

Java EE 8 Cookbook

Build reliable applications with the most robust and mature
technology for enterprise development

Elder Moraes

BIRMINGHAM - MUMBAI

Java EE 8 Cookbook
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Merint Mathew
Acquisition Editor: Isha Raval
Content Development Editor: Jason Pereira
Technical Editor: Prajakta Mhatre
Copy Editor: Safis Editing
Project Coordinator: Sheejal Shah
Proofreader: Safis Editing
Indexer: Mariammal Chettiyar
Production Coordinator: Deepika Naik

First published: April 2018
Production reference: 1060418

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78829-303-7

www.packtpub.com

http://www.packtpub.com

To Jesus Christ, my only source of eternal life and purpose.

To my beloved wife, Erica—thanks for your love and for sharing your life with me.

To my adorable daughter, Rebeca—if this book helps a single person, maybe it could help
turning the world a better place for you.

To the memory of my mother, Matilde, who I miss every day.

To my brother, Marco, who introduced me to this incredible world of computers and
software.

To my friend and guru, Bruno "Javaman" Souza—I would probably never have written
this book if I hadn't meet you.

To the amazing team at SouJava—you folks really live the community thing.

To my peers at TCDB for all encouragement, tips, sharing, and feedbacks. Thank you!

 – Elder Moraes

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Foreword
It is a measure of the penetration, longevity, and quality of Java EE technology that in 2018
my friend Elder Moraes asked me to write the foreword for his book about Java EE 8. My
personal involvement with Java EE goes back to the days preceding J2EE 1.4 in 2001. Since
then, I have had the great honor of leading or co-leading the community teams that have
developed JavaServer Faces and, later, servlet, two of the technologies Elder covers in this
book. During that time, I tried to follow the model of servant-leader, and I think the result
has been a very engaged community that has a real stake in the continued success of Java
EE.

When writing this foreword, I want to focus on four Cs: Curation, Cohesion, Current, and
Completeness. So much has been written about Java EE over the years, and continues to be
written, that the task of writing a book, particularly one in the useful "cookbook" format,
involves a lot of curation. From the set of all possible things that people are doing with Java
EE, which is vast, Elder has presented a curation of what he thinks are the most useful
and essential ones. Elder is well positioned to decide what goes in and what stays out. Elder
has been consulting and working with Java EE for nearly as long as I have, but from the
more practical perspective of the user.

Technical books that follow the cookbook pattern frequently suffer from a feeling of
disjointness. Not this book. Elder has put a great deal of effort into ensuring cohesion. Over
the years, the technologies of Java EE have sometimes been criticized for not being cohesive
enough with each other. This is something Sun made a conscious effort to address starting
with Java EE 6, and which Oracle continued on to Java EE 8. Elder has leveraged this effort
to seek out and present the best way to leverage the synergy of all the technologies of Java
EE 8 to maximum effect.

The world outside Java EE has continued to evolve, and this has changed the way people
use Java EE dramatically. The challenge for any architect on a multiyear software effort,
with a service lifetime of at least a decade, is how to keep it maintainable even while
the surrounding technology landscape changes. Elder has accounted for this with two
excellent chapters about microservices and Docker. These two technologies provide a great
complement to the power of Java EE, but also have numerous pitfalls. Elder helps you
avoid the pitfalls while getting the most out of these current trends.

Finally, completeness. Many technology cookbooks stop short of providing "complete
reference" sort of material, but Elder goes much deeper. It's almost to the point that the term
"cookbook" does not do this book justice. Perhaps, a more correct label would be "complete
restaurant management with supply chain logistics and a cookbook on top." Elder covers
the current popular app servers on which people are running Java EE, continuous
integration and pipelines, reactive programming, and more. Coming back to the curation
point, it's all there, and in depth.

I hope you have success with Java EE and with its successor, Jakarta EE from the Eclipse
Foundation.

Ed Burns

Consulting Member of Technical Staff at Oracle

Specification Lead of JSF and Servlet

Contributors

About the author
Elder Moraes helps Java EE developers build and deliver secure, fast, and available
applications so that they are able to work on great projects. He is passionate about content
sharing; he does it by speaking at international events, blogging, and writing articles.
He has been working with Java since 2002 and has developed applications for different
industries. As a board member at SouJava, he led the Java EE 8 - The Next
Frontier initiative, interviewing some of the world class Java EE experts.

First, I have to thank my wife and daughter, Erica and Rebeca, respectively, for all the time
they allowed me to put into writing this book. It was not easy for any of us. Also, thank
you to my friends, Lucas and Mari, for all the support and encouragement since day one.
Last but not least, thank you to all the Packt team (Isha, Sreeja, Jason, Prajakta, and others
that I haven't talked personally). You folks rock!

About the reviewers
Romain Manni Bucau is a senior software engineer who has been involved in Java EE and
more particularly Apache projects as a committer (Apache TomEE, OpenWebBeans,
Johnzon, BatchEE, OpenJPA, BVal, Meecrowave, and many more) since 2011. He also wrote
JavaEE 8 High Performance for Packt. He now works at Talend on Big Data and API projects.
You can follow him on Twitter at @rmannibucau or on his blog at
rmannibucau.metawerx.net.

Omar El-Prince is an experienced software engineer with a computer engineering graduate
degree and master's degree in computer science from Johns Hopkins University. He has
wide experience on working in large Java EE projects at CSRA, Booz Allen Hamilton, HP,
EDS, and other companies. He enjoys programming and technology blogging, focused on
agile culture, software development, and architecture. He is Java EE enthusiastic and loves
learning, mentoring, and helping others.

Bauke Scholtz is an Oracle Java champion and the main creator of the award-winning JSF
helper library OmniFaces. On the internet, he is more commonly known as BalusC, who is
among the top contributors on Stack Overflow. He is a web application specialist and
consults for clients from fintech, affiliate marketing, social media, and more as part of his 17
years of experience. Bauke has previously reviewed Mastering OmniFaces and wrote The
Definitive Guide to JSF in Java EE 8.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: New Features and Improvements 8
Running your first Bean Validation 2.0 code 8

Getting ready 9
How to do it... 10
How it works... 11
See also 13

Running your first CDI 2.0 code 13
Getting ready 13
How to do it... 14
How it works... 15
There's more... 16
See also 16

Running your first JAX-RS 2.1 code 16
Getting ready 17
How to do it... 18
How it works... 20
See also 21

Running your first JSF 2.3 code 21
Getting ready 22
How to do it... 22
How it works... 24
There's more... 25
See also 25

Running your first JSON-P 1.1 code 25
Getting ready 25
How to do it... 25
How it works... 26
See also 27

Running your first JSON-B code 27
Getting ready 27
How to do it... 28
How it works... 29
See also 29

Running your first Servlet 4.0 code 29
Getting ready 30
How to do it... 30
How it works... 31

Table of Contents

[ii]

There's more... 31
See also 31

Running your first Security API code 31
Getting ready 32
How to do it... 32
How it works... 36
There's more... 36
See also 36

Running your first MVC 1.0 code 36
Getting ready 37
How to do it... 37
How it works... 38
See also 39

Chapter 2: Server-Side Development 40
Using CDI to inject context and dependency 40

Getting ready 41
How to do it... 41
How it works... 45
There's more... 47
See also 47

Using Bean Validation for data validation 48
Getting ready 48
How to do it... 48
How it works... 50
See also 51

Using servlet for request and response management 51
Getting ready 51
How to do it... 52
How it works... 54
There's more... 54
See also 54

Using Server Push to make objects available beforehand 54
Getting ready 55
How to do it... 55
How it works... 58
There's more... 58
See also 59

Using EJB and JTA for transaction management 59
Getting ready 59
How to do it... 60
How it works... 62
There's more... 63
See also 63

Using EJB to deal with concurrency 63

Table of Contents

[iii]

Getting ready 63
How to do it... 64
How it works... 65
There's more... 66
See also 66

Using JPA for smart data persistence 67
Getting ready 67
How to do it... 67
How it works... 70
See also 71

Using EJB and JPA for data caching 71
Getting ready 72
How to do it... 72
How it works... 73
There's more... 74
See also 74

Using batch processing 74
Getting ready 75
How to do it... 75
How it works... 79
See also 79

Chapter 3: Building Powerful Services with JSON and RESTful Features 80
Building server-side events with JAX-RS 80

Getting ready 81
How to do it... 81
How it works... 85
There's more... 89
See also 89

Improving service's capabilities with JAX-RS and CDI 89
Getting ready 89
How to do it... 90
How it works... 92
There's more... 93
See also 93

Easing data and objects representation with JSON-B 94
Getting ready 94
How to do it... 94
How it works... 96
See also 97

Parsing, generating, transforming, and querying on JSON objects
using JSON-P 97

Getting ready 97
How to do it... 98
How it works... 100

Table of Contents

[iv]

See also 101

Chapter 4: Web- and Client-Server Communication 102
Using servlets for request and response management 102

Getting ready 103
How to do it... 103

The load on startup servlet 103
A servlet with init params 103
The asynchronous servlet 105

How it works... 106
The load on startup servlet 106
A servlet with init params 107
Asynchronous servlet 107

See also 107
Building UI with template's features using JSF 108

Getting ready 108
How to do it... 108
How it works... 110
See also 111

Improving the response performance with Server Push 111
Getting ready 111
How to do it... 112
How it works... 113
There's more... 114
See also 114

Chapter 5: Security of Enterprise Architecture 115
Introduction 115
Domain protection with authentication 116

Getting ready 116
How to do it 116
How it works... 119
See also 121

Granting rights through authorization 121
Getting ready 122
How to do it... 122
How it works... 128
See also 131

Protecting data confidentiality and integrity with SSL/TLS 131
Getting ready 131
How to do it... 132
How it works... 132
There's more... 132
See also 133

Using declarative security 133
Getting ready 133

Table of Contents

[v]

How to do it... 134
How it works... 139
See also 141

Using programmatic security 141
Getting ready 141
How to do it... 142
How it works... 146
See also 148

Chapter 6: Reducing the Coding Effort by Relying on Standards 149
Introduction 149
Preparing your application to use a connection pool 150

Getting ready 151
How to do it... 151
There's more... 155
See also 155

Using messaging services for asynchronous communication 156
Getting ready 156
How to do it... 156
How it works... 159
See also 160

Understanding a servlet's life cycle 160
Getting ready 161
How to do it... 161
How it works... 162
See also 163

Transaction management 163
Getting ready 163
How to do it... 164
How it works... 166
See also 166

Chapter 7: Deploying and Managing Applications on Major Java EE
Servers 167

Introduction 167
Apache TomEE usage 168

Getting ready 168
How to do it... 168

Deploying EAR, WAR, and JAR files 168
Creating datasources and a connection pool 168
Logging setup and rotate 169
Starting and stopping 169
Session clustering 170

There's more... 171
See also 172

GlassFish usage 172

Table of Contents

[vi]

Getting ready 172
How to do it... 172

Deploying EAR, WAR, and JAR files 172
Creating datasources and a connection pool 172
Logging setup and rotate 173
Starting and stopping 175
Session clustering 175

There's more... 176
See also 177

WildFly usage 177
Getting ready 177
How to do it... 177

Deploying EAR, WAR, and JAR files 177
Creating datasources and a connection pool 178
Logging setup and rotate 179
Starting and stopping 180
Session clustering 181

There's more... 181
See also 182

Chapter 8: Building Lightweight Solutions Using Microservices 183
Introduction 183
Building microservices from a monolith 184

Getting ready 184
How to do it... 184

Building a monolith 185
Building microservices from the monolith 191

The user microservice 191
The user address microservice 191
The gateway microservice 193

How it works... 195
The monolith 195
The microservices 195

There's more... 198
See also 199

Building decoupled services 199
Getting ready 200
How to do it... 200
How it works... 202
See also 204

Building an automated pipeline for microservices 204
Getting ready 206

Preparing the application 206
Preparing the environment 206

How to do it... 207
Continuous integration 207

Git 207
Maven 207

Table of Contents

[vii]

JUnit 209
Continuous delivery 210
Continuous deployment 212

There's more... 213
See also 213

Chapter 9: Using Multithreading on Enterprise Context 214
Introduction 214
Building asynchronous tasks with returning results 215

Getting ready 215
How to do it... 215
How it works... 218
See also 219

Using transactions with asynchronous tasks 219
Getting ready 220
How to do it... 220
How it works... 223
See also 225

