CN=localhost, OU=JBCP Calendar, O=JBCP, L=Anywhere, ST=UT, C=US
Issuer: CN=localhost, OU=JBCP Calendar, O=JBCP, L=Anywhere, ST=UT, C=US

As you may have guessed, it is insecure to use changeit as a password, as this is the
default password used with many JDK implementations. In a production environment, you
should use a secure password rather than something as simple as changeit.

For additional information about the keytool command, refer to the documentation found
on Oracle's website at https:/​/​docs.​oracle.​com/​javase/​9/​tools/​keytool.​htm. If you are
having issues, you might also find the CAS SSL Troubleshooting and Reference Guide helpful
(https:/​/​apereo.​github.​io/​cas/​5.​1.​x/​installation/​Troubleshooting-​Guide.​html).

Configuring Tomcat connector to use SSL
In this section, we will discuss how to configure a Tomcat 8.5 connector to SSL by
performing the following steps:

Open the server.xml file that was included with the download of1.
Tomcat 8.5. You can find this in the conf directory of your Tomcat server's home
directory. Find the following entry in your server.xml file:

 <!--
 <Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"
maxThreads="150"
 scheme="https" secure="true" clientAuth="false" sslProtocol="TLS" />

https://docs.oracle.com/javase/9/tools/keytool.htm
https://docs.oracle.com/javase/9/tools/keytool.htm
https://docs.oracle.com/javase/9/tools/keytool.htm
https://docs.oracle.com/javase/9/tools/keytool.htm
https://docs.oracle.com/javase/9/tools/keytool.htm
https://docs.oracle.com/javase/9/tools/keytool.htm
https://docs.oracle.com/javase/9/tools/keytool.htm
https://docs.oracle.com/javase/9/tools/keytool.htm
https://docs.oracle.com/javase/9/tools/keytool.htm
https://docs.oracle.com/javase/9/tools/keytool.htm
https://docs.oracle.com/javase/9/tools/keytool.htm
https://docs.oracle.com/javase/9/tools/keytool.htm
https://docs.oracle.com/javase/9/tools/keytool.htm
https://docs.oracle.com/javase/9/tools/keytool.htm
https://docs.oracle.com/javase/9/tools/keytool.htm
https://docs.oracle.com/javase/9/tools/keytool.htm
https://docs.oracle.com/javase/9/tools/keytool.htm
https://docs.oracle.com/javase/9/tools/keytool.htm
https://docs.oracle.com/javase/9/tools/keytool.htm
https://apereo.github.io/cas/5.1.x/installation/Troubleshooting-Guide.html
https://apereo.github.io/cas/5.1.x/installation/Troubleshooting-Guide.html
https://apereo.github.io/cas/5.1.x/installation/Troubleshooting-Guide.html
https://apereo.github.io/cas/5.1.x/installation/Troubleshooting-Guide.html
https://apereo.github.io/cas/5.1.x/installation/Troubleshooting-Guide.html
https://apereo.github.io/cas/5.1.x/installation/Troubleshooting-Guide.html
https://apereo.github.io/cas/5.1.x/installation/Troubleshooting-Guide.html
https://apereo.github.io/cas/5.1.x/installation/Troubleshooting-Guide.html
https://apereo.github.io/cas/5.1.x/installation/Troubleshooting-Guide.html
https://apereo.github.io/cas/5.1.x/installation/Troubleshooting-Guide.html
https://apereo.github.io/cas/5.1.x/installation/Troubleshooting-Guide.html
https://apereo.github.io/cas/5.1.x/installation/Troubleshooting-Guide.html
https://apereo.github.io/cas/5.1.x/installation/Troubleshooting-Guide.html
https://apereo.github.io/cas/5.1.x/installation/Troubleshooting-Guide.html
https://apereo.github.io/cas/5.1.x/installation/Troubleshooting-Guide.html
https://apereo.github.io/cas/5.1.x/installation/Troubleshooting-Guide.html
https://apereo.github.io/cas/5.1.x/installation/Troubleshooting-Guide.html
https://apereo.github.io/cas/5.1.x/installation/Troubleshooting-Guide.html
https://apereo.github.io/cas/5.1.x/installation/Troubleshooting-Guide.html
https://apereo.github.io/cas/5.1.x/installation/Troubleshooting-Guide.html
https://apereo.github.io/cas/5.1.x/installation/Troubleshooting-Guide.html
https://apereo.github.io/cas/5.1.x/installation/Troubleshooting-Guide.html
https://apereo.github.io/cas/5.1.x/installation/Troubleshooting-Guide.html
https://apereo.github.io/cas/5.1.x/installation/Troubleshooting-Guide.html
https://apereo.github.io/cas/5.1.x/installation/Troubleshooting-Guide.html

Additional Reference Material Appendix

[493]

Uncomment the connector and modify the value of the keystoreFile attribute2.
to be the location of the keystore from the previous section. Also, ensure that you
update the value of the keystorePass attribute to be the password used when
generating the keystore. An example is shown in the following code snippet, but
ensure that you update the values of both keystoreFile and keystorePass:

 <Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"
maxThreads="150"
 scheme="https" secure="true" clientAuth="false" sslProtocol="TLS"
 keystoreFile="/home/mickknutson/packt/etc/tomcat.keystore"
 keystorePass="changeit"/>

You should now be able to start Tomcat and access it at3.
https://locahost:8443/. For more information on configuring SSL on
Tomcat, refer to the SSL Configuration How-To at http:/​/​tomcat.​apache.​org/
tomcat-​8.​5-​doc/​ssl-​howto.​html.

Basic Tomcat SSL termination guide
This section is intended to help set up Tomcat to use SSL when using an SSL termination.
The idea is that an external entity, such as a load balancer, manages the SSL connection
instead of Tomcat. This means that the connection from the client (that is, the web browser)
to the load balancer is over HTTPS and is secured. The connection from the load balancer to
Tomcat is over HTTP and insecure. For this sort of setup to provide any layer of security,
the connection from the load balancer to Tomcat should be over a private network.

The problem this setup causes is that Tomcat will now believe that the client is using HTTP
and thus redirects will be sent as though there is an HTTP connection. To get around this,
you can modify the configuration to instruct Tomcat that it is behind a proxy server.

The following example is a complete connector that will be used for Tomcat deployments
that employ client certificate authentication:

 //server.xml

 <Connector
 scheme="https"
 secure="true"
 proxyPort="443"
 proxyHost="example.com"
 port="8443"
 protocol="HTTP/1.1"

http://tomcat.apache.org/tomcat-8.5-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/ssl-howto.html

Additional Reference Material Appendix

[494]

 redirectPort="443"
 maxThreads="750"
 connectionTimeout="20000" />

The server.xml file can be found at TOMCAT_HOME/conf/server.xml. If you are
interacting with Tomcat using Eclipse or Spring Tool Suite, you will find a project named
Servers that contains the server.xml file. For example, if you are using Tomcat 8.5, the
path in your Eclipse workspace might look similar to /Servers/Tomcat v8.5 Server at
localhost-config/server.xml.

Note that there is no reference to a keystore because Tomcat does not manage the SSL
connection. This setup will override the HttpServletRequest object to believe that the
connection is HTTPS so that redirects are performed correctly. However, it will continue to
accept HTTP connections. If the client can make an HTTP connection as well, a separate
connector can be created—one that does not include the HTTPS setup. The proxy server can
then send requests to the appropriate connector depending on whether the original request
was HTTP or HTTPS.

For more information, refer to the Tomcat Proxy How To documentation at
http:/​/​tomcat.​apache.​org/​tomcat-​8.​5-​doc/​proxy-​howto.​html. If you are working with a
different application, you can refer to their documentation for working with proxy servers.

Supplementary materials
This section contains a listing of additional resources to technologies and concepts that are
used throughout the book:

Java Development Kit Downloads: Refer to http:/​/​www.​oracle.​com/
technetwork/​java/​javase/​downloads/​index.​html for downloading the JDK.
MVC Architecture: Refer to https:/​/​en.​wikipedia.​org/​wiki/
Model%E2%80%93view%E2%80%93controller.
Spring Security site: Refer to https:/​/​projects.​spring.​io/​spring-​security/​.
You can find links to the Spring Security Javadoc, downloads, source code, and
reference from at this link.
Spring Framework: Refer to https:/​/​projects.​spring.​io/​spring-​framework/​.
You can find links to the Spring Framework Javadoc, downloads, source code,
and reference from this link.
Spring Boot: Refer to https:/​/​projects.​spring.​io/​spring-​boot/​. You can find
links to the Spring Boot Javadoc, downloads, source code, and reference from this
link.

http://tomcat.apache.org/tomcat-8.5-doc/proxy-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/proxy-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/proxy-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/proxy-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/proxy-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/proxy-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/proxy-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/proxy-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/proxy-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/proxy-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/proxy-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/proxy-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/proxy-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/proxy-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/proxy-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/proxy-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/proxy-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/proxy-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/proxy-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/proxy-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/proxy-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/proxy-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/proxy-howto.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://projects.spring.io/spring-security/
https://projects.spring.io/spring-security/
https://projects.spring.io/spring-security/
https://projects.spring.io/spring-security/
https://projects.spring.io/spring-security/
https://projects.spring.io/spring-security/
https://projects.spring.io/spring-security/
https://projects.spring.io/spring-security/
https://projects.spring.io/spring-security/
https://projects.spring.io/spring-security/
https://projects.spring.io/spring-security/
https://projects.spring.io/spring-security/
https://projects.spring.io/spring-security/
https://projects.spring.io/spring-security/
https://projects.spring.io/spring-framework/
https://projects.spring.io/spring-framework/
https://projects.spring.io/spring-framework/
https://projects.spring.io/spring-framework/
https://projects.spring.io/spring-framework/
https://projects.spring.io/spring-framework/
https://projects.spring.io/spring-framework/
https://projects.spring.io/spring-framework/
https://projects.spring.io/spring-framework/
https://projects.spring.io/spring-framework/
https://projects.spring.io/spring-framework/
https://projects.spring.io/spring-framework/
https://projects.spring.io/spring-framework/
https://projects.spring.io/spring-framework/
https://projects.spring.io/spring-boot/
https://projects.spring.io/spring-boot/
https://projects.spring.io/spring-boot/
https://projects.spring.io/spring-boot/
https://projects.spring.io/spring-boot/
https://projects.spring.io/spring-boot/
https://projects.spring.io/spring-boot/
https://projects.spring.io/spring-boot/
https://projects.spring.io/spring-boot/
https://projects.spring.io/spring-boot/
https://projects.spring.io/spring-boot/
https://projects.spring.io/spring-boot/
https://projects.spring.io/spring-boot/
https://projects.spring.io/spring-boot/

Additional Reference Material Appendix

[495]

Spring Data: Refer to https:/​/​projects.​spring.​io/​spring-​data/​. You can find
links to the Spring Data Javadoc, downloads, source code, and reference from this
link. In this book, we covered three of the sub-projects of Spring-Data, including
Spring Data Rest (https:/​/​projects.​spring.​io/​spring-​data-​rest/​), Spring
Data JPA (https:/​/​projects.​spring.​io/​spring-​data-​jpa/​), and Spring Data
MongoDB (https:/​/​projects.​spring.​io/​spring-​data-​mongodb/​).
Maven: For more information about Maven, visit their site at https:/​/​maven.
apache.​org. For more information about Maven Transitive dependencies, refer to
the Introduction to the Dependency Mechanism documentation at https:/​/​maven.
apache.​org/​guides/​introduction/​introduction-​to-​dependency-​mechanism.
html#Transitive_​Dependencies.
Building with Gradle: Spring Security builds with Gradle (https:/​/​gradle.​org)
instead of using Maven. You can refer to the samples, for examples of how to
build with Gradle at https:/​/​docs.​spring.​io/​spring-​security/​site/​docs/​4.
2.​x/​reference/​html/​sample-​apps.​html.
Object-relational mapping (ORM): You can find more general information on
Wikipedia at https:/​/​en.​wikipedia.​org/​wiki/​Object-​relational_​mapping. If
you want more hands-on instruction, you may also be interested in the Hibernate
(a common Java ORM Framework) documentation at http:/​/​www.​hibernate.
org/​.
Undertow: Undertow is a lightweight flexible performant web server written in
Java, providing both blocking and non-blocking APIs based on NIO. There has
been some work in the chapters to offer Undertow as an alternative to Tomcat.
You can find more general information at http:/​/​undertow.​io/​.

The following are UI technologies:

JSP: You can find more information about JSPs on Oracle's site at https:/​/
javaee.​github.​io/​tutorial/​overview008.​html#BNACM.
Thymeleaf: It is a modern, tempting framework that provides an excellent
alternative to JSPs. An additional benefit is that it provides support for both
Spring and Spring Security out of the box. You can find more information about
Thymeleaf at http:/​/​www.​thymeleaf.​org.