Checking the status of asynchronous tasks 225
Getting ready 226
How to do it... 226
How it works... 229
See also 231

Building managed threads with returning results 231
Getting ready 231
How to do it... 231
How it works... 233
See also 234

Scheduling asynchronous tasks with returning results 234
Getting ready 234
How to do it... 235
How it works... 237
See also 237

Using injected proxies for asynchronous tasks 238
Getting ready 238
How to do it... 238
How it works... 241
See also 242

Chapter 10: Using Event-Driven Programming to Build Reactive
Applications 243

Introduction 243
Building reactive applications using asynchronous servlets 244

Getting ready 244
How to do it... 244
How it works... 246

Table of Contents

[viii]

See also 247
Building reactive applications using events and observers 247

Getting ready 247
How to do it... 248
How it works... 249
See also 249

Building reactive applications using websockets 250
Getting ready 250
How to do it... 250
How it works... 252
See also 254

Building reactive applications using message-driven beans 254
Getting ready 255
How to do it... 255
How it works... 257
See also 259

Building reactive applications using JAX-RS 259
Getting ready 259
How to do it... 259
How it works... 262
See also 263

Building reactive applications using asynchronous session beans 263
Getting ready 263
How to do it... 263
How it works... 265
See also 266

Using lambdas and CompletableFuture to improve reactive
applications 266

Getting ready 267
How to do it... 267
How it works... 268
See also 269

Chapter 11: Rising to the Cloud – Java EE, Containers, and Cloud
Computing 270

Introduction 270
Building Java EE containers using Docker 271

Getting ready 272
How to do it... 272
How it works... 274
See also 277

Using Oracle Cloud for container orchestration in the cloud 277
Getting ready 277
How to do it... 278
How it works... 298

Table of Contents

[ix]

There's more... 298
Using Jelastic for container orchestration in the cloud 298

Getting ready 299
How to do it... 299
How it works... 310
There's more... 310

Using OpenShift for container orchestration in the cloud 310
Getting ready 310
How to do it... 311
How it works... 321
There's more... 321
See also 321

Using AWS for container orchestration in the cloud 321
Getting ready 322
How to do it... 322
How it works... 336
There's more... 336

Chapter 12: Appendix: The Power of Sharing Knowledge 337
Introduction 337
Why contributing to the Adopt a JSR program can make you a
better professional 338

Understanding the Adopt a JSR program 338
Collaborating on the future of Java EE 340
Setting yourself up for collaboration 340

Set aside a specific time for it 341
Choose where you'll concentrate your effort 341
Do it! 341

The secret to unstucking your project, your career... even your life! 341

Other Books You May Enjoy 348

Index 351

Preface
Java EE is a mature platform that's widely used around the world. It is also a standard that
has evolved through the hard work of individuals, vendors, groups leaders, and
communities. It has a whole market and ecosystem around it, with millions of users, which
also means a big and active community that is always willing to help it move forward.

For those reasons, the purpose of this book is to meet the needs of those professionals who
depend on Java EE to deliver really awesome enterprise solutions, not only talking about
real solutions for real problems, but also showing how to do it in a practical way.

The book starts with a quick overview of what Java EE and the improvements in version 8.
Then, it takes you on a hands-on journey through the most important APIs.

You will learn how to use Java EE for server-side development, web services, and web
applications. You will also take a look at how you can properly improve the security of your
enterprise solutions.

No Java EE application is good enough if it doesn't follow the standards, and for that, you
can count on the Java EE application servers. This book will teach you how to use the most
important servers on the market and take the best they have to offer for your project.

From an architectural point of view, the book will cover microservices, cloud computing,
and containers. Also, it will not forget to give you all tools for building a reactive Java EE
application using not only Java EE features, but also Java core features such as lambdas and
completable future.

The whole Java world is all about the community, so we will also show you how
community-driven professionals can improve the results of their projects and even go to
higher levels in their careers.

Preface

[2]

The book was based on a concept that I call "The Five Mistakes That Keep Java EE Professionals
Away From Great Projects." I am ruining my career when I don't do the following things:

Keep myself up to date
Know the APIs (an overview of all of them and master the most important ones)
Know the most commonaly used Java EE application servers
Know advanced architectures
Share what I know

So, the book is a straight, practical, and helpful solution to each one of these mistakes. I can
say with confidence that dealing with them properly can change the careers and lives of
many developers around the world. I know because they've changed mine, for good.

Who this book is for
This book is made for developers who would like to learn how to meet real enterprise
application needs using Java EE 8. They should be familiar with application development
and need to have knowledge of least basic Java, the basic concepts of cloud computing, and
web services.

The readers should want to learn how to combine a bunch of APIs in a secure and fast
solution, and for this, they need to know how the APIs work and when to use each one.

What this book covers
Chapter 1, New Features and Improvements, explains the main changes to the Java EE 8
specification and what the reader can do with them. It also shows the new features and
briefly explores the benefits of them. All these topics are supported by code examples.

Chapter 2, Server-Side Development, deep dives into the most important APIs and most
commonly used features for server-side development. The readers here will go through real
recipes for solving real problems.

Chapter 3, Building Powerful Services with JSON and RESTful Features, creates web services
for different enterprise scenarios. Readers will go deep into the JAX-RS, JSON-P, and JSON-
B APIs.

Preface

[3]

Chapter 4, Web- and Client-Server Communication, deals with the communication generated
by web applications in a fast and reliable way using the latest Java EE 8 features, such as
HTTP2 and Server Push.

Chapter 5, Security of Enterprise Architecture, gives the readers information on the tools
using the best Java EE features to create secure architectures.

Chapter 6, Reducing the Coding Effort by Relying on Standards, describes the services and
features that Java EE application servers give to the applications they host. Those features
not only let the readers rely on a standard and build their application based on it, but also
allow them to write less code, as they don't need to implement features that have been
already implemented by the server.

Chapter 7, Deploying and Managing Applications on Major Java EE Servers, describes the use
of each of the most commonly used Java EE application servers on the market, giving
special attention to the way you deploy and manage them.

Chapter 8, Building Lightweight Solutions Using Microservices, makes you understand how
microservice architectures work and how readers can easily use Java EE 8 to build
microservice and/or break down their monoliths in order to implement this paradigm.

Continuous Delivery and Continuous Deployment are also described, as no successful
microservice project is complete without a mature building and deployment process.

Chapter 9, Using Multithreading on Enterprise Context, describes the use of multithreading
and concurrency when building enterprise applications.

Chapter 10, Using Event-Driven Programming to Build Reactive Applications, describes the use
of Java EE 8 and core Java to create low-latency, efficient, and high-throughput applications.

Chapter 11, Rising to the Cloud – Java EE, Containers, and Cloud Computing, describes how to
combine Java EE and containers to run applications on the cloud.

Appendix, The Power of Sharing Knowledge, describes how the community is vital for the
whole Java EE ecosystem (even if readers don't know about it) and how they can improve
their own daily work by joining the Adopt a JSR initiative.

It also describes how sharing knowledge is a powerful tool for improving their careers and
what it has to do with Java EE (and it has everything to do with Java EE!).

Preface

[4]

To get the most out of this book
Readers should be familiar with application development and need to have at least basic
knowledge of Java. Basic knowledge of cloud computing and web services are also
assumed.

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Java-EE-8-Cookbook. In case there's an update
to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Java-EE-8-Cookbook
https://github.com/PacktPublishing/Java-EE-8-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[5]

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Then two key methods from SseResource take place."

A block of code is set as follows:

<dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
</dependency>

Any command-line input or output is written as follows:

Info: destroy

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Now let's move to the Additional Properties section."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

Preface

[6]

How to do it...
This section contains the steps required to follow the recipe.

How it works...
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

http://www.packtpub.com/submit-errata

Preface

[7]

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://authors.packtpub.com/
https://www.packtpub.com/

1
New Features and

Improvements
Java EE 8 is a big release, desired and anticipated by the global community for about four
years. More than ever before, the whole platform is now even more robust, mature, and
stable.

This chapter will cover the main APIs that we can highlight for Java EE 8. Not that they are
the only topics covered by this release—far from it—but they have a big role in the
enterprise context and are worthy of a careful look inside.

In this chapter, we will cover the following recipes:

Running your first Bean Validation 2.0 code
Running your first CDI 2.0 code
Running your first JAX-RS 2.1 code
Running your first JSF 2.3 code
Running your first JSON-P 1.1 code
Running your first JSON-B 1.0
Running your first Servlet 4.0 code
Running your first Security API 1.0
Running your first MVC 1.0 code

Running your first Bean Validation 2.0 code
Bean Validation is a Java specification that basically helps you to protect your data.
Through its API, you can validate fields and parameters, express constraints using
annotations, and extend your customs' validation rules.

New Features and Improvements Chapter 1

[9]

It can be used both with Java SE and Java EE.

In this recipe, you will have a glimpse of Bean Validation 2.0. It doesn't matter whether you
are new to it or already using version 1.1; this content will help you get familiar with some
of its new features.

Getting ready
First, you need to add the right Bean Validation dependency to your project, as follows:

<dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.12</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.hamcrest</groupId>
 <artifactId>hamcrest-core</artifactId>
 <version>1.3</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.hibernate.validator</groupId>
 <artifactId>hibernate-validator</artifactId>
 <version>6.0.8.Final</version>
 </dependency>
 <dependency>
 <groupId>org.glassfish</groupId>
 <artifactId>javax.el</artifactId>
 <version>3.0.1-b10</version>
 </dependency>
</dependencies>

New Features and Improvements Chapter 1

[10]

How to do it...
First, we need to create an object with some fields to be validated:1.

public class User {

 @NotBlank
 private String name;
 @Email
 private String email;
 @NotEmpty
 private List<@PositiveOrZero Integer> profileId;
 public User(String name, String email, List<Integer> profileId)
{
 this.name = name;
 this.email = email;
 this.profileId = profileId;
 }
}

Then we create a test class to validate those constraints:2.

public class UserTest {

 private static Validator validator;

 @BeforeClass
 public static void setUpClass() {
 validator = Validation.buildDefaultValidatorFactory()
 .getValidator();
 }

 @Test
 public void validUser() {
 User user = new User(
 "elder",
 "elder@eldermoraes.com",
 asList(1,2));

 Set<ConstraintViolation<User>> cv = validator
 .validate(user);
 assertTrue(cv.isEmpty());
 }

 @Test
 public void invalidName() {
 User user = new User(

New Features and Improvements Chapter 1

[11]

 "",
 "elder@eldermoraes.com",
 asList(1,2));

 Set<ConstraintViolation<User>> cv = validator
 .validate(user);
 assertEquals(1, cv.size());
 }

 @Test
 public void invalidEmail() {
 User user = new User(
 "elder",
 "elder-eldermoraes_com",
 asList(1,2));

 Set<ConstraintViolation<User>> cv = validator
 .validate(user);
 assertEquals(1, cv.size());
 }

 @Test
 public void invalidId() {
 User user = new User(
 "elder",
 "elder@eldermoraes.com",
 asList(-1,-2,1,2));

 Set<ConstraintViolation<User>> cv = validator
 .validate(user);
 assertEquals(2, cv.size());
 }
}

How it works...
Our User class uses three of the new constraints introduced by Bean Validation 2.0:

@NotBlank: Assures that the value is not null, empty, or an empty string (it trims
the value before evaluation, to make sure there aren't spaces).
@Email: Allows only a valid email format. Forget those crazy JavaScript
functions!
@NotEmpty: Ensures that a list has at least one item.
@PositiveOrZero: Guarantees that a number is equal or greater than zero.

New Features and Improvements Chapter 1

[12]

Then we create a test class (using JUnit) to test our validations. It first
instantiates Validator:

@BeforeClass
public static void setUpClass() {
 validator = Validation.buildDefaultValidatorFactory().getValidator();
}

Validator is an API that validates beans according to the constraints defined for them.

Our first test method tests a valid user, which is a User object that has:

Name not empty
Valid email
profileId list only with integers greater than zero:

User user = new User(
 "elder",
 "elder@eldermoraes.com",
 asList(1,2));

And finally, the validation:

Set<ConstraintViolation<User>> cv = validator.validate(user);

The validate() method from Validator returns a set of constraint violations found, if
any, or an empty set if there are no violations at all.