https://projects.spring.io/spring-data/
https://projects.spring.io/spring-data/
https://projects.spring.io/spring-data/
https://projects.spring.io/spring-data/
https://projects.spring.io/spring-data/
https://projects.spring.io/spring-data/
https://projects.spring.io/spring-data/
https://projects.spring.io/spring-data/
https://projects.spring.io/spring-data/
https://projects.spring.io/spring-data/
https://projects.spring.io/spring-data/
https://projects.spring.io/spring-data/
https://projects.spring.io/spring-data/
https://projects.spring.io/spring-data/
https://projects.spring.io/spring-data-rest/
https://projects.spring.io/spring-data-rest/
https://projects.spring.io/spring-data-rest/
https://projects.spring.io/spring-data-rest/
https://projects.spring.io/spring-data-rest/
https://projects.spring.io/spring-data-rest/
https://projects.spring.io/spring-data-rest/
https://projects.spring.io/spring-data-rest/
https://projects.spring.io/spring-data-rest/
https://projects.spring.io/spring-data-rest/
https://projects.spring.io/spring-data-rest/
https://projects.spring.io/spring-data-rest/
https://projects.spring.io/spring-data-rest/
https://projects.spring.io/spring-data-rest/
https://projects.spring.io/spring-data-rest/
https://projects.spring.io/spring-data-rest/
https://projects.spring.io/spring-data-jpa/
https://projects.spring.io/spring-data-jpa/
https://projects.spring.io/spring-data-jpa/
https://projects.spring.io/spring-data-jpa/
https://projects.spring.io/spring-data-jpa/
https://projects.spring.io/spring-data-jpa/
https://projects.spring.io/spring-data-jpa/
https://projects.spring.io/spring-data-jpa/
https://projects.spring.io/spring-data-jpa/
https://projects.spring.io/spring-data-jpa/
https://projects.spring.io/spring-data-jpa/
https://projects.spring.io/spring-data-jpa/
https://projects.spring.io/spring-data-jpa/
https://projects.spring.io/spring-data-jpa/
https://projects.spring.io/spring-data-jpa/
https://projects.spring.io/spring-data-jpa/
https://projects.spring.io/spring-data-mongodb/
https://projects.spring.io/spring-data-mongodb/
https://projects.spring.io/spring-data-mongodb/
https://projects.spring.io/spring-data-mongodb/
https://projects.spring.io/spring-data-mongodb/
https://projects.spring.io/spring-data-mongodb/
https://projects.spring.io/spring-data-mongodb/
https://projects.spring.io/spring-data-mongodb/
https://projects.spring.io/spring-data-mongodb/
https://projects.spring.io/spring-data-mongodb/
https://projects.spring.io/spring-data-mongodb/
https://projects.spring.io/spring-data-mongodb/
https://projects.spring.io/spring-data-mongodb/
https://projects.spring.io/spring-data-mongodb/
https://projects.spring.io/spring-data-mongodb/
https://projects.spring.io/spring-data-mongodb/
https://maven.apache.org
https://maven.apache.org
https://maven.apache.org
https://maven.apache.org
https://maven.apache.org
https://maven.apache.org
https://maven.apache.org
https://maven.apache.org
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Transitive_Dependencies
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Transitive_Dependencies
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Transitive_Dependencies
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Transitive_Dependencies
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Transitive_Dependencies
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Transitive_Dependencies
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Transitive_Dependencies
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Transitive_Dependencies
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Transitive_Dependencies
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Transitive_Dependencies
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Transitive_Dependencies
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Transitive_Dependencies
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Transitive_Dependencies
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Transitive_Dependencies
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Transitive_Dependencies
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Transitive_Dependencies
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Transitive_Dependencies
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Transitive_Dependencies
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Transitive_Dependencies
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Transitive_Dependencies
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Transitive_Dependencies
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Transitive_Dependencies
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Transitive_Dependencies
https://gradle.org
https://gradle.org
https://gradle.org
https://gradle.org
https://gradle.org
https://gradle.org
https://gradle.org
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/html/sample-apps.html
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/html/sample-apps.html
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/html/sample-apps.html
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/html/sample-apps.html
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/html/sample-apps.html
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/html/sample-apps.html
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/html/sample-apps.html
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/html/sample-apps.html
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/html/sample-apps.html
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/html/sample-apps.html
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/html/sample-apps.html
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/html/sample-apps.html
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/html/sample-apps.html
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/html/sample-apps.html
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/html/sample-apps.html
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/html/sample-apps.html
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/html/sample-apps.html
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/html/sample-apps.html
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/html/sample-apps.html
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/html/sample-apps.html
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/html/sample-apps.html
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/html/sample-apps.html
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/html/sample-apps.html
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/html/sample-apps.html
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/html/sample-apps.html
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/html/sample-apps.html
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/html/sample-apps.html
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/html/sample-apps.html
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/html/sample-apps.html
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/html/sample-apps.html
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/html/sample-apps.html
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/html/sample-apps.html
https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Object-relational_mapping
http://www.hibernate.org/
http://www.hibernate.org/
http://www.hibernate.org/
http://www.hibernate.org/
http://www.hibernate.org/
http://www.hibernate.org/
http://www.hibernate.org/
http://www.hibernate.org/
http://www.hibernate.org/
http://undertow.io/
http://undertow.io/
http://undertow.io/
http://undertow.io/
http://undertow.io/
http://undertow.io/
http://undertow.io/
http://undertow.io/
https://javaee.github.io/tutorial/overview008.html#BNACM
https://javaee.github.io/tutorial/overview008.html#BNACM
https://javaee.github.io/tutorial/overview008.html#BNACM
https://javaee.github.io/tutorial/overview008.html#BNACM
https://javaee.github.io/tutorial/overview008.html#BNACM
https://javaee.github.io/tutorial/overview008.html#BNACM
https://javaee.github.io/tutorial/overview008.html#BNACM
https://javaee.github.io/tutorial/overview008.html#BNACM
https://javaee.github.io/tutorial/overview008.html#BNACM
https://javaee.github.io/tutorial/overview008.html#BNACM
https://javaee.github.io/tutorial/overview008.html#BNACM
https://javaee.github.io/tutorial/overview008.html#BNACM
https://javaee.github.io/tutorial/overview008.html#BNACM
https://javaee.github.io/tutorial/overview008.html#BNACM
http://www.thymeleaf.org
http://www.thymeleaf.org
http://www.thymeleaf.org
http://www.thymeleaf.org
http://www.thymeleaf.org
http://www.thymeleaf.org
http://www.thymeleaf.org
http://www.thymeleaf.org
http://www.thymeleaf.org

Index

A
Access Control Entries (ACEs) 327
access control lists (ACL)
 about 324
 adding, to created events 352, 354
 advanced topics 342
 conceptual module 325
 custom development costs, discount avoiding

356, 358
 deployment, considerations 354
 entry, creating 339, 341
 in Spring Security 326
 performance modeling 354
 permission evaluation, enabling 348, 351
 permissions, working 342, 345
 scalability 354
 scalability attributes 355
 tables, adding to H2 database 330, 332
access control
 antMatchers() method, removing 373
 custom SecurityMetadataSource, implementation

371

 custom SecurityMetadataSource, registering 372
 defining, to URLs 367
 RequestConfigMappingService, configuring 367,

369

access decision aggregation
 configuration 364
access tokens 458
AccountController
 external LDAP server, integrating 165
 updating, to LdapUserDetailsService 164
AclPermissionCacheOptimizer object
 about 334
 AclAuthorizationStrategyImpl interface 338, 339
 AclPermission Cache, optimizing 334
 BasicLookupStrategy class 335

 ConsoleAuditLogger class 338
 EhCacheBasedAclCache 336
 JdbcMutableAclService object 334
Active Directory Lightweight Directory Services
 reference link 174
active sessions
 DebugFilter, debugging 405
 displaying, for user 401
 HttpSession configuration, for using in Spring

Security 405
 HttpSession method, using 403
 HttpSessionSecurityContextRepository interface

404

additional attributes
 mapping, of UserDetails 152
advanced LDAP configuration
 about 153
 basic password comparison, configuring 155
 JBCP LDAP users 153
 password comparison, versus bind

authentication 153
antMatchers() method
 removing 373
Apache Directory Studio
 additional attributes, mapping of UserDetails 151
 advanced LDAP configuration 153
 LDAP password, encoding 156
 LDAP password, storing 156
 roles, determining 150
Apache Hadoop 111
Apache Struts 12
Apache Thrift
 about 456
 reference link 456
Apache Tuscany 314
Apache Wicket 12
ApacheDS 141

[497]

application technology
 about 13
 audit results, reviewing 13
applications
 users, logging in 60
Aspect Oriented Programming (AOP) 312
attribute retrieval
 usage 294
audit results
 reviewing 14
authentication methods
 AuthenticationProvider 80
 SecurityContextHolder 80
 UserDetailsService 80
 using 79
authentication
 about 15
 credential-based authentication 16
 hardware authentication 16
 preventing, instead of force logout 399
 two-factor authentication 16
authorization server 464
authorization
 about 18, 351
 access decision aggregation, configuring 364
 database credential security 21
 expression-based request authorization 366,

367

 of requests 360, 363
 UnanimousBased access decision manager,

configuring 364, 365

B
BasicLookupStrategy class
 about 335
 lowest common denominator, querying 336
bill of materials (BOM) 26
browser
 certificate key pair, importing into 213
built-in AD support
 in Spring Security 4.2 174

C
CalendarService interface 54
CalendarUser authority SQL 94

CalendarUser object 53
CalendarUserAuthenticationProvider
 about 69, 71
 configuring 71
CalendarUserDetails 66
CalendarUserDetailsService class 63
CAS assertion
 UserDetails, obtaining from 289, 292
CAS attributes
 LDAP attributes, mapping to 290
CAS integration
 configuring 262
 ServiceProperties object, creating 264
CAS response
 LDAP attributes, returning 290
CAS server
 about 277, 278
 connecting, to embedded LDAP server 286, 289
 customizing 284
 internal authentication, working 285
 WAR overlay 284
CAS ServiceProperties object
 creating 264
CAS services
 authorizing, to access custom attributes 292
CasAuthenticationEntryPoint object
 adding 265, 266
CasAuthenticationProvider object
 used, for proving authenticity 269, 271
Central Authentication Service (CAS)
 about 256, 257
 and Spring Security 260
 benefits 257
 capabilities 295
 CasAuthenticationEntryPoint object, adding 265,

266

 CasAuthenticationProvider object, used for
proving authenticity 269, 271

 configuring 261
 dependencies, requisites 261
 high-level flow 258
 installing 261
 reference link 261
 ticket verification, enabling 267, 269
certificate key pair