So, for a valid user it should return an empty set:

assertTrue(cv.isEmpty());

And the other methods work with variations around this model:

invalidName(): Uses an empty name
invalidEmail(): Uses a malformed email
invalidId(): Adds some negative numbers to the list

Note that the invalidId() method adds two negative numbers to the list:

asList(-1,-2,1,2));

So, we expect two constraint violations:

assertEquals(2, cv.size());

New Features and Improvements Chapter 1

[13]

In other words, Validator checks not only the constraints violated, but how many times
they are violated.

See also
You can check the Bean Validation 2.0 specification at http:/ ​/​beanvalidation.
org/​2. ​0/ ​spec/ ​

The full source code of this recipe is at https:/ ​/​github. ​com/ ​eldermoraes/
javaee8- ​cookbook/ ​tree/ ​master/ ​chapter01/ ​ch01- ​beanvalidation/ ​

Running your first CDI 2.0 code
Context and Dependency Injection (CDI) is certainly one of the most important APIs for
the Java EE platform. In version 2.0, it also works with Java SE.

Nowadays, CDI has an impact on many other APIs in the Java EE platform. As said in an
interview for Java EE 8 – The Next Frontier project:

"If there was CDI by the time we created JSF, it would be made completely different."
 – Ed Burns, JSF Spec Lead

There is a lot of new features in CDI 2.0. This recipe will cover Observer Ordering to give
you a quick start.

Getting ready
First, you need to add the right CDI 2.0 dependency to your project. To make things easier
at this point, we are going to use CDI SE, the dependency that allows you to use CDI
without a Java EE server:

<dependency>
 <groupId>org.jboss.weld.se</groupId>
 <artifactId>weld-se-shaded</artifactId>
 <version>3.0.0.Final</version>
</dependency>

http://beanvalidation.org/2.0/spec/
http://beanvalidation.org/2.0/spec/
http://beanvalidation.org/2.0/spec/
http://beanvalidation.org/2.0/spec/
http://beanvalidation.org/2.0/spec/
http://beanvalidation.org/2.0/spec/
http://beanvalidation.org/2.0/spec/
http://beanvalidation.org/2.0/spec/
http://beanvalidation.org/2.0/spec/
http://beanvalidation.org/2.0/spec/
http://beanvalidation.org/2.0/spec/
http://beanvalidation.org/2.0/spec/
http://beanvalidation.org/2.0/spec/
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-beanvalidation/
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-beanvalidation/
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-beanvalidation/
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-beanvalidation/
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-beanvalidation/
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-beanvalidation/
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-beanvalidation/
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-beanvalidation/
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-beanvalidation/
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-beanvalidation/
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-beanvalidation/
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-beanvalidation/
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-beanvalidation/
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-beanvalidation/
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-beanvalidation/
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-beanvalidation/
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-beanvalidation/
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-beanvalidation/
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-beanvalidation/
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-beanvalidation/
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-beanvalidation/
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-beanvalidation/
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-beanvalidation/

New Features and Improvements Chapter 1

[14]

How to do it...
This recipe will show you one of the main features introduced by CDI 2.0: Ordered
Observers. Now, you can turn the observers job into something predictable:

First, let's make an event to be observed:1.

public class MyEvent {
 private final String value;
 public MyEvent(String value){
 this.value = value;
 }
 public String getValue(){
 return value;
 }
}

Now, we build our observers and the server that will fire them:2.

public class OrderedObserver {

 public static void main(String[] args){
 try(SeContainer container =
 SeContainerInitializer.newInstance().initialize()){
 container
 .getBeanManager()
 .fireEvent(new MyEvent("event: " +
 System.currentTimeMillis()));
 }
 }

 public void thisEventBefore(
 @Observes @Priority(Interceptor.Priority
 .APPLICATION - 200)
 MyEvent event){
 System.out.println("thisEventBefore: " + event.getValue());
 }

 public void thisEventAfter(
 @Observes @Priority(Interceptor.Priority
 .APPLICATION + 200)
 MyEvent event){
 System.out.println("thisEventAfter: " + event.getValue());
 }
}

New Features and Improvements Chapter 1

[15]

Also, don't forget to add the beans.xml file into the META-INF folder:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"
 bean-discovery-mode="all">
</beans>

Once you run it, you should see a result like this:3.

INFO: WELD-ENV-002003: Weld SE container
353db40d-e670-431d-b7be-4275b1813782 initialized
 thisEventBefore: event -> 1501818268764
 thisEventAfter: event -> 1501818268764

How it works...
First, we are building a server to manage our event and observers:

public static void main(String[] args){
 try(SeContainer container =
 SeContainerInitializer.newInstance().initialize()){
 container
 .getBeanManager()
 .fireEvent(new ExampleEvent("event: "
 + System.currentTimeMillis()));
 }
}

This will give us all the resources needed to run the recipe as if it was a Java EE server.

Then we build an observer:

public void thisEventBefore(
 @Observes @Priority(Interceptor.Priority.APPLICATION - 200)
 MyEvent event){
 System.out.println("thisEventBefore: " + event.getValue());
}

New Features and Improvements Chapter 1

[16]

So, we have three important topics:

@Observes: This annotation is used to tell the server that it needs to watch the
events fired with MyEvent
@Priority: This annotation informs in which priority order this observer needs
to run; it receives an int parameter, and the execution order is ascendant
MyEvent event: The event being observed

On the thisEventBefore method and thisEventAfter, we only changed the
@Priority value and the server took care of running it in the right order.

There's more...
The behavior would be exactly the same in a Java EE 8 server. You just wouldn't need
SeContainerInitializer and would need to change the dependencies to the following:

<dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
</dependency>

See also
You can stay tuned with everything related to the CDI Specification at http:/ ​/
www.​cdi- ​spec. ​org/ ​

The source code of this recipe is at https:/ ​/ ​github. ​com/ ​eldermoraes/ ​javaee8-
cookbook/ ​tree/ ​master/ ​chapter01/ ​ch01- ​cdi

Running your first JAX-RS 2.1 code
JAX-RS is an API designed to give a portable and standard way for building RESTful web
services in Java. This is one of the most used technologies for data transporting between
different applications that uses some network (internet included) for communication.

http://www.cdi-spec.org/
http://www.cdi-spec.org/
http://www.cdi-spec.org/
http://www.cdi-spec.org/
http://www.cdi-spec.org/
http://www.cdi-spec.org/
http://www.cdi-spec.org/
http://www.cdi-spec.org/
http://www.cdi-spec.org/
http://www.cdi-spec.org/
http://www.cdi-spec.org/
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-cdi

New Features and Improvements Chapter 1

[17]

One of the coolest features introduced by the 2.1 release is Server-Sent Events (SSE), which
will be covered in this recipe. SSE is a specification created by HTML5 where it has
established a channel between server and client, one way only from server to client. It is a
protocol that transports a message containing some data.

Getting ready
Let's start by adding the right dependency to our project:

 <dependencies>
 <dependency>
 <groupId>org.glassfish.jersey.containers</groupId>
 <artifactId>jersey-container-grizzly2-http</artifactId>
 <version>2.26-b09</version>
 </dependency>
 <dependency>
 <groupId>org.glassfish.jersey.inject</groupId>
 <artifactId>jersey-hk2</artifactId>
 <version>2.26-b09</version>
 </dependency>
 <dependency>
 <groupId>org.glassfish.jersey.media</groupId>
 <artifactId>jersey-media-sse</artifactId>
 <version>2.26-b09</version>
 </dependency>
 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>

You surely noticed that we are using Jersey here. Why? Because Jersey is the reference
implementation for JAX-RS, which means that all JAX-RS specifications are first
implemented through Jersey.

Moreover, with Jersey we can use Grizzly to start a small local server, which will be useful
for this recipe, as we need just a few server features to show the SSE behavior.

Further on in this book, we will use a full GlassFish to build more JAX-RS recipes.

New Features and Improvements Chapter 1

[18]

How to do it...
First, we create a class that will be our server:1.

public class ServerMock {

 public static final URI CONTEXT =
 URI.create("http://localhost:8080/");
 public static final String BASE_PATH = "ssevents";

 public static void main(String[] args) {
 try {
 final ResourceConfig resourceConfig = new
 ResourceConfig(SseResource.class);

 final HttpServer server =
 GrizzlyHttpServerFactory.createHttpServer(CONTEXT,
 resourceConfig, false);
 server.start();

 System.out.println(String.format("Mock Server started
 at %s%s", CONTEXT, BASE_PATH));

 Thread.currentThread().join();
 } catch (IOException | InterruptedException ex) {
 System.out.println(ex.getMessage());
 }
 }
}

Then, we create a JAX-RS endpoint to send the events to the clients:2.

@Path(ServerMock.BASE_PATH)
public class SseResource {

 private static volatile SseEventSink SINK = null;

 @GET
 @Produces(MediaType.SERVER_SENT_EVENTS)
 public void getMessageQueue(@Context SseEventSink sink) {
 SseResource.SINK = sink;
 }

 @POST
 public void addMessage(final String message, @Context Sse sse)
 throws IOException {
 if (SINK != null) {

New Features and Improvements Chapter 1

[19]

 SINK.send(sse.newEventBuilder()
 .name("sse-message")
 .id(String.valueOf(System.currentTimeMillis()))
 .data(String.class, message)
 .comment("")
 .build());
 }
 }
}

Then, we create a client class to consume the events generated from the server:3.

public class ClientConsumer {

 public static final Client CLIENT = ClientBuilder.newClient();
 public static final WebTarget WEB_TARGET =
 CLIENT.target(ServerMock.CONTEXT
 + BASE_PATH);
 public static void main(String[] args) {
 consume();
 }

 private static void consume() {

 try (final SseEventSource sseSource =
 SseEventSource
 .target(WEB_TARGET)
 .build()) {

 sseSource.register(System.out::println);
 sseSource.open();

 for (int counter=0; counter < 5; counter++) {
 System.out.println(" ");
 for (int innerCounter=0; innerCounter < 5;
 innerCounter++) {
 WEB_TARGET.request().post(Entity.json("event "
 + innerCounter));
 }
 Thread.sleep(1000);
 }
 CLIENT.close();
 System.out.println("\n All messages consumed");
 } catch (InterruptedException e) {
 System.out.println(e.getMessage());
 }
 }
}

New Features and Improvements Chapter 1

[20]

To try it out, you have to first run the ServerMock class and then the ClientConsumer
class. If everything worked well, you should see something like this:

InboundEvent{name='sse-message', id='1502228257736', comment='',
data=event 0}
 InboundEvent{name='sse-message', id='1502228257753', comment='',
data=event 1}
 InboundEvent{name='sse-message', id='1502228257758', comment='',
data=event 2}
 InboundEvent{name='sse-message', id='1502228257763', comment='',
data=event 3}
 InboundEvent{name='sse-message', id='1502228257768', comment='',
data=event 4}

These are the messages sent from the server to the client.

How it works...
This recipe is made up of three parts:

The server, represented by the ServerMock class
The SSE engine, represented by the SseResource class
The client, represented by the ClientConsumer class

So once ServerMock is instantiated, it registers the SseResource class:

final ResourceConfig resourceConfig = new
ResourceConfig(SseResource.class);
final HttpServer server =
GrizzlyHttpServerFactory.createHttpServer(CONTEXT, resourceConfig, false);
server.start();

Then two key methods from SseResource take place. The first one adds messages to the
server queue:

addMessage(final String message, @Context Sse sse)

New Features and Improvements Chapter 1

[21]

The second one consumes this queue and sends the messages to the clients:

@GET
@Produces(MediaType.SERVER_SENT_EVENTS)
public void getMessageQueue(@Context SseEventSink sink)

Note that this one has a media type SERVER_SENT_EVENTS, introduced in this version for
this very purpose. And finally, we have our client. In this recipe, it is both posting and
consuming messages.

It consumes here:

sseSource.register(System.out::println);
sseSource.open();

It posts here:

ServerMock.WEB_TARGET.request().post(Entity.json("event " + innerCounter));

See also
You can stay tuned with everything related to JAX-RS at https:/ ​/​github. ​com/
jax-​rs

The source code of this recipe is at https:/ ​/ ​github. ​com/ ​eldermoraes/ ​javaee8-
cookbook/ ​tree/ ​master/ ​chapter01/ ​ch01- ​jaxrs

Running your first JSF 2.3 code
JavaServer Faces (JSF) is the Java technology made to simplify the process of building a
UIs, despite how it's made for the frontend and the UI is built in the backend.

With JSF, you can build components and use (or reuse) them in the UI in an extensible way.
You can also use other powerful APIs, such as CDI and Bean Validation, to improve your
application and its architecture.

In this recipe, we will use the Validator and Converter interfaces with the new feature
introduced by version 2.3, which is the possibility of using them with generic parameters.

https://github.com/jax-rs
https://github.com/jax-rs
https://github.com/jax-rs
https://github.com/jax-rs
https://github.com/jax-rs
https://github.com/jax-rs
https://github.com/jax-rs
https://github.com/jax-rs
https://github.com/jax-rs
https://github.com/jax-rs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jaxrs

New Features and Improvements Chapter 1

[22]

Getting ready
First, we need to add the dependencies needed:

 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>

How to do it...
Let's create a User class as the main object of our recipe:1.

public class User implements Serializable {

 private String name;
 private String email;

 public User(String name, String email) {
 this.name = name;
 this.email = email;
 }
 //DON'T FORGET THE GETTERS AND SETTERS
 //THIS RECIPE WON'T WORK WITHOUT THEM
}

Now, we create a UserBean class to manage our UI:2.

@Named
@ViewScoped
public class UserBean implements Serializable {

 private User user;
 public UserBean(){
 user = new User("Elder Moraes", "elder@eldermoraes.com");
 }

 public void userAction(){
 FacesContext.getCurrentInstance().addMessage(null,
 new FacesMessage("Name|Password welformed"));
 }

 //DON'T FORGET THE GETTERS AND SETTERS

New Features and Improvements Chapter 1

[23]

 //THIS RECIPE WON'T WORK WITHOUT THEM
}

Now, we implement the Converter interface with a User parameter:3.

@FacesConverter("userConverter")
public class UserConverter implements Converter<User> {

 @Override
 public String getAsString(FacesContext fc, UIComponent uic,
 User user) {
 return user.getName() + "|" + user.getEmail();
 }

 @Override
 public User getAsObject(FacesContext fc, UIComponent uic,
 String string) {
 return new User(string.substring(0, string.indexOf("|")),
 string.substring(string.indexOf("|") + 1));
 }

}

Now, we implement the Validator interface with a User parameter:4.

@FacesValidator("userValidator")
public class UserValidator implements Validator<User> {

 @Override
 public void validate(FacesContext fc, UIComponent uic,
 User user)
 throws ValidatorException {
 if(!user.getEmail().contains("@")){
 throw new ValidatorException(new FacesMessage(null,
 "Malformed e-mail"));
 }
 }
}

And then we create our UI using all of them:5.

<h:body>
 <h:form>
 <h:panelGrid columns="3">
 <h:outputLabel value="Name|E-mail:"
 for="userNameEmail"/>
 <h:inputText id="userNameEmail"
 value="#{userBean.user}"

New Features and Improvements Chapter 1

[24]

 converter="userConverter" validator="userValidator"/>
 <h:message for="userNameEmail"/>
 </h:panelGrid>
 <h:commandButton value="Validate"
 action="#{userBean.userAction()}"/>
 </h:form>
</h:body>

Don't forget to run it in a Java EE 8 server.

How it works...
The UserBean class manages the communication between the UI and the server. Once you
instantiate the user object, it is available for both of them.

That's why when you run it, the Name | E-mail is already filled (the user object is
instantiated when the UserBean class is created by the server).

We associated the userAction() method from the UserBean class to the Validate button
of the UI:

<h:commandButton value="Validate" action="#{userBean.userAction()}"/>

You can create other methods in UserBean and do the same to empower your application.

The whole core of our recipe is represented by just a single line in the UI:

<h:inputText id="userNameEmail" value="#{userBean.user}"
converter="userConverter" validator="userValidator"/>

So, our two implemented interfaces used here are userConverter and userValidator.

Basically, the UserConverter class (with getAsString and getAsObject methods)
converts an object to/from a string and vice versa, according to the logic defined by you.

We have just mentioned it in the preceding code snippet:

value="#{userBean.user}"

The server uses the userConverter object, calls the getAsString method, and prints the
result using the preceding expression language.

New Features and Improvements Chapter 1

[25]

Finally, the UserValidator class is automatically called when you submit the form, by
calling its validate method, and applying the rules defined by you.

There's more...
You could increase the validators by adding a Bean Validation on it and, for example,
defining the email property from User with an @Email constraint.

See also
You can stay tuned with everything related to JSF at https:/ ​/​javaserverfaces.
github.​io/ ​

The source code of this recipe is at https:/ ​/ ​github. ​com/ ​eldermoraes/ ​javaee8-
cookbook/ ​tree/ ​master/ ​chapter01/ ​ch01- ​jsf

Running your first JSON-P 1.1 code
JSON-Pointer is the Java API for JSON processing. By processing, we mean generating,
transforming, parsing, and querying JSON strings and/or objects.

In this recipe, you will learn how to use JSON Pointer to get a specific value from a JSON
message in a very easy way.

Getting ready
Let's get our dependency:

<dependency>
 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>
</dependency>

https://javaserverfaces.github.io/
https://javaserverfaces.github.io/
https://javaserverfaces.github.io/
https://javaserverfaces.github.io/
https://javaserverfaces.github.io/
https://javaserverfaces.github.io/
https://javaserverfaces.github.io/
https://javaserverfaces.github.io/
https://javaserverfaces.github.io/
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsf

New Features and Improvements Chapter 1

[26]

How to do it...
First, we define a JSON message to represent a User object:1.

{
 "user": {
 "email": "elder@eldermoraes.com",
 "name": "Elder",
 "profile": [
 {
 "id": 1
 },
 {
 "id": 2
 },
 {
 "id": 3
 }
]
 }
}

Now, we create a method to read it and print the values we want:2.

public class JPointer {

 public static void main(String[] args) throws IOException{
 try (InputStream is =
JPointer.class.getClassLoader().getResourceAsStream("user.json");
 JsonReader jr = Json.createReader(is)) {

 JsonStructure js = jr.read();
 JsonPointer jp = Json.createPointer("/user/profile");
 JsonValue jv = jp.getValue(js);
 System.out.println("profile: " + jv);
 }
 }
}

The execution of this code prints the following:

profile: [{"id":1},{"id":2},{"id":3}]

New Features and Improvements Chapter 1

[27]

How it works...
The JSON Pointer is a standard defined by the Internet Engineering Task Force (IETF)
under Request for Comments (RFC) 6901. The standard basically says that a JSON Pointer
is a string that identifies a specific value in a JSON document.

Without a JSON Pointer, you would need to parse the whole message and iterate through it
until you find the desired value; probably lots of ifs, elses, and things like that.

So, JSON Pointer helps you to decrease the written code dramatically by doing this kind of
operation in a very elegant way.

See also
You can stay tuned with everything related to JSON-P at https:/ ​/​javaee.
github.​io/ ​jsonp/ ​

The source code of this recipe is at https:/ ​/ ​github. ​com/ ​eldermoraes/ ​javaee8-
cookbook/ ​tree/ ​master/ ​chapter01/ ​ch01- ​jsonp

Running your first JSON-B code
JSON-B is an API for converting Java objects to/from JSON messages in a standardized way.
It defines a default mapping algorithm to convert Java classes to JSON and still lets you
customize your own algorithms.

With JSON-B, Java EE now has a complete set of tools to work with JSON, such as JSON
API, and JSON-P. No third-party frameworks are needed anymore (although you are still
free to use them).

This quick recipe will show you how to use JSON-B to convert a Java object to and from a
JSON message.

Getting ready
Let's add our dependencies to the project:

 <dependencies>
 <dependency>
 <groupId>org.eclipse</groupId>

https://javaee.github.io/jsonp/
https://javaee.github.io/jsonp/
https://javaee.github.io/jsonp/
https://javaee.github.io/jsonp/
https://javaee.github.io/jsonp/
https://javaee.github.io/jsonp/
https://javaee.github.io/jsonp/
https://javaee.github.io/jsonp/
https://javaee.github.io/jsonp/
https://javaee.github.io/jsonp/
https://javaee.github.io/jsonp/
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonp

New Features and Improvements Chapter 1

[28]

 <artifactId>yasson</artifactId>
 <version>1.0</version>
 </dependency>
 <dependency>
 <groupId>org.glassfish</groupId>
 <artifactId>javax.json</artifactId>
 <version>1.1</version>
 </dependency>
 </dependencies>

How to do it...
Let's create a User class as a model for our JSON message:1.

public class User {

 private String name;
 private String email;

 public User(){
 }

 public User(String name, String email) {
 this.name = name;
 this.email = email;
 }

 @Override
 public String toString() {
 return "User{" + "name=" + name + ", email=" + email + '}';
 }

 //DON'T FORGET THE GETTERS AND SETTERS
 //THIS RECIPE WON'T WORK WITHOUT THEM

}

Then, let's create a class to use JSON-B to transform an object:2.

public class JsonBUser {
 public static void main(String[] args) throws Exception {
 User user = new User("Elder", "elder@eldermoraes.com");
 Jsonb jb = JsonbBuilder.create();
 String jsonUser = jb.toJson(user);
 User u = jb.fromJson(jsonUser, User.class);
 jb.close();

New Features and Improvements Chapter 1

[29]

 System.out.println("json: " + jsonUser);
 System.out.println("user: " + u);
 }
}

The result printed is:

json: {"email":"elder@eldermoraes.com","name":"Elder"}
 user: User{name=Elder, email=elder@eldermoraes.com}

The first line is the object transformed into a JSON string. The second is the same string
converted into an object.

How it works...
It uses the getters and setters defined in the User class to transform both ways and that's
why they are so important.

See also
You can stay tuned with everything related to JSON-B at http:/ ​/​json- ​b.​net/ ​

The source code of this recipe is at https:/ ​/ ​github. ​com/ ​eldermoraes/ ​javaee8-
cookbook/ ​tree/ ​master/ ​chapter01/ ​ch01- ​jsonb

Running your first Servlet 4.0 code
Servlet 4.0 is one the of biggest APIs of Java EE 8. Since the very beginning of the Java EE
platform (the old J2EE), the Servlet specification has always played a key role.

The coolest additions of this version are surely HTTP/2.0 and Server Push. Both of them
bring performance improvements to your application.

This recipe will use Server Push to do one of the most basic tasks in a web page—loading an
image.

http://json-b.net/
http://json-b.net/
http://json-b.net/
http://json-b.net/
http://json-b.net/
http://json-b.net/
http://json-b.net/
http://json-b.net/
http://json-b.net/
http://json-b.net/
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-jsonb

New Features and Improvements Chapter 1

[30]

Getting ready
Let's add the dependencies that we need:

<dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
</dependency>

How to do it...
We will create a servlet:1.

@WebServlet(name = "ServerPush", urlPatterns = {"/ServerPush"})
public class ServerPush extends HttpServlet {

 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse
 response) throws ServletException, IOException {

 PushBuilder pb = request.newPushBuilder();
 if (pb != null) {
 pb.path("images/javaee-logo.png")
 .addHeader("content-type", "image/png")
 .push();
 }

 try (PrintWriter writer = response.getWriter();) {
 StringBuilder html = new StringBuilder();
 html.append("<html>");
 html.append("<center>");
 html.append("
");
 html.append("<h2>Image pushed by ServerPush</h2>");
 html.append("</center>");
 html.append("</html>");
 writer.write(html.toString());
 }
 }
}

New Features and Improvements Chapter 1

[31]

To try it, run the project in a Java EE 8 server and open this URL:2.

https://localhost:8080/ch01-servlet/ServerPush

How it works...
We use the PushBuilder object to send an image to the client before it is requested by the
img src tag. In other words, the browser doesn't need to do another request (what it
usually does with img src) to have an image available for rendering.

It might seem as if it doesn't make too much difference for a single image, but it would with
dozens, hundreds, or thousands of images. Less traffic for your client and from your server.
Better performance for all!

There's more...
If you are using JSF, you can get the benefits from Server Push for free! You don't even need
to rewrite a single line of your code, as JSF relies on the Server Push specification.

Just make sure that you run it under the HTTPS protocol, as HTTP/2.0 only works under it.