[498]

 importing, Chrome used 213
 importing, Firefox used 213
 importing, Internet Explorer used 214
 importing, into browser 213
 testing 214, 215
certificates 206
Child Beans 31
Clickjacking
 about 408, 427
 references 427
client certificate authentication
 advantages 228
 bean-based configuration, capabilities 226
 certificate key pair, importing into browser 213
 configuring, in Spring Security 217
 configuring, with security namespace 217
 configuring, with Spring Beans 225
 disadvantages 229
 dual-mode authentication, supporting 223
 implementing, considerations 228
 infrastructure, setting up 207
 key pair, creating 208
 public key infrastructure, usage 208
 Tomcat trust store, configuring 209, 212
 Tomcat, configuring in Spring Boot 212
 troubleshooting 216
 unauthenticated requests, handling with

AuthenticationEntryPoint 222
 working 206, 207
client
 configuration properties 465
clustered environments
 about 276
 proxy ticket authentication, for stateless services

277

Common Table Expression (CTE) 336
conceptual module
 of ACL 325
concurrency control
 authentication, preventing instead of force logout

399

 common issues 398
concurrent session control
 about 394, 396
 benefits 400

 configuring 394
 testing 396, 397
concurrent sessions
 restrictions, per user 393
conditional rendering
 based on URL access rules 303
 content, with controller logic 305
 in-page authorization, configuring 308
 method-level security 309
 securing, in layers 310
 WebInvocationPrivilegeEvaluator class 307
 with SpEL 305
 with Thymeleaf Spring Security tag library 303
controller logic
 used, for conditional rendering content 305
cookie
 about 178
 reference link 178
create, read, update, and delete (CRUD)

operations 86
credential-based authentication 16
Cross-Site Request Forgery (CSRF)
 about 408, 410
 caveats 419
 default support 415
 logging in 421
 logging out 421
 reference link 411, 421
 synchronizer token 411
 timeouts 419
Cross-Site Scripting (XSS) 185, 408, 409
CSRF protection
 about 413
 and stateless browser applications 414
 configuring 415
 csrfMetaTags tag 418
 cujoJS's rest.js module, using 419
 HTTP verbs, using 415
 jQuery usage 418
 reference link 415, 420
 using 413, 414
CSRF token
 Ajax 417
 default support 417
 including, in form submissions 416

[499]

 including, with Spring Security JSP tag library
416

 JSON requests 417
custom ACL permission declaration 346, 348
custom AuthenticationProvider object
 authenticating, with parameters 72
 CalendarUserAuthenticationProvider 69, 71
 CalendarUserAuthenticationProvider, configuring

71

 CalendarUserAuthenticationProvider, updating
73

 configuration, updating 76, 79
 creating 69
 domain, adding to login page 74
 DomainUsernamePasswordAuthenticationFilter

75

 DomainUsernamePasswordAuthenticationToken,
creating 72

custom authorities
 inserting 94
custom cookie 203
custom expression
 creating 374
 custom SecurityExpressionHandler, configuring

375

 custom SecurityExpressionRoot, configuring 374
 CustomWebSecurityExpressionHandler,

alternative to 377
 CustomWebSecurityExpressionHandler,

configuring 376
 CustomWebSecurityExpressionHandler, using

376

custom headers
 about 428
 DelegatingRequestMatcherHeaderWriter class

430

 HeadersWriter instance 429
 static headers 428
custom RememberMeServices 194
custom schema
 CalendarUser authority SQL 94
 custom authorities, inserting 94
 JDBC SQL queries, determining 92
 JdbcUserDetailsManager, configuration for using

custom SQL queries 95
 loaded SQL scripts, updating 93

 supporting 92
custom SecurityExpressionHandler
 configuring 375
custom SecurityExpressionRoot
 configuring 374
custom SecurityMetadataSource
 implementation 371
 registering 372
custom SQL queries
 used, by configuring JdbcUserDetailsManager

95

custom UserDetailsService object
 CalendarUserDetails 66
 CalendarUserDetailsService class, using 63
 creating 62
 references, removing to UserDetailsManager 65
 SpringSecurityUserContext, simplification 67
 UserDetailsService, configuring 64
CustomWebSecurityExpressionHandler
 alternative to 377
 CalendarPermissionEvaluator 381, 382
 CalendarPermissionEvaluator, configuring 383
 CalendarService, securing 384
 configuring 376
 custom PermissionEvaluator, benefits 384
 custom PermissionEvaluator, creating 381
 method security, working 378, 380
 using 376

D
data access objects (DAO)
 about 120, 121, 123, 125, 135
 in MongoDB 135
database configuration
 reconfiguring 114
database credential security
 addressing, with Spring Security 4.2 22
 sensitive information 21
 Spring Security, need for 22
 transport-level protection 21
database
 initializing 114
DebugFilter
 debugging with 405
default filter URLs

[500]

 migrating 450
default security headers
 about 422
 Cache-Control 423
 Content-Type Options 425
 custom headers 428
 HTTP Strict Transport Security 426
 X-Frame-Options 427
dependencies
 requisites 82, 261
 updating 112
deprecations
 about 435
 default filter URLs, migrating 450
 JAAS 451
 spring-security-core deprecations 435
 spring-security-web deprecations 440
digest 181
distinguished name (DN) 138
document database
 configuration, reconfiguring 128
 DAO, in MongoDB 134
 dependencies, updating 128
 domain objects, mapping with MongoDB 131
 implementing, with MongoDB 127
 initializing 129
 RDBMS, refactoring from 127
domain objects
 mapping, with JPA 117
 mapping, with MongoDB 131
DomainUsernamePasswordAuthenticationFilter
 function 76
dual-mode authentication
 about 224
 issues, solving 224

E
embedded LDAP server
 CAS server, connecting to 286, 289
Event object 53
existing passwords
 migrating 106
expired session redirect
 configuring 397
Explicit LDAP bean configuration

 about 167
 external LDAP server reference, configuring 167
 LdapAuthenticationProvider interface, configuring

168

 role discovery, delegating to UserDetailsService
170

expression-based request authorization
 about 366, 367
 request authorization, customizing 367
external LDAP server reference
 configuring 167

F
Fiddler2
 URL 216
Firebug
 about 181
 reference link 180
Firefox web developer
 URL, for downloading 390
Flapdoodle 128

G
Gradle dependencies
 about 298, 329
 SpEL 298
grant types
 about 459
 authorization code 459
 Client Credentials 460
 implicit 459
 password credentials 460
GrantedAuthorityFromAssertionAttributesUser

object 293
group-based access control (GBAC)
 about 87, 88
 configuring 89
 group authority mappings 91
 group-based schema 90
 JDBC scripts, utilizing 90

H
H2 database
 ACL tables, adding to 330, 332
 JDBC scripts 83

[501]

 JDBC UserDetailsManager implementation,
configuring 84

 using 82
H2-embedded database
 configuring 83
H2
 URL 82
hardware authentication 16
hashing 97
HMAC algorithm 460
HTTP parameter names 203
HTTP Strict Transport Security (HSTS)
 about 408, 426
 reference link 426
HTTP verbs
 reference link 415
HTTPie
 about 467
 reference link 467
HttpSession method
 configuration, for using in Spring Security 405
 using, in Spring Security 403
HttpSessionSecurityContextRepository interface

404

I
in-page authorization
 configuring 308
information leakage
 reference link 432
interface-based proxies
 about 313
 reference link 314
IP address
 reference link 301
 remember-me feature, restricting to 200

J
JA-SIG CAS
 about 256
 reference link 284, 286
JA-SIG clustering
 reference link 277
JA-SIG JIRA
 reference link 277