See also
You can stay tuned with everything related to the Servlet specification at https:/
/​github. ​com/ ​javaee/ ​servlet- ​spec

The source code of this recipe is at https:/ ​/ ​github. ​com/ ​eldermoraes/ ​javaee8-
cookbook/ ​tree/ ​master/ ​chapter01/ ​ch01- ​servlet

Running your first Security API code
Security is one of the top concerns when you build an enterprise application. Luckily, the
Java EE platform now has this API that handles many of the enterprise requirements in a
standardized way.

In this recipe, you will learn how to define roles and give them the right authorization
based on rules defined in the methods that manage sensitive data.

https://github.com/javaee/servlet-spec
https://github.com/javaee/servlet-spec
https://github.com/javaee/servlet-spec
https://github.com/javaee/servlet-spec
https://github.com/javaee/servlet-spec
https://github.com/javaee/servlet-spec
https://github.com/javaee/servlet-spec
https://github.com/javaee/servlet-spec
https://github.com/javaee/servlet-spec
https://github.com/javaee/servlet-spec
https://github.com/javaee/servlet-spec
https://github.com/javaee/servlet-spec
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-servlet

New Features and Improvements Chapter 1

[32]

Getting ready
We start by adding our dependencies to the project:

 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.12</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.apache.tomee</groupId>
 <artifactId>openejb-core</artifactId>
 <version>7.0.4</version>
 </dependency>
 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>

How to do it...
We first create a User entity:1.

@Entity
public class User implements Serializable{

 @Id
 private Long id;
 private String name;
 private String email;

 public User(){
 }

 public User(Long id, String name, String email) {
 this.id = id;
 this.name = name;
 this.email = email;
 }
 //DON'T FORGET THE GETTERS AND SETTERS
 //THIS RECIPE WON'T WORK WITHOUT THEM
}

New Features and Improvements Chapter 1

[33]

Here, we create a class to store our security roles:2.

public class Roles {
 public static final String ADMIN = "ADMIN";
 public static final String OPERATOR = "OPERATOR";
}

Then, we create a stateful bean to manage our user operations:3.

@Stateful
public class UserBean {

 @PersistenceContext(unitName = "ch01-security-pu",
 type = PersistenceContextType.EXTENDED)
 private EntityManager em;

 @RolesAllowed({Roles.ADMIN, Roles.OPERATOR})
 public void add(User user){
 em.persist(user);
 }

 @RolesAllowed({Roles.ADMIN})
 public void remove(User user){
 em.remove(user);
 }

 @RolesAllowed({Roles.ADMIN})
 public void update(User user){
 em.merge(user);
 }

 @PermitAll
 public List<User> get(){
 Query q = em.createQuery("SELECT u FROM User as u ");
 return q.getResultList();
 }

Now, we need to create an executor for each role:4.

public class RoleExecutor {

 public interface Executable {
 void execute() throws Exception;
 }

 @Stateless
 @RunAs(Roles.ADMIN)
 public static class AdminExecutor {

New Features and Improvements Chapter 1

[34]

 public void run(Executable executable) throws Exception {
 executable.execute();
 }
 }

 @Stateless
 @RunAs(Roles.OPERATOR)
 public static class OperatorExecutor {
 public void run(Executable executable) throws Exception {
 executable.execute();
 }
 }
}

And finally, we create a test class to try our security rules.5.

 Our code uses three test methods: asAdmin(), asOperator(), and asAnonymous().

First, it tests asAdmin():1.

 //Lot of setup code before this point

 @Test
 public void asAdmin() throws Exception {
 adminExecutor.run(() -> {
 userBean.add(new User(1L, "user1", "user1@user.com"));
 userBean.add(new User(2L, "user2", "user2@user.com"));
 userBean.add(new User(3L, "user3", "user3@user.com"));
 userBean.add(new User(4L, "user4", "user4@user.com"));

 List<User> list = userBean.get();

 list.forEach((user) -> {
 userBean.remove(user);
 });

 Assert.assertEquals("userBean.get()", 0,
 userBean.get().size());
 });
 }

Then it tests asOperator():2.

 @Test
 public void asOperator() throws Exception {

 operatorExecutor.run(() -> {
 userBean.add(new User(1L, "user1", "user1@user.com"));

New Features and Improvements Chapter 1

[35]

 userBean.add(new User(2L, "user2", "user2@user.com"));
 userBean.add(new User(3L, "user3", "user3@user.com"));
 userBean.add(new User(4L, "user4", "user4@user.com"));

 List<User> list = userBean.get();

 list.forEach((user) -> {
 try {
 userBean.remove(user);
 Assert.fail("Operator was able to remove user " +
 user.getName());
 } catch (EJBAccessException e) {
 }
 });
 Assert.assertEquals("userBean.get()", 4,
 userBean.get().size());
 });
 }

And, finally it tests asAnonymous():4.

 @Test
 public void asAnonymous() {

 try {
 userBean.add(new User(1L, "elder",
 "elder@eldermoraes.com"));
 Assert.fail("Anonymous user should not add users");
 } catch (EJBAccessException e) {
 }

 try {
 userBean.remove(new User(1L, "elder",
 "elder@eldermoraes.com"));
 Assert.fail("Anonymous user should not remove users");
 } catch (EJBAccessException e) {
 }

 try {
 userBean.get();
 } catch (EJBAccessException e) {
 Assert.fail("Everyone can list users");
 }
 }

New Features and Improvements Chapter 1

[36]

This class is huge! For the full source code, check the link at the end of the
recipe.

How it works...
The whole point in this recipe is to do with the @RolesAllowed, @RunsAs, and
@PermitAll annotations. They define what operations each role can do and what happens
when a user tries an operation using the wrong role.

There's more...
What we did here is called programmatic security; that is, we defined the security rules and
roles through our code (the program). There's another approach called declarative security,
where you declare the rules and roles through application and server configurations.

One good step up for this recipe is if you evolve the roles management to a source outside
the application, such as a database or a service.

See also
You can stay tuned with everything related to Security API at https:/ ​/​github.
com/​javaee- ​security- ​spec

The source code of this recipe is at https:/ ​/ ​github. ​com/ ​eldermoraes/ ​javaee8-
cookbook/ ​tree/ ​master/ ​chapter01/ ​ch01- ​security

Running your first MVC 1.0 code
If you are following the news about Java EE 8, you may now be wondering: why is MVC 1.0
here if it was dropped from the Java EE 8 umbrella?

Yes, it is true. MVC 1.0 doesn't belong (anymore) to the Java EE 8 release. But it didn't
reduce the importance of this great API and I'm sure it will change the way some other APIs
work in future releases (for example, JSF).

So why not cover it here? You will use it anyway.

https://github.com/javaee-security-spec
https://github.com/javaee-security-spec
https://github.com/javaee-security-spec
https://github.com/javaee-security-spec
https://github.com/javaee-security-spec
https://github.com/javaee-security-spec
https://github.com/javaee-security-spec
https://github.com/javaee-security-spec
https://github.com/javaee-security-spec
https://github.com/javaee-security-spec
https://github.com/javaee-security-spec
https://github.com/javaee-security-spec
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-security
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-security
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-security
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-security
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-security
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-security
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-security
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-security
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-security
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-security
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-security
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-security
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-security
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-security
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-security
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-security
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-security
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-security
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-security
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-security
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-security
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-security

New Features and Improvements Chapter 1

[37]

This recipe will show you how to use a Controller (the C) to inject a Model (the M) into the
View (the V). It also brings some CDI and JAX-RS to the party.

Getting ready
Add the proper dependencies to your project:

 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>javax.mvc</groupId>
 <artifactId>javax.mvc-api</artifactId>
 <version>1.0-pr</version>
 </dependency>

How to do it...
Start by creating a root for your JAX-RS endpoints:1.

@ApplicationPath("webresources")
public class AppConfig extends Application{
}

Create a User class (this will be your MODEL):2.

public class User {

 private String name;
 private String email;

 public User(String name, String email) {
 this.name = name;
 this.email = email;
 }

 //DON'T FORGET THE GETTERS AND SETTERS
 //THIS RECIPE WON'T WORK WITHOUT THEM
}

New Features and Improvements Chapter 1

[38]

Now, create a Session Bean, which will be injected later in your Controller:3.

@Stateless
public class UserBean {
 public User getUser(){
 return new User("Elder", "elder@eldermoraes.com");
 }
}

Then, create the Controller:4.

@Controller
@Path("userController")
public class UserController {
 @Inject
 Models models;
 @Inject
 UserBean userBean;
 @GET
 public String user(){
 models.put("user", userBean.getUser());
 return "/user.jsp";
 }
}

And finally, the web page (the View):5.

<head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">
 <title>User MVC</title>
</head>
<body>
 <h1>${user.name}/${user.email}</h1>
</body>

Run it on a Java EE 8 server and access this URL:

http://localhost:8080/ch01-mvc/webresources/userController

How it works...
The main actor in this whole scenario is the Models class injected into the Controller:

@Inject
Models models;

New Features and Improvements Chapter 1

[39]

It's a class from MVC 1.0 API that owns the responsibility, in this recipe, of letting the User
object be available for the View layer. It's injected (using CDI) and uses another injected
bean, userBean, to do it:

models.put("user", userBean.getUser());

So, the View can easily access the values from the User object using expression language:

<h1>${user.name}/${user.email}</h1>

See also
You can stay tuned with everything related to MVC specification at https:/ ​/
github.​com/ ​mvc- ​spec

The source code of this recipe is at https:/ ​/ ​github. ​com/ ​eldermoraes/ ​javaee8-
cookbook/ ​tree/ ​master/ ​chapter01/ ​ch01- ​mvc

https://github.com/mvc-spec
https://github.com/mvc-spec
https://github.com/mvc-spec
https://github.com/mvc-spec
https://github.com/mvc-spec
https://github.com/mvc-spec
https://github.com/mvc-spec
https://github.com/mvc-spec
https://github.com/mvc-spec
https://github.com/mvc-spec
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-mvc
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-mvc
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-mvc
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-mvc
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-mvc
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-mvc
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-mvc
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-mvc
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-mvc
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-mvc
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-mvc
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-mvc
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-mvc
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-mvc
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-mvc
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-mvc
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-mvc
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-mvc
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-mvc
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-mvc
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-mvc
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter01/ch01-mvc

2
Server-Side Development

Java EE can be seen as being made for server-side development. Most of the APIs are
powerful for server-side processing and managing.

This chapter will provide you with some common and useful scenarios that you may face as
a Java EE developer and will show you how you should deal with them.

In this chapter, we will cover the following recipes:

Using CDI to inject context and dependency
Using Bean Validation for data validation
Using servlet for request and response management
Using Server Push to make objects available beforehand
Using EJB and JTA for transaction management
Using EJB to deal with concurrency
Using JPA for smart data persistence
Using EJB and JPA for data caching
Using batch processing

Using CDI to inject context and dependency
Context and Dependency Injection for Java EE (CDI) is one of the most important APIs
under the Java EE umbrella. Introduced in Java EE 6, it now has a big influence over many
other APIs.

In the recipe, you will learn how to use CDI in a couple of different ways and situations.

Server-Side Development Chapter 2

[41]

Getting ready
First, let's add the required dependency needed:

<dependency>
 <groupId>javax.enterprise</groupId>
 <artifactId>cdi-api</artifactId>
 <version>2.0</version>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-web-api</artifactId>
 <version>7.0</version>
 <scope>provided</scope>
</dependency>

How to do it...
We are going to build a JAX-RS based application, so we will start by preparing1.
the application to perform:

@ApplicationPath("webresources")
public class Application extends javax.ws.rs.core.Application {
}

Then, we create a User application as our main object:2.

public class User implements Serializable {

 private String name;
 private String email;

 //DO NOT FORGET TO ADD THE GETTERS AND SETTERS
}

Our User class doesn't have a default constructor, so CDI doesn't know how to
construct the class when it tries to inject it. So, we create a factory class and use the
@Produces annotation over its methods:

public class UserFactory implements Serializable{

 @Produces
 public User getUser() {
 return new User("Elder Moraes", "elder@eldermoraes.com");

Server-Side Development Chapter 2

[42]

 }

}

Let's create an enumeration to list our profile types:3.

public enum ProfileType {
 ADMIN, OPERATOR;
}

Here, we create a custom annotation:4.

@Qualifier
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE, ElementType.FIELD, ElementType.METHOD,
ElementType.PARAMETER})
public @interface Profile {
 ProfileType value();
}

Add them to an interface to prototype the user profile behavior:5.

public interface UserProfile {
 ProfileType type();
}

Now that we have defined the profile list and its behavior with respect to the user,
we can give it a proper implementation for an admin profile:

@Profile(ProfileType.ADMIN)
public class ImplAdmin implements UserProfile{

 @Override
 public ProfileType type() {
 System.out.println("User is admin");
 return ProfileType.ADMIN;
 }
}

And the same can be done for an operator profile:

@Profile(ProfileType.OPERATOR)
@Default
public class ImplOperator implements UserProfile{

 @Override
 public ProfileType type() {
 System.out.println("User is operator");

Server-Side Development Chapter 2

[43]

 return ProfileType.OPERATOR;
 }
}

Then, we create a REST endpoint by injecting all the objects that we are going to6.
use into it:

@Path("userservice/")
@RequestScoped
public class UserService {
 @Inject
 private User user;
 @Inject
 @Profile(ProfileType.ADMIN)
 private UserProfile userProfileAdmin;
 @Inject
 @Profile(ProfileType.OPERATOR)
 private UserProfile userProfileOperator;
 @Inject
 private UserProfile userProfileDefault;
 @Inject
 private Event<User> userEvent;

 ...

This method gets the user injected by CDI and sends it to the result page:7.

 @GET
 @Path("getUser")
 public Response getUser(@Context HttpServletRequest request,
 @Context HttpServletResponse response)
 throws ServletException, IOException{
 request.setAttribute("result", user);
 request.getRequestDispatcher("/result.jsp")
 .forward(request, response);
 return Response.ok().build();
 }

This one does the same with an admin profile:8.

 @GET
 @Path("getProfileAdmin")
 public Response getProfileAdmin(@Context HttpServletRequest request,
 @Context HttpServletResponse response)
 throws ServletException, IOException{
 request.setAttribute("result",
 fireUserEvents(userProfileAdmin.type()));
 request.getRequestDispatcher("/result.jsp")

Server-Side Development Chapter 2

[44]

 .forward(request, response);
 return Response.ok().build();
 }

And this one does the same with an operator profile:9.

 @GET
 @Path("getProfileOperator")
 public Response getProfileOperator(@Context HttpServletRequest request,
 @Context HttpServletResponse response)
 throws ServletException, IOException{
 request.setAttribute("result",
 fireUserEvents(userProfileOperator.type()));
 request.getRequestDispatcher("/result.jsp")
 .forward(request, response);
 return Response.ok().build();
 }

Finally, we send the default profile to the result page:10.

 @GET
 @Path("getProfileDefault")
 public Response getProfileDefault(@Context HttpServletRequest request,
 @Context HttpServletResponse response)
 throws ServletException, IOException{
 request.setAttribute("result",
 fireUserEvents(userProfileDefault.type()));
 request.getRequestDispatcher("/result.jsp")
 .forward(request, response);
 return Response.ok().build();
 }

We use the fireUserEvents method to fire an event and async events over11.
a previously injected User object:

 private ProfileType fireUserEvents(ProfileType type){
 userEvent.fire(user);
 userEvent.fireAsync(user);
 return type;
 }
 public void sendUserNotification(@Observes User user){
 System.out.println("sendUserNotification: " + user);
 }
 public void sendUserNotificationAsync(@ObservesAsync User user){
 System.out.println("sendUserNotificationAsync: " + user);
 }

Server-Side Development Chapter 2

[45]

So, we build a page to call each endpoint method:12.

<body>
 <a href="http://localhost:8080/ch02-
 cdi/webresources/userservice/getUser">getUser

 <a href="http://localhost:8080/ch02-
 cdi/webresources/userservice/getProfileAdmin">getProfileAdmin

 <a href="http://localhost:8080/ch02-
cdi/webresources/userservice/getProfileOperator">getProfileOperator

 <a href="http://localhost:8080/ch02-
cdi/webresources/userservice/getProfileDefault">getProfileDefault</
a>
</body>

And finally, we use an expression language to print the result at the result page:13.

<body>
 <h1>${result}</h1>
 Back
</body>

How it works...
Well, there's a lot happening in the previous section! We should first have a look at the
@Produces annotation. It is a CDI annotation that says to the server: "Hey! This method
knows how to construct a User object."

As we didn't create a default constructor for the User class, the getUser method from our
factory will be injected into our context as one.

The second annotation is our custom annotation @Profile that has our enumeration
ProfileType as a parameter. It is the qualifier of our UserProfile objects.

Now, let's have a look at these declarations:

@Profile(ProfileType.ADMIN)
public class ImplAdmin implements UserProfile{
 ...
}

@Profile(ProfileType.OPERATOR)

Server-Side Development Chapter 2

[46]

@Default
public class ImplOperator implements UserProfile{
 ...
}

This code will teach CDI how to inject a UserProfile object:

If the object is annotated as @Profile(ProfileType.ADMIN), use ImplAdmin
If the object is annotated as @Profile(ProfileType.OPERATOR), use
ImplOperator

If the object is not annotated, use ImplOperator, as it has the @Default
annotation

We can see them in action in our endpoint declaration:

 @Inject
 @Profile(ProfileType.ADMIN)
 private UserProfile userProfileAdmin;
 @Inject
 @Profile(ProfileType.OPERATOR)
 private UserProfile userProfileOperator;
 @Inject
 private UserProfile userProfileDefault;

So CDI is helping us to use the context to inject the right implementation of our
UserProfile interface.

Looking at the endpoint methods, we see this:

 @GET
 @Path("getUser")
 public Response getUser(@Context HttpServletRequest request,
 @Context HttpServletResponse response)
 throws ServletException, IOException{
 request.setAttribute("result", user);
 request.getRequestDispatcher("/result.jsp")
 .forward(request, response);
 return Response.ok().build();
 }

Note that we included HttpServletRequest and HttpServletResponse as parameters
for our method, but annotated them as @Context. So even though this is not a servlet
context (when we have easy access to request and response references), we can ask CDI to
give us a proper reference to them.

Server-Side Development Chapter 2

[47]

And finally, we have our user event engine:

 @Inject
 private Event<User> userEvent;

 ...

 private ProfileType fireUserEvents(ProfileType type){
 userEvent.fire(user);
 userEvent.fireAsync(user);
 return type;
 }
 public void sendUserNotification(@Observes User user){
 System.out.println("sendUserNotification: " + user);
 }
 public void sendUserNotificationAsync(@ObservesAsync User user){
 System.out.println("sendUserNotificationAsync: " + user);
 }

So, we are using the @Observes and @ObserversAsync annotations to say to CDI: "Hey
CDI! Watch over User object... when somebody fires an event over it, I want you to do something."

And for "something," CDI understands this as calling the sendUserNotification
and sendUserNotificationAsync methods. Try it!

Obviously, @Observers will be executed synchronously and @ObservesAsync
asynchronously.

There's more...
We used a GlassFish 5 to run this recipe. You can do it with whatever Java EE 8 compatible
server you want, and you can even use CDI with Java SE without any server. Have a look at
the CDI recipe from Chapter 1, New Features and Improvements.

See also
You can see the full source code of this recipe at https:/ ​/​github. ​com/
eldermoraes/ ​javaee8- ​cookbook/ ​tree/ ​master/ ​chapter02/ ​ch02- ​cdi

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-cdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-cdi

Server-Side Development Chapter 2

[48]

Using Bean Validation for data validation
You can use Bean Validation to constrain your data in many different ways. In this recipe,
we are going to use it to validate a JSF form, so we can validate it as soon as the user tries to
submit it, and avoid any invalid data right away.

Getting ready
First, we add our dependencies:

 <dependency>
 <groupId>javax.validation</groupId>
 <artifactId>validation-api</artifactId>
 <version>2.0.0.Final</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate.validator</groupId>
 <artifactId>hibernate-validator</artifactId>
 <version>6.0.1.Final</version>
 </dependency>
 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-web-api</artifactId>
 <version>7.0</version>
 <scope>provided</scope>
 </dependency>

How to do it...
Let's create a User object that will be attached to our JSF page:1.

@Named
@RequestScoped
public class User {
 @NotBlank (message = "Name should not be blank")
 @Size (min = 4, max = 10,message = "Name should be between
 4 and 10 characters")
 private String name;
 @Email (message = "Invalid e-mail format")
 @NotBlank (message = "E-mail shoud not be blank")
 private String email;
 @PastOrPresent (message = "Created date should be
 past or present")

Server-Side Development Chapter 2

[49]

 @NotNull (message = "Create date should not be null")
 private LocalDate created;
 @Future (message = "Expires should be a future date")
 @NotNull (message = "Expires should not be null")
 private LocalDate expires;

 //DO NOT FORGET TO IMPLEMENT THE GETTERS AND SETTERS

 ...

Then we define the method that will be fired once all data is valid:2.

 public void valid(){
 FacesContext
 .getCurrentInstance()
 .addMessage(
 null,
 new FacesMessage(FacesMessage.SEVERITY_INFO,
 "Your data is valid", ""));
 }

And now our JSF page references each User class fields declared:3.

<h:body>
 <h:form>
 <h:outputLabel for="name" value="Name" />
 <h:inputText id="name" value="#{user.name}" />

 <h:outputLabel for="email" value="E-mail" />
 <h:inputText id="email" value="#{user.email}" />

 <h:outputLabel for="created" value="Created" />
 <h:inputText id="created" value="#{user.created}">
 <f:convertDateTime type="localDate" pattern="dd/MM/uuuu" />
 </h:inputText>

 <h:outputLabel for="expire" value="Expire" />
 <h:inputText id="expire" value="#{user.expires}">
 <f:convertDateTime type="localDate" pattern="dd/MM/uuuu" />
 </h:inputText>

 <h:commandButton value="submit" type="submit"
action="#{user.valid()}" />
 </h:form>
</h:body>

Now, if you run this code, you will get all fields validated once you click the Submit
button. Try it!

Server-Side Development Chapter 2

[50]

How it works...
Let's check each declared constraint:

 @NotBlank (message = "Name should not be blank")
 @Size (min = 4, max = 10,message = "Name should be between
 4 and 10 characters")
 private String name;

The @NotBlank annotation will deny not only null values, but also white spaces values,
and @Size speaks for itself:

 @Email (message = "Invalid e-mail format")
 @NotBlank (message = "E-mail shoud not be blank")
 private String email;

The @Email constraint will check the email string format:

 @PastOrPresent (message = "Created date should be past or present")
 @NotNull (message = "Create date should not be null")
 private LocalDate created;

@PastOrPresent will constrain LocalDate to be in the past or until the present date. It
can't be in the future.

Here we can't use @NotBlank, as there is no blank date, only null, so we avoid it using
@NotNull:

 @Future (message = "Expires should be a future date")
 @NotNull (message = "Expires should not be null")
 private LocalDate expires;

This is the same as the last one, but constraints for a future date.

In our UI, there are two places worth a careful look:

 <h:inputText id="created" value="#{user.created}">
 <f:convertDateTime type="localDate" pattern="dd/MM/uuuu" />
 </h:inputText>

 ...

 <h:inputText id="expire" value="#{user.expires}">
 <f:convertDateTime type="localDate" pattern="dd/MM/uuuu" />
 </h:inputText>

Server-Side Development Chapter 2

[51]

We are using convertDateTime to automatically convert the data inputted into
inputText according to the dd/MM/uuuu pattern.

See also
You can check the full source code of this recipe at https:/ ​/​github. ​com/
eldermoraes/ ​javaee8- ​cookbook/ ​tree/ ​master/ ​chapter02/ ​ch02- ​beanvalidation

Using servlet for request and response
management
The Servlet API was created even before Java EE exists—actually before J2EE existed! It
became part of EE in J2EE 1.2 (Servlet 2.2) in 1999.

This is a powerful tool to deal with a request/response context and this recipe will show you
an example of how to do it.