JA-SIG
 reference link 279
Java Authentication and Authorization Service

(JAAS)
 about 22, 451
 reference link 451
Java Configuration 28
Java EE Security 22
Java KeyStore (JKS) 211
Java Secure Socket Extension (JSSE) 211
JAX-RS REST 453
JBCP calendar application architecture 12
JBCP calendar architecture
 about 53
 CalendarService interface 54
 CalendarUser object 53
 Event object 53
 SpringSecurityUserContext interface 55
 UserContext interface 54
JBCP calendar
 updation, for using Spring Data JPA 113
JDBC SQL queries
 authorities-by-username-query 93
 determining 92
 group-authorities-by-username-query 93
 users-by-username-query 92
JDBC Support 111
JDBC UserDetailsManager implementation
 configuring 84
JdbcUserDetailsManager
 configuration, for using custom SQL queries 95
JIRA, non-passive changes
 reference link 432
JIRA
 reference link 59
JPA-based PersistentTokenRepository 191, 193
JPA
 Spring Data repositories 119
 used, for mapping domain objects 117
JSON 413
JSON Web Tokens (JWT)
 about 452, 460
 access token converter 466
 encoded JWT 461
 header 461

[502]

 payload 462
 signature 462
 structure 461
JSR-250 Common Annotations 314
JWT resources
 configuration properties 465

K
keytool
 reference link 209

L
layers
 @PreAuthorize method annotation, adding 312
 business tier, securing 310
 method security, validating 312, 313
 securing in 310
 Spring Security, instructing for method annotation

use 312
LDAP attributes
 mapping, to CAS attributes 290
 mapping, troubleshoot in CAS 291
 returning, in CAS response 290
LDAP password
 encoding 156
 password comparison authenticator, drawbacks

157

 storing 156
LdapAuthenticationProvider interface
 configuring 168
LdapUserDetailsService
 configuring 163
Lightweight Directory Access Protocol (LDAP)
 about 136, 137
 common LDAP attribute names 138
 dependencies, updating 140
 embedded LDAP, troubleshooting 143
 LDAP AuthenticationProviderNext interface,

enabling 142
 LDAP server reference, configuring 141
loaded SQL scripts
 updating 93

M
MD5
 about 181
 remember-me signature 182
method-level security 309
MethodSecurityExpressionRoot class
 about 302
 page-level authorization 302
microservice security
 about 457
 service communication 457
 technical complexity 457
 tight coupling 457
microservices client
 about 471
 OAuth 2 client, configuring 473
microservices
 about 453
 architecture 455
 monoliths 453
Microsoft Active Directory (AD)
 about 16, 89
 built-in AD support, in Spring Security 4.2 174
 integrating, via LDAP 172
Microsoft Passport 231
migration
 example 432
 reference link 432
 Spring Security 4.2, enhancement 433
modules, Spring Data project
 Spring Data for Apache Cassandra 111
 Spring Data for Apache Solr 111
 Spring Data Gemfire 111
 Spring Data JPA 111
 Spring Data Key Value 111
 Spring Data LDAP 111
 Spring Data MongoDB 111
 Spring Data Redis 111
 Spring Data REST 111
MongoDB
 DAO 134
 Spring Data repositories 134
 used, for implementing document database 127
 used, for mapping domain objects 131

[503]

mutable ACLs 351
mutual authentication 206

N
non-standard OAuth 2 providers
 registering 250, 253

O
OAuth 1 231
OAuth 2 application
 signing up 233
OAuth 2 authorization process
 authorization server 458
 microservice client 458
 resource owner 458
 resource server 458
OAuth 2 client
 configuring 473
OAuth 2 providers
 about 246, 248
 connection workflow, executing 239
 user registration, issues 249
OAuth 2 server application
 executing 467
 server requests 467
 token requests 468, 471
OAuth 2 specification
 about 457
 access token 458
 grant types 459
 refresh token 459
OAuth 2 support
 authorization server 464
 client, configuration properties 465
 configuring, in Spring Security 236
 connection signup flow 239
 custom UserConnectionRepository 238
 in Spring Security 463
 JWT access token converter 466
 JWT resource, configuration properties 465
 local database entries, creating for provider

details 237
 local UserConnectionRepository 236
 resource owner 463
 resource server 463

 RSA JWT access token converter keypair 465
 server application, executing 467
 UserDetailsService object 467
OAuth 2
 about 230, 231
 authentication, enabling with Spring Security 233
 automatic user authentication 242, 244
 controller sign-in flow 241
 dependencies, requisites 234
 reference link 231
 replay attacks, preventing 254
 response forgery, preventing 254
 security, examining 254
 users, adding 240
object-relational mapping (ORM) 11
Open Web Application Security Project (OWASP)
 about 387, 409
 reference link 186, 409
 URL 387
Oracle8i 336
ORM implementation
 SQL implementation, refactoring from 117

P
password encoding
 configuration 99
PasswordEncoder method
 about 98
 alert, sending to Spring Security 100
 configuring 100
 implementation class 98
 LdapShaPasswordEncoder class 99
 Md4PasswordEncoderPasswordEncoder class

98

 Md5PasswordEncoderPassword class 98
 password encoding, configuration 99
 passwords, hashing of new users 102
 PlaintextPasswordEncoder class 98
 security 103
 ShaPasswordEncoderPasswordEncoder class

99

 stored passwords, hashing 101, 102
Payment Card Industry Data Security Standard

(PCI DSS) 15
permission 342

[504]

persistent-based remember-me feature
 about 178, 187
 configuring 189
 custom RememberMeServices 194
 expired sessions, cleaning up 195
 JPA-based PersistentTokenRepository 191, 193
 series identifier 190
 token value 190
 using 188
 working 190
Person Directory
 reference link 291
Personally Identifiable Information (PII) 15
postauthorization 311
PreAuthenticatedAuthenticationProvider
 preAuthenticatedUser DetailsService property

228

 throwExceptionWhen TokenRejected property
228

preauthorization 311
Proxy Granting Ticket (PGT) 278
Proxy Granting Ticket I Owe You (PGTIOU) 278
proxy ticket authentication
 configuring 278
 for stateless services 277
proxy tickets (PT)
 about 277
 authenticating 281, 283
 using 280

Q
Querydsl 112

R
rainbow tables 104
RDBMS
 refactoring, to document database 127
references
 removing, to UserDetailsManager 65
remember-me architecture
 about 197
 features, restricting to IP address 200
 RememberMeServices, invoking in user life cycle

199

remember-me feature

 about 177
 authorization rules 186
 dependencies 178
 persistent-based remember-me feature 187
 security 185
 token-based remember-me feature 179
remember-me schema
 creation, by adding SQL 188
 used, for initializing data source 188
remember-me signature
 token-based remember-me, configuration

directives 184
replay attacks 254
RequestConfigMappingService
 configuring 367, 369
requests
 authorizing 360
Required Authorities 20
resource owner 463
resource server 463
response forgery 254
rest.js
 reference link 419
RFC 6749
 reference link 460
RFC 7519
 references 460
role discovery
 delegating, to UserDetailsService 170
roles 18
Root Beans 31
RSA JWT access token converter keypair 465
RSA SecurID 16

S
salt
 about 104
 using, in Spring Security 105
salted passwords
 using 107
 validating 108
salting 103
SAML 1.1
 used, for authenticating alternative ticket 293
secure passwords

[505]

 configuring 96, 98
Secure Sockets Layer (SSL) 206
secured application
 common issues 34
securing methods
 techniques 311
Security Assertion Markup Language (SAML) 293
security audit
 about 9
 JBCP calendar application architecture 11
 sample application 9
security headers
 reference link 422
security HTTP response headers
 about 422
 default security headers 422
Security Identity (SID) 327
Security Java Configuration 28, 29
security namespace
 used, for configuring client certificate

authentication 217
security policy
 reference link 427
security vulnerabilities 409
SecurityContextHolder
 used, for logging in users 58
SecurityExpressionHandler
 configuring 332
series identifier 190
service-oriented architectures (SOA) 452, 456
session fixation attacks
 about 387, 388
 preventing, with Spring Security 388, 389
 simulating 390, 392
session fixation protection
 about 387
 configuring 386
 options, comparing 393
SignupController
 updating 62
single logout
 about 272, 273
 configuring 273, 276
Spring 4.3
 using 26