Getting ready
Let's add our dependencies:

 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>javax.servlet-api</artifactId>
 <version>4.0.0-b05</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-web-api</artifactId>
 <version>7.0</version>
 <scope>provided</scope>
 </dependency>

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-beanvalidation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-beanvalidation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-beanvalidation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-beanvalidation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-beanvalidation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-beanvalidation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-beanvalidation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-beanvalidation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-beanvalidation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-beanvalidation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-beanvalidation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-beanvalidation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-beanvalidation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-beanvalidation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-beanvalidation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-beanvalidation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-beanvalidation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-beanvalidation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-beanvalidation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-beanvalidation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-beanvalidation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-beanvalidation

Server-Side Development Chapter 2

[52]

How to do it...
Let's create a User class for our recipe:1.

public class User {

 private String name;
 private String email;

 //DO NOT FORGET TO IMPLEMENT THE GETTERS AND SETTERS

}

And then our servlet:2.

@WebServlet(name = "UserServlet", urlPatterns = {"/UserServlet"})
public class UserServlet extends HttpServlet {
 private User user;
 @PostConstruct
 public void instantiateUser(){
 user = new User("Elder Moraes", "elder@eldermoraes.com");
 }

 ...

We use the @PostConstruct annotation over
the instantiateUser() method. It says to the server that whenever this
servlet is constructed (a new instance is up), it can run this method.

We also implement the init() and destroy() super methods:3.

 @Override
 public void init() throws ServletException {
 System.out.println("Servlet " + this.getServletName() +
 " has started");
 }

 @Override
 public void destroy() {
 System.out.println("Servlet " + this.getServletName() +
 " has destroyed");
 }

Server-Side Development Chapter 2

[53]

And we also implemented doGet() and doPost():4.

 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doRequest(request, response);
 }

 @Override
 protected void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doRequest(request, response);
 }

Both doGet() and doPost() will call our custom method doRequest():5.

 protected void doRequest(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 try (PrintWriter out = response.getWriter()) {
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet UserServlet</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h2>Servlet UserServlet at " +
 request.getContextPath() + "</h2>");
 out.println("<h2>Now: " + new Date() + "</h2>");
 out.println("<h2>User: " + user.getName() + "/" +
 user.getEmail() + "</h2>");
 out.println("</body>");
 out.println("</html>");
 }
 }

And we finally have a web page to call our servlet:6.

 <body>
 <a href="<%=request.getContextPath()%>/UserServlet">
 <%=request.getContextPath() %>/UserServlet
 </body>

Server-Side Development Chapter 2

[54]

How it works...
The Java EE server itself will call doGet() or doPost() methods, depending on the HTTP
method used by the caller. In our recipe, we are redirecting them both to the
same doRequest() method.

The init() method belongs to the servlet life cycle managed by the server and is executed
as a first method after the servlet instantiation.

The destroy() method also belongs to the servlet life cycle and it's executed as the last
method before the instance deallocation.

There's more...
The init() behavior seems like @PostConstruct, but this last one is executed before
init(), so keep it in mind when using both.

The @PostConstruct is executed right after the default constructor.

Be careful when using the destroy() method and avoid holding any memory
reference; otherwise, you can mess up with the servlet life cycle and run into memory leaks.

See also
Check the full source code of this recipe at https:/ ​/​github. ​com/ ​eldermoraes/
javaee8- ​cookbook/ ​tree/ ​master/ ​chapter02/ ​ch02- ​servlet

Using Server Push to make objects available
beforehand
One of the most important new features of Servlet 4.0 is the HTTP/2.0 support. It brings
another cool and reliable feature—the Server Push.

This recipe will show you how to use Server Push in a filter and push the resources needed
in every request that we want.

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-servlet

Server-Side Development Chapter 2

[55]

Getting ready
We should first add the dependencies needed:

 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>javax.servlet-api</artifactId>
 <version>4.0.0-b07</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-web-api</artifactId>
 <version>7.0</version>
 <scope>provided</scope>
 </dependency>

How to do it...
We first create UserServlet that calls user.jsp:1.

@WebServlet(name = "UserServlet", urlPatterns = {"/UserServlet"})
public class UserServlet extends HttpServlet {

 protected void doRequest(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 request.getRequestDispatcher("/user.jsp")
 .forward(request, response);
 System.out.println("Redirected to user.jsp");
 }

 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doRequest(request, response);
 }

 @Override
 protected void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doRequest(request, response);
 }

Server-Side Development Chapter 2

[56]

}

And we do the same with ProfileServlet, but by calling profile.jsp:2.

@WebServlet(name = "ProfileServlet", urlPatterns =
{"/ProfileServlet"})
public class ProfileServlet extends HttpServlet {

 protected void doRequest(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 request.getRequestDispatcher("/profile.jsp").
 forward(request, response);
 System.out.println("Redirected to profile.jsp");
 }

 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doRequest(request, response);
 }

 @Override
 protected void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doRequest(request, response);
 }
}

And then we create a filter that will be executed on every request (urlPatterns3.
= {"/*"}):

@WebFilter(filterName = "PushFilter", urlPatterns = {"/*"})
public class PushFilter implements Filter {
 @Override
 public void doFilter(ServletRequest request,
 ServletResponse response,
 FilterChain chain)
 throws IOException, ServletException {
 HttpServletRequest httpReq = (HttpServletRequest)request;
 PushBuilder builder = httpReq.newPushBuilder();
 if (builder != null){
 builder
 .path("resources/javaee-logo.png")
 .path("resources/style.css")

Server-Side Development Chapter 2

[57]

 .path("resources/functions.js")
 .push();
 System.out.println("Resources pushed");
 }

 chain.doFilter(request, response);
 }
}

Here we create a page to call our servlets:4.

<body>
 User

 Profile
</body>

And here are the pages called by the servlets. First is the user.jsp page:5.

 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">
 <link rel="stylesheet" type="text/css"
 href="resources/style.css">
 <script src="resources/functions.js"></script>
 <title>User Push</title>
 </head>

 <body>
 <h1>User styled</h1>

 <button onclick="message()">Message</button>

 Back
 </body>

Second, the profile.jsp page is called:6.

 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <link rel="stylesheet" type="text/css" href="resources/style.css">
 <script src="resources/functions.js"></script>
 <title>User Push</title>
 </head>

 <body>
 <h1>Profile styled</h1>

Server-Side Development Chapter 2

[58]

 <button onclick="message()">Message</button>

 Back
 </body>

How it works...
A web application running under HTTP/1.0 sends a request to the server when it finds
references for an image file, CSS file, and any other resources needed to render a web page.

With HTTP/2.0 you still can do it, but now you can do better: the server can now push the
resources beforehand, avoiding unnecessary new requests, decreasing the server load, and
improving performance.

In this recipe, our resources are represented by the following:

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <link rel="stylesheet" type="text/css" href="resources/style.css">
 <script src="resources/functions.js"></script>

And the push happens at this part of our filter:

 HttpServletRequest httpReq = (HttpServletRequest)request;
 PushBuilder builder = httpReq.newPushBuilder();
 if (builder != null){
 builder
 .path("resources/javaee-logo.png")
 .path("resources/style.css")
 .path("resources/functions.js")
 .push();
 System.out.println("Resources pushed");
 }

So when the browser needs those resources to render the web page, they are already
available.

There's more...
Note that your browser needs to support the Server Push feature; otherwise, your page will
work as usual. So make sure you check if PushBuilder is null before using it and ensure all
users will have the working application.

Server-Side Development Chapter 2

[59]

Note that JSF 2.3 is built over the Server Push feature, so if you just migrate your JSF
application to a Java EE 8 compatible server, you get its performance boost for free!

See also
View the full source code of this recipe at https:/ ​/​github. ​com/ ​eldermoraes/
javaee8- ​cookbook/ ​tree/ ​master/ ​chapter02/ ​ch02- ​serverpush

Using EJB and JTA for transaction
management
The Java Transaction API, or JTA, is an API that enables distributed transactions over the
Java EE environment. It is most powerful when you delegate the transaction management
to the server.

This recipe will show you how to do it!

Getting ready
First, add the dependencies:

 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-entitymanager</artifactId>
 <version>4.3.1.Final</version>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.12</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.hamcrest</groupId>
 <artifactId>hamcrest-core</artifactId>
 <version>1.3</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>javax</groupId>

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-serverpush

Server-Side Development Chapter 2

[60]

 <artifactId>javaee-web-api</artifactId>
 <version>7.0</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.apache.openejb</groupId>
 <artifactId>openejb-core</artifactId>
 <version>4.7.4</version>
 <scope>test</scope>
 </dependency>

How to do it...
First, we need to create our persistence unit (at persistence.xml):1.

 <persistence-unit name="ch02-jta-pu" transaction-type="JTA">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>userDb</jta-data-source>
 <non-jta-data-source>userDbNonJta</non-jta-data-source>
 <exclude-unlisted-classes>false</exclude-unlisted-classes>

 <properties>
 <property name="javax.persistence.schema-
 generation.database.action"
 value="create"/>
 </properties>
 </persistence-unit>

Then we create a User class as an entity (@Entity):2.

@Entity
public class User implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private Long id;
 private String name;
 private String email;

 protected User() {
 }
 public User(Long id, String name, String email) {
 this.id = id;

Server-Side Development Chapter 2

[61]

 this.name = name;
 this.email = email;
 }

 //DO NOT FORGET TO IMPLEMENT THE GETTERS AND SETTERS
}

We also need an EJB to perform the operations over the User entity:3.

@Stateful
public class UserBean {

 @PersistenceContext(unitName = "ch02-jta-pu",
 type = PersistenceContextType.EXTENDED)
 private EntityManager em;
 public void add(User user){
 em.persist(user);
 }
 public void update(User user){
 em.merge(user);
 }
 public void remove(User user){
 em.remove(user);
 }
 public User findById(Long id){
 return em.find(User.class, id);
 }
}

And then we create our unit test:4.

public class Ch02JtaTest {
 private EJBContainer ejbContainer;
 @EJB
 private UserBean userBean;
 public Ch02JtaTest() {
 }
 @Before
 public void setUp() throws NamingException {
 Properties p = new Properties();
 p.put("userDb", "new://Resource?type=DataSource");
 p.put("userDb.JdbcDriver", "org.hsqldb.jdbcDriver");
 p.put("userDb.JdbcUrl", "jdbc:hsqldb:mem:userdatabase");

 ejbContainer = EJBContainer.createEJBContainer(p);
 ejbContainer.getContext().bind("inject", this);
 }
 @After

Server-Side Development Chapter 2

[62]

 public void tearDown() {
 ejbContainer.close();
 }
 @Test
 public void validTransaction() throws Exception{
 User user = new User(null, "Elder Moraes",
 "elder@eldermoraes.com");
 userBean.add(user);
 user.setName("John Doe");
 userBean.update(user);
 User userDb = userBean.findById(1L);
 assertEquals(userDb.getName(), "John Doe");
 }
}

How it works...
The key code line in this recipe for JTA is right here:

<persistence-unit name="ch02-jta-pu" transaction-type="JTA">

When you use transaction-type='JTA', you are saying to the server that it should take
care of all transactions made under this context. If you use RESOURCE-LOCAL instead, you
are saying that you are taking care of the transactions:

 @Test
 public void validTransaction() throws Exception{
 User user = new User(null, "Elder Moraes",
 "elder@eldermoraes.com");
 userBean.add(user);
 user.setName("John Doe");
 userBean.update(user);
 User userDb = userBean.findById(1L);
 assertEquals(userDb.getName(), "John Doe");
 }

Each called method of UserBean starts a transaction to be completed and would run into a
rollback if there's any issue while the transaction is alive would commit to the end of it.

Server-Side Development Chapter 2

[63]

There's more...
Another important piece of code is the following:

@Stateful
public class UserBean {

 @PersistenceContext(unitName = "ch02-jta-pu",
 type = PersistenceContextType.EXTENDED)
 private EntityManager em;

 ...
}

So, here we are defining our PersistenceContext as EXTENDED. It means that this
persistence context is bound to the @Stateful bean until it is removed from the container.

The other option is TRANSACTION, which means the persistence context would live only by
the time of transaction.

See also
Check the full source code of this recipe at https:/ ​/ ​github. ​com/ ​eldermoraes/
javaee8- ​cookbook/ ​tree/ ​master/ ​chapter02/ ​ch02- ​jta

Using EJB to deal with concurrency
Concurrency management is one of the biggest advantages supplied by a Java EE server.
You can rely on a ready environment to deal with this tricky topic.

This recipe will show you how you can set up your beans to use it!