Spring bean properties
 checkForPrincipalChanges 227
 continueFilterChainOn

UnsuccessfulAuthentication 227
 invalidateSessionOn PrincipalChange 227
Spring Beans
 about 136
 used, for configuring client certificate

authentication 225
Spring Data JPA
 about 112
 database, initializing 114
 dependencies, updating 112
 features 112
 using, with updation of JBCP calendar 113
Spring Data project
 features 110
Spring Data repositories 119
Spring Expression Language (SpEL)
 about 45, 298
 hasIpAddress method, using 300, 301
 integrating 298
 MethodSecurityExpressionRoot class 302
 other available expressions 298
 request attribute, using 300
 used, for conditional rendering 305
 WebSecurityExpressionRoot class 300
Spring Framework Reference
 reference link 279, 302
Spring LDAP authentication
 binding, to LDAP 146
 demonstrating, Apache Directory Studio used

146

 user credentials, authenticating 145
 user role membership, determining 149
 user, binding to LDAP 148
 user, searching 147
 working 144
Spring Reference
 reference link 56, 196, 376
Spring Security 4.2
 configurations improvements 433
 enhancements 433
 using 26
 web improvements 433

[506]

Spring Security 4.x
 miscellaneous changes 434
Spring Security 4
 configuration, modifying 434
Spring Security ACL support
 ACL deployment, considerations 354
 ACL entry, creating 339, 341
 ACL permission evaluation, enabling 348, 351
 ACL, adding to H2 database 330, 332
 AclPermissionCacheOptimizer object 334
 advanced topics 342
 authorization 351
 configuration 328
 custom ACL permission declaration 346, 348
 gradle dependencies 329
 mutable ACLs 351
 SecurityExpressionHandler, configuring 332
 target scenario, defining 329
 using 358
Spring Security certificate authentication
 working 219, 221
Spring Security
 about 25
 ACL 326
 and CAS 260
 authentication information, displaying

conditionally 46
 behavior, customizing after login 48
 certificate information, using 218
 client certificate authentication, configuring 217
 configuration, updating 106
 configuring 125
 database configuration, reconfiguring 114
 default user schema 84
 dependencies, updating 25
 error, for login page 40
 existing passwords, migrating 106
 exploring 34
 expression-based authorization 45
 HttpSession method, using 403
 login, customizing 35
 logout, configuring 39
 OAuth 2 support, configuring 236
 PasswordEncoder method, alerting 100
 reference link 432, 451

 role-based authorization 41, 45
 salt, using 105
 sample application, importing 25
 secured application, executing 33
 selective display functionality, methods 303
 used, for preventing session fixation attacks 388,

389

 user authorities, defining 85
 users, defining 85
 users, managing in 58
 web.xml file, updating 29
 XML configuration file, implementing 27
Spring Social project
 reference link 234
Spring Web Flow (SWF) 12
spring-security-core deprecations
 about 435
 AbstractAccessDecisionManager 437
 AnonymousAuthenticationProvider 438
 AuthenticationDetailsSourceImpl 438
 AuthenticationException 437
 GrantedAuthorityImpl 440
 InMemoryDaoImpl 440
 org.springframework.security.access.SecurityCon

fig 435
 ProviderManager 439
 RememberMeAuthenticationProvider 439
 UserDetailsServiceWrapper 435
 UserDetailsWrapper 437
spring-security-web deprecations
 @AuthenticationPrincipal 450
 about 440
 AbstractAuthenticationProcessingFilter 442
 AbstractRememberMeServices 444
 AnonymousAuthenticationFilter 442
 BasicAuthenticationFilter 447
 ConcurrentSessionControlStrategy 445
 ConcurrentSessionFilter 448
 ExceptionTranslationFilter 441
 FilterChainProxy 440
 LoginUrlAuthenticationEntryPoint 443
 PersistentTokenBasedRememberMeServices

444

 PreAuthenticatedGrantedAuthoritiesUserDetailsS
ervice 443

[507]

 RememberMeAuthenticationFilter 445
 RequestCacheAwareFilter 447
 RequestMatcher 448
 SecurityContextPersistenceFilter 447
 SessionFixationProtectionStrategy 446
 SessionManagementFilter 448
 TokenBasedRememberMeServices 445
 WebSecurityExpressionHandler 449
SpringSecurityUserContext interface 55
SpringSecurityUserContext
 custom user attributes, displaying 68
 simplifications 67
SQL implementation
 data access objects 120, 121, 123, 125
 domain objects, mapping with JPA 117
 refactoring, to ORM implementation 117
standardized rules, JSR-250
 @PreFilter, used for prefiltering collections 321
 @Secured annotation, used for method securing

316

 about 314
 annotation-based security, practical

considerations 322
 method authorization types, comparing 322
 method parameters, incorporating with method

security rules 317, 318
 returned values, incorporating with method

security rules 319
 role-based filtering, used for securing method

data 319, 320
stateless services
 proxy ticket authentication 277
synchronizer token
 about 411
 reference link 411
 support, in Spring Security 412

T
target scenario
 defining 329
template-based approach 309
Thymeleaf Spring Security tag library
 used, for conditional rendering 303
token value 190
token-based remember-me feature 177

 configuring 179
 working 181
Transport Layer Security (TLS) 206
two-factor authentication 16

U
UnanimousBased access decision manager
 configuring 364, 365
URL access rules
 conditional rendering 303
URLs
 access control, defining 367
user authorities
 about 20
 defining 85
user details
 alternate password attribute, used 162
 LDAP, used as UserDetailsService 163
 viewing 159
UserContext interface 54
UserDetails
 alternative ticket, authentication with SAML 1.1

293

 attribute retrieval, usage 294
 CAS services, authorizing to access custom

attributes 292
 GrantedAuthorityFromAssertionAttributesUser

object 293
 LDAP attributes, mapping to CAS attributes 290
 LDAP attributes, returning in CAS response 290
 obtaining, from CAS assertion 289, 292
UserDetailsContextMapper object
 configuring 158
 implicit configuration 158
 LdapUserDetailsService, configuring 163
 user details, viewing 159
UserDetailsManager interface
 about 86
 boolean userExists(String username) 87
 features 86
 group-based access control 87
 void changePassword(String oldPassword, String

newPassword) 87
 void createUser(UserDetails user) 87
 void deleteUser(String username) 87

 void updateUser(final UserDetails user) 87
UserDetailsManager
 references, removing to 65
UserDetailsService object
 about 467
 adding 126, 127
 RDBMS, refactoring to document database 127
users
 active sessions, displaying 401
 defining 85
 logging in, to application 60
 logging in, with SecurityContextHolder 58
 managing, in Spring Security 58
 SignupController, updating 62

V
Venn diagram 19
voter 361

W
WAR overlay
 about 284
 reference link 284
Web Application Security Consortium
 URL 420
web.xml file
 ContextLoaderListener class 29
 ContextLoaderListener, versus DispatcherServlet

30

 DelegatingFilterProxy class 32
 FilterChainProxy class 32
 springSecurityFilterChain filter 31
 updating 29
WebInvocationPrivilegeEvaluator class 307
white hat hacking/ethical hacking 15
Wireshark
 URL 216

	Cover

	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.Packtpub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Anatomy of an Unsafe Application

	Security audit
	About the sample application
	The JBCP calendar application architecture

	Application technology
	Reviewing the audit results

	Authentication
	Authorization
	Database credential security
	Sensitive information
	Transport-level protection
	Using Spring Security 4.2 to address security concerns
	Why Spring Security?

	Summary

	Chapter 2: Getting Started with Spring Security

	Hello Spring Security
	Importing the sample application
	Updating your dependencies
	Using Spring 4.3 and Spring Security 4.2

	Implementing a Spring Security XML configuration file
	Updating your web.xml file
	The ContextLoaderListener class
	ContextLoaderListener versus DispatcherServlet
	The springSecurityFilterChain filter
	The DelegatingFilterProxy class
	The FilterChainProxy class

	Running a secured application
	Common problems

	A little bit of polish
	Customizing login
	Configuring logout
	The page isn't redirecting properly
	Basic role-based authorization
	Expression-based authorization
	Conditionally displaying authentication information
	Customizing behavior after login

	Summary

	Chapter 3: Custom Authentication

	JBCP calendar architecture
	The CalendarUser object
	The Event object
	The CalendarService interface
	The UserContext interface
	The SpringSecurityUserContext interface

	Logging in new users using SecurityContextHolder
	Managing users in Spring Security
	Logging in a new user to an application
	Updating SignupController

	Creating a custom UserDetailsService object
	The CalendarUserDetailsService class
	Configuring UserDetailsService
	Removing references to UserDetailsManager
	The CalendarUserDetails object
	The SpringSecurityUserContext simplifications
	Displaying custom user attributes

	Creating a custom AuthenticationProvider object
	CalendarUserAuthenticationProvider
	Configuring the CalendarUserAuthenticationProvider object
	Authenticating with different parameters
	The DomainUsernamePasswordAuthenticationToken class
	Updating CalendarUserAuthenticationProvider
	Adding domain to the login page
	The DomainUsernamePasswordAuthenticationFilter class
	Updating our configuration

	Which authentication method to use?
	Summary

	Chapter 4: JDBC-Based Authentication

	Required dependencies
	Using the H2 database
	Provided JDBC scripts
	Configuring the H2 embedded database
	Configuring a JDBC UserDetailsManager implementation

	The default user schema of Spring Security
	Defining users
	Defining user authorities

	The UserDetailsManager interface
	Group-based access control
	Configuring group-based access control
	Configuring JdbcUserDetailsManager to use groups
	Utilizing GBAC JDBC scripts
	The group-based schema
	Group authority mappings

	Support for a custom schema
	Determining the correct JDBC SQL queries
	Updating the SQL scripts that are loaded
	The CalendarUser authority SQL
	Inserting custom authorities
	Configuring JdbcUserDetailsManager to use custom SQL queries

	Configuring secure passwords
	The PasswordEncoder method
	Configuring password encoding
	Configuring the PasswordEncoder method
	Making Spring Security aware of the PasswordEncoder method
	Hashing the stored passwords
	Hashing the passwords of new users
	Not quite secure

	Using salt in Spring Security
	Updating the Spring Security configuration
	Migrating existing passwords
	Updating DefaultCalendarUserService

	Trying out the salted passwords
	Summary

	Chapter 5: Authentication with Spring Data

	Spring Data JPA
	Updating our dependencies
	Updating the JBCP calendar to use Spring Data JPA
	Reconfiguring the database configuration
	Initializing the database

	Refactoring from SQL to ORM
	Mapping domain objects using JPA
	Spring Data repositories
	Data access objects

	Application services
	The UserDetailsService object
	Refactoring from an RDBMS to a document database

	Document database implementation with MongoDB
	Updating our dependencies
	Reconfiguring the database configuration in MongoDB
	Initializing the MongoDB database
	Mapping domain objects with MongoDB
	Spring Data repositories of MongoDB

	Data access objects in MongoDB

	Summary

	Chapter 6: LDAP Directory Services

	Understanding LDAP
	LDAP
	Common LDAP attribute names
	Updating our dependencies
	Configuring an LDAP server reference
	Enabling the LDAP AuthenticationProviderNext interface

	Troubleshooting embedded LDAP

	Understanding how Spring LDAP authentication works
	Authenticating user credentials
	Demonstrating authentication with Apache Directory Studio
	Binding anonymously to LDAP
	Searching for the user
	Binding as a user to LDAP
	Determining user role membership

	Determining roles with Apache Directory Studio
	Mapping additional attributes of UserDetails
	Advanced LDAP configuration
	Sample JBCP LDAP users
	Password comparison versus bind authentication
	Configuring basic password comparison

	LDAP password encoding and storage
	The drawbacks of a password comparison authenticator

	Configuring the UserDetailsContextMapper object
	Implicit configuration of UserDetailsContextMapper
	Viewing additional user details
	Using an alternate password attribute
	Using LDAP as UserDetailsService

	Configuring LdapUserDetailsService

	Updating AccountController to use LdapUserDetailsService
	Integrating Spring Security with an external LDAP server

	Explicit LDAP bean configuration
	Configuring an external LDAP server reference
	Configuring the LdapAuthenticationProvider interface
	Delegating role discovery to UserDetailsService

	Integrating with Microsoft Active Directory via LDAP
	Built-in AD support in Spring Security 4.2

	Summary

	Chapter 7: Remember-Me Services

	What is remember-me?
	Dependencies
	The token-based remember-me feature
	Configuring the token-based remember-me feature
	How the token-based remember-me feature works

	MD5
	Remember-me signature
	Token-based remember-me configuration directives

	Is remember-me secure?
	Authorization rules for remember-me
	Persistent remember-me
	Using the persistent-based remember-me feature
	Adding SQL to create the remember-me schema
	Initializing the data source with the remember-me schema

	Configuring the persistent-based remember-me feature
	How does the persistent-based remember-me feature work?
	JPA-based PersistentTokenRepository
	Custom RememberMeServices
	Cleaning up the expired remember-me sessions

	The remember-me architecture
	Remember-me and the user life cycle
	Restricting the remember-me feature to an IP address

	Custom cookie and HTTP parameter names
	Summary

	Chapter 8: Client Certificate Authentication with TLS

	How does client certificate authentication work?
	Setting up the client certificate authentication infrastructure
	Understanding the purpose of a public key infrastructure
	Creating a client certificate key pair
	Configuring the Tomcat trust store
	Configuring Tomcat in Spring Boot

	Importing the certificate key pair into a browser
	Using Firefox
	Using Chrome
	Using Internet Explorer
	Wrapping up testing

	Troubleshooting client certificate authentication
	Configuring client certificate authentication in Spring Security
	Configuring client certificate authentication using the security namespace
	How does Spring Security use certificate information?
	How Spring Security certificate authentication works
	Handling unauthenticated requests with AuthenticationEntryPoint
	Supporting dual-mode authentication

	Configuring client certificate authentication using Spring beans
	Additional capabilities of bean-based configuration
	Considerations when implementing client certificate authentication

	Summary

	Chapter 9: Opening up to OAuth 2

	The promising world of OAuth 2
	Signing up for an OAuth 2 application
	Enabling OAuth authentication with Spring Security
	Additional required dependencies

	Configuring OAuth 2 support in Spring Security
	Local UserConnectionRepository
	Creating local database entries for provider details
	The custom UserConnectionRepository interface
	The ConnectionSignup flow

	Executing the OAuth 2 provider connection workflow
	Adding OAuth 2 users
	OAuth 2 controller sign-in flow
	Automatic user authentication

	Additional OAuth 2 providers
	The OAuth 2 user registration problem
	Registering non-standard OAuth 2 providers

	Is OAuth 2 secure?
	Summary

	Chapter 10: Single Sign-On with the Central Authentication Service

	Introducing the Central Authentication Service
	High-level CAS authentication flow
	Spring Security and CAS
	Required dependencies
	Installing and configuring CAS

	Configuring basic CAS integration
	Creating the CAS ServiceProperties object
	Adding the CasAuthenticationEntryPoint object
	Enabling CAS ticket verification
	Proving authenticity with the CasAuthenticationProvider object

	Single logout
	Configuring single logout

	Clustered environments
	Proxy ticket authentication for stateless services
	Configuring proxy ticket authentication

	Using proxy tickets
	Authenticating proxy tickets

	Customizing the CAS server
	CAS WAR overlay
	How does the CAS internal authentication work?
	Configuring CAS to connect to our embedded LDAP server

	Getting the UserDetails object from a CAS assertion
	Returning LDAP attributes in the CAS response
	Mapping LDAP attributes to CAS attributes
	Authorizing CAS services to access custom attributes
	Acquiring a UserDetails from CAS
	The GrantedAuthorityFromAssertionAttributesUser object
	Alternative ticket authentication using SAML 1.1
	How is attribute retrieval useful?

	Additional CAS capabilities
	Summary

	Chapter 11: Fine-Grained Access Control

	Gradle dependencies
	Integrating Spring Expression Language (SpEL)
	The WebSecurityExpressionRoot class
	Using the request attribute
	Using the hasIpAddress method
	The MethodSecurityExpressionRoot class
	Page-level authorization

	Conditional rendering with the Thymeleaf Spring Security tag library
	Conditional rendering based on URL access rules
	Conditional rendering using SpEL
	Using controller logic to conditionally render content
	The WebInvocationPrivilegeEvaluator class
	What is the best way to configure in-page authorization?
	Method-level security
	Why we secure in layers?
	Securing the business tier
	Adding the @PreAuthorize method annotation
	Instructing Spring Security to use method annotations
	Validating method security

	Interface-based proxies
	JSR-250 compliant standardized rules
	Method security using Spring's @Secured annotation
	Method security rules incorporating method parameters
	Method security rules incorporating returned values
	Securing method data using role-based filtering
	Prefiltering collections with @PreFilter
	Comparing method authorization types
	Practical considerations for annotation-based security

	Summary

	Chapter 12: Access Control Lists

	The conceptual module of ACL
	Access control lists in Spring Security
	Basic configuration of Spring Security ACL support
	Gradle dependencies
	Defining a simple target scenario
	Adding ACL tables to the H2 database
	Configuring SecurityExpressionHandler
	The AclPermissionCacheOptimizer object
	Optimizing AclPermission Cache
	The JdbcMutableAclService object
	The BasicLookupStrategy class
	Querying with the lowest common denominator

	EhCacheBasedAclCache
	The ConsoleAuditLogger class
	The AclAuthorizationStrategyImpl interface

	Creating a simple ACL entry
	Advanced ACL topics
	How permissions work

	The custom ACL permission declaration
	Enabling ACL permission evaluation
	Mutable ACLs and authorization
	Adding ACLs to newly created events

	Considerations for a typical ACL deployment
	ACL scalability and performance modeling
	Do not discount custom development costs

	Should I use Spring Security ACL?

	Summary

	Chapter 13: Custom Authorization

	Authorizing the requests
	Configuration of access decision aggregation
	Configuring a UnanimousBased access decision manager
	Expression-based request authorization
	Customizing request authorization

	Dynamically defining access control to URLs
	Configuring the RequestConfigMappingService
	Custom SecurityMetadataSource implementation
	Registering a custom SecurityMetadataSource
	Removing our antMatchers() method

	Creating a custom expression
	Configuring a custom SecurityExpressionRoot
	Configuring a custom SecurityExpressionHandler
	Configuring and using CustomWebSecurityExpressionHandler
	Alternative to a CustomWebSecurityExpressionHandler
	How does method security work?
	Creating a custom PermissionEvaluator
	CalendarPermissionEvaluator
	Configuring CalendarPermissionEvaluator
	Securing our CalendarService
	Benefits of a custom PermissionEvaluator

	Summary

	Chapter 14: Session Management

	Configuring session fixation protection
	Understanding session fixation attacks
	Preventing session fixation attacks with Spring Security
	Simulating a session fixation attack
	Comparing the session-fixation-protection options

	Restricting the number of concurrent sessions per user
	Configuring concurrent session control
	Understanding concurrent session control

	Testing concurrent session control

	Configuring expired session redirect
	Common problems with concurrency control
	Preventing authentication instead of forcing logout

	Other benefits of concurrent session control
	Displaying active sessions for a user
	How Spring Security uses the HttpSession method?
	The HttpSessionSecurityContextRepository interface
	Configuring how Spring Security uses HttpSession
	Debugging with Spring Security's DebugFilter

	Summary

	Chapter 15: Additional Spring Security Features

	Security vulnerabilities
	Cross-Site Scripting
	Cross-Site Request Forgery
	Synchronizer tokens
	Synchronizer token support in Spring Security

	When to use CSRF protection
	CSRF protection and JSON
	CSRF and stateless browser applications
	Using Spring Security CSRF protection
	Using proper HTTP verbs
	Configuring CSRF protection

	Default CSRF support
	Including the CSRF token in the <Form> submissions
	Including the CSRF token using the Spring Security JSP tag library
	Default CSRF token support
	Ajax and JSON requests
	The csrfMetaTags tag
	jQuery usage
	Using the cujoJS's rest.js module

	CSRF caveats
	Timeouts
	Logging in
	Logging out

	Security HTTP response headers
	Default security headers
	Cache-Control
	Content-Type Options
	HTTP Strict Transport Security
	X-Frame-Options

	Custom Headers
	Static headers
	The HeadersWriter instance
	The DelegatingRequestMatcherHeaderWriter class

	Summary

	Chapter 16: Migration to Spring Security 4.2

	Introduction
	Sample migration
	Enhancements in Spring Security 4.2
	Web improvements:
	Spring Security Configuration improvements:

	Miscellaneous changes in Spring Security 4.x
	Changes to configuration in Spring Security 4

	Deprecations
	The spring-security-core deprecations
	org.springframework.security.access.SecurityConfig
	UserDetailsServiceWrapper
	UserDetailsWrapper
	AbstractAccessDecisionManager
	AuthenticationException
	AnonymousAuthenticationProvider
	AuthenticationDetailsSourceImpl
	ProviderManager
	RememberMeAuthenticationProvider
	GrantedAuthorityImpl
	InMemoryDaoImpl

	The spring-security-web deprecations
	FilterChainProxy
	ExceptionTranslationFilter
	AbstractAuthenticationProcessingFilter
	AnonymousAuthenticationFilter
	LoginUrlAuthenticationEntryPoint
	PreAuthenticatedGrantedAuthoritiesUserDetailsService
	AbstractRememberMeServices
	PersistentTokenBasedRememberMeServices
	RememberMeAuthenticationFilter
	TokenBasedRememberMeServices
	ConcurrentSessionControlStrategy
	SessionFixationProtectionStrategy
	BasicAuthenticationFilter
	SecurityContextPersistenceFilter
	RequestCacheAwareFilter
	ConcurrentSessionFilter
	SessionManagementFilter
	RequestMatcher
	WebSecurityExpressionHandler
	@AuthenticationPrincipal

	Migrating default filter URLs
	JAAS

	Summary

	Chapter 17: Microservice Security with OAuth 2 and JSON Web Tokens

	What are microservices?
	Monoliths
	Microservices

	Service-oriented architectures
	Microservice security
	Service communication
	Tight coupling
	Technical complexity

	The OAuth 2 specification
	Access tokens
	Access token
	Refresh token

	Grant types
	Authorization code
	Implicit
	Password credentials
	Client credentials

	JSON Web Tokens
	Token structure
	Encoded JWT
	Header
	Payload
	Signature

	OAuth 2 support in Spring Security
	Resource owner
	Resource server
	Authorization server
	RSA JWT access token converter keypair
	OAuth 2 resource configuration properties
	OAuth 2 client configuration properties
	JWT access token converter
	The UserDetailsService object
	Running the OAuth 2 server application
	Server requests
	Token requests

	Microservices client
	Configuring the OAuth 2 client

	Summary

	Appendix: Additional Reference Material

	Getting started with the JBCP calendar sample code
	Gradle Build Tool
	Gradle IDE plugins
	IntelliJ IDEA
	Spring Tool Suite or Eclipse

	Creating a new workspace
	A sample code structure
	Importing the samples
	Running the samples
	Starting the samples within IDEA
	Gradle tasks
	Starting the samples within STS
	Using HTTPS within STS

	HTTPS setup in Tomcat
	Generating a server certificate
	Configuring Tomcat connector to use SSL
	Basic Tomcat SSL termination guide

	Supplementary materials

	Index