Getting ready
Just add a Java EE dependency to your project:

 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-web-api</artifactId>
 <version>7.0</version>
 <scope>provided</scope>

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jta
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jta
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jta
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jta
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jta
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jta
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jta
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jta
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jta
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jta
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jta
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jta
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jta
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jta
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jta
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jta
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jta
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jta
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jta
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jta
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jta
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jta

Server-Side Development Chapter 2

[64]

 </dependency>

How to do it...
The recipe will show you three scenarios.

In the first scenario, LockType is defined at the class level:

@Singleton
@ConcurrencyManagement(ConcurrencyManagementType.CONTAINER)
@Lock(LockType.READ)
@AccessTimeout(value = 10000)
public class UserClassLevelBean {

 private int userCount;

 public int getUserCount() {
 return userCount;
 }
 public void addUser(){
 userCount++;
 }

}

In the second scenario, LockType is defined at the method level:

@Singleton
@ConcurrencyManagement(ConcurrencyManagementType.CONTAINER)
@AccessTimeout(value = 10000)
public class UserMethodLevelBean {

 private int userCount;
 @Lock(LockType.READ)
 public int getUserCount(){
 return userCount;
 }
 @Lock(LockType.WRITE)
 public void addUser(){
 userCount++;
 }
}

Server-Side Development Chapter 2

[65]

The third scenario is a self-managed bean:

@Singleton
@ConcurrencyManagement(ConcurrencyManagementType.BEAN)
public class UserSelfManagedBean {

 private int userCount;

 public int getUserCount() {
 return userCount;
 }
 public synchronized void addUser(){
 userCount++;
 }
}

How it works...
The first thing to have a look at the following:

@ConcurrencyManagement(ConcurrencyManagementType.CONTAINER)

This is completely redundant! Singleton beans are container-managed by default, so you
don't need to specify them.

Singletons are designed for concurrent access, so they are the perfect use case for this recipe.

Now let's check the LockType defined at the class level:

@Lock(LockType.READ)
@AccessTimeout(value = 10000)
public class UserClassLevelBean {
 ...
}

When we use the @Lock annotation at the class level, the informed LockType will be used
for all class methods.

In this case, LockType.READ means that many clients can access a resource at the same
time. It is usual for reading data.

In case of some kind of locking, LockType will use the @AccessTimeout annotation time
defined to run into a timeout or not.

Server-Side Development Chapter 2

[66]

Now, let's check LockType defined at the method level:

 @Lock(LockType.READ)
 public int getUserCount(){
 return userCount;
 }
 @Lock(LockType.WRITE)
 public void addUser(){
 userCount++;
 }

So, here we are basically saying that getUserCount() can be accessed by many users at
once (LockType.READ), but addUser() will be accessed just by one user at a time
(LockType.WRITE).

The last case is the self-managed bean:

@ConcurrencyManagement(ConcurrencyManagementType.BEAN)
public class UserSelfManagedBean{

 ...

 public synchronized void addUser(){
 userCount++;
 }

 ...
}

In this case, you have to manage all the concurrency issues for your bean in your code. We
used a synchronized qualifier as an example.

There's more...
Unless you really really need to, don't use self-managed beans. The Java EE container is
(well) designed to do it in a very efficient and elegant way.

See also
Check the full source code of this recipe at https:/ ​/​github. ​com/ ​eldermoraes/
javaee8- ​cookbook/ ​tree/ ​master/ ​chapter02/ ​ch02- ​ejb- ​concurrency

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-ejb-concurrency
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-ejb-concurrency
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-ejb-concurrency
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-ejb-concurrency
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-ejb-concurrency
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-ejb-concurrency
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-ejb-concurrency
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-ejb-concurrency
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-ejb-concurrency
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-ejb-concurrency
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-ejb-concurrency
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-ejb-concurrency
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-ejb-concurrency
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-ejb-concurrency
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-ejb-concurrency
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-ejb-concurrency
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-ejb-concurrency
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-ejb-concurrency
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-ejb-concurrency
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-ejb-concurrency
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-ejb-concurrency
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-ejb-concurrency
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-ejb-concurrency
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-ejb-concurrency

Server-Side Development Chapter 2

[67]

Using JPA for smart data persistence
The Java Persistence API is a specification that describes an interface for managing
relational databases using Java EE.

It eases data manipulation and reduces a lot of the code written for it, especially if you are
used to SQL ANSI.

This recipe will show you how to use it to persist your data.

Getting ready
Let's first add the dependencies needed:

 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-entitymanager</artifactId>
 <version>4.3.1.Final</version>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.12</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.hamcrest</groupId>
 <artifactId>hamcrest-core</artifactId>
 <version>1.3</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-web-api</artifactId>
 <version>7.0</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.apache.openejb</groupId>
 <artifactId>openejb-core</artifactId>
 <version>4.7.4</version>
 <scope>test</scope>
 </dependency>

Server-Side Development Chapter 2

[68]

How to do it...
Let's begin by creating an entity (you can see it as a table):1.

@Entity
public class User implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private Long id;
 private String name;
 private String email;

 protected User() {
 }
 public User(Long id, String name, String email) {
 this.id = id;
 this.name = name;
 this.email = email;
 }

 //DO NOT FORGET TO IMPLEMENT THE GETTERS AND SETTERS
}

Here we declare our persistence unit (at persistence.xml):2.

 <persistence-unit name="ch02-jpa-pu" transaction-type="JTA">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>userDb</jta-data-source>
 <exclude-unlisted-classes>false</exclude-unlisted-classes>

 <properties>
 <property name="javax.persistence.schema-
 generation.database.action"
 value="create"/>
 </properties>
 </persistence-unit>

Then we create a session bean to manage our data:3.

@Stateless
public class UserBean {

 @PersistenceContext(unitName = "ch02-jpa-pu",
 type = PersistenceContextType.TRANSACTION)

Server-Side Development Chapter 2

[69]

 private EntityManager em;
 public void add(User user){
 em.persist(user);
 }
 public void update(User user){
 em.merge(user);
 }
 public void remove(User user){
 em.remove(user);
 }
 public User findById(Long id){
 return em.find(User.class, id);
 }
}

And here we use a unit test to try it out:4.

public class Ch02JpaTest {
 private EJBContainer ejbContainer;
 @EJB
 private UserBean userBean;
 public Ch02JpaTest() {
 }
 @Before
 public void setUp() throws NamingException {
 Properties p = new Properties();
 p.put("userDb", "new://Resource?type=DataSource");
 p.put("userDb.JdbcDriver", "org.hsqldb.jdbcDriver");
 p.put("userDb.JdbcUrl", "jdbc:hsqldb:mem:userdatabase");

 ejbContainer = EJBContainer.createEJBContainer(p);
 ejbContainer.getContext().bind("inject", this);
 }
 @After
 public void tearDown() {
 ejbContainer.close();
 }
 @Test
 public void persistData() throws Exception{
 User user = new User(null, "Elder Moraes",
 "elder@eldermoraes.com");
 userBean.add(user);
 user.setName("John Doe");
 userBean.update(user);
 User userDb = userBean.findById(1L);
 assertEquals(userDb.getName(), "John Doe");
 }
}

Server-Side Development Chapter 2

[70]

How it works...
Let's break down our persistence unit (pu).

This line defines the pu name and the transaction type used:

<persistence-unit name="ch02-jpa-pu" transaction-type="JTA">

The following line shows the provider the JPA implementation used:

<provider>org.hibernate.ejb.HibernatePersistence</provider>

It is the datasource name that will be accessed through JNDI:

<jta-data-source>userDb</jta-data-source>

This line lets all your entities be available for this pu, so you don't need to declare each one:

<exclude-unlisted-classes>false</exclude-unlisted-classes>

This block allows the database objects to be created if they don't exist:

 <properties>
 <property name="javax.persistence.schema-
 generation.database.action"
 value="create"/>
 </properties>

And now let's have a look at UserBean:

@Stateless
public class UserBean {

 @PersistenceContext(unitName = "ch02-jpa-pu",
 type = PersistenceContextType.TRANSACTION)
 private EntityManager em;

 ...

}

EntityManager is the object responsible for the interface between the bean and the
datasource. It's bound to the context by the @PersistenceContext annotation.

Server-Side Development Chapter 2

[71]

And we check the EntityManager operations as follows:

 public void add(User user){
 em.persist(user);
 }

The persist() method is used to add new data to the datasource. At the end of the
execution, the object is attached to the context:

 public void update(User user){
 em.merge(user);
 }

The merge() method is used to update existing data on the datasource. The object is first
found at the context, then updated at the database and attached to the context with the new
state:

 public void remove(User user){
 em.remove(user);
 }

The remove() method, guess what is it?

 public User findById(Long id){
 return em.find(User.class, id);
 }

And finally the find() method uses the id parameter to search a database object with the
same ID. That's why JPA demands your entities have an ID declared with the @Id
annotation.

See also
Check the full source code of this recipe at https:/ ​/​github. ​com/ ​eldermoraes/
javaee8- ​cookbook/ ​tree/ ​master/ ​chapter02/ ​ch02- ​jpa

Using EJB and JPA for data caching
Knowing how to build a simple and local cache for your application is an important skill. It
may have a big impact on some data access performance and it is quite easy to do.

This recipe will show you how.

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jpa
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jpa
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jpa
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jpa
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jpa
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jpa
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jpa
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jpa
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jpa
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jpa
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jpa
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jpa
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jpa
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jpa
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jpa
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jpa
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jpa
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jpa
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jpa
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jpa
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jpa
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-jpa

Server-Side Development Chapter 2

[72]

Getting ready
Simply add a Java EE dependency to your project:

 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-web-api</artifactId>
 <version>7.0</version>
 <scope>provided</scope>
 </dependency>

How to do it...
Let's create a User class to be our cached object:1.

public class User {
 private String name;
 private String email;
 //DO NOT FORGET TO IMPLEMENT THE GETTERS AND SETTERS
}

And then create a singleton to hold our user list cache:2.

@Singleton
@Startup
public class UserCacheBean {

 protected Queue<User> cache = null;
 @PersistenceContext
 private EntityManager em;

 public UserCacheBean() {
 }

 protected void loadCache() {
 List<User> list = em.createQuery("SELECT u FROM USER
 as u").getResultList();

 list.forEach((user) -> {
 cache.add(user);
 });
 }

 @Lock(LockType.READ)
 public List<User> get() {

Server-Side Development Chapter 2

[73]

 return cache.stream().collect(Collectors.toList());
 }

 @PostConstruct
 protected void init() {
 cache = new ConcurrentLinkedQueue<>();
 loadCache();
 }
}

How it works...
Let's first understand our bean declaration:

@Singleton
@Startup
public class UserCacheBean {
 ...

 @PostConstruct
 protected void init() {
 cache = new ConcurrentLinkedQueue<>();
 loadCache();
 }
}

We are using a singleton because it has one and only one instance in the application context.
And that's the way we want a data cache because we don't want to allow the possibility of
different data being shared.

Also note that we used the @Startup annotation. It says to the server that this bean should
be executed once it is loaded and the method annotated with @PostConstruct is used for it.

So we take the startup time to load our cache:

 protected void loadCache() {
 List<User> list = em.createQuery("SELECT u FROM USER
 as u").getResultList();

 list.forEach((user) -> {
 cache.add(user);
 });
 }

Server-Side Development Chapter 2

[74]

Now let's check the object holding our cache:

protected Queue<User> cache = null;

...

cache = new ConcurrentLinkedQueue<>();

ConcurrentLinkedQueue is a list built with one main purpose—being accessed by
multiple processes in a thread-safe environment. That's exactly what we need and also it
offers great performance on accessing its members.

And finally, let's check the access to our data cache:

 @Lock(LockType.READ)
 public List<User> get() {
 return cache.stream().collect(Collectors.toList());
 }

We annotated the get() method with LockType.READ, so it says to the concurrency
manager that it can be accessed by multiple processes at once in a thread-safe way.

There's more...
If you need big and complex caches in your application, you should use some enterprise
cache solutions for better results.

See also
Check the full source code of this recipe at https:/ ​/​github. ​com/ ​eldermoraes/
javaee8- ​cookbook/ ​tree/ ​master/ ​chapter02/ ​ch02- ​datacache

Using batch processing
Batch processing is the last recipe of this chapter. Running background tasks is a useful and
important skill in an enterprise context.

You could use it to process data in bulk or just to separate it from the UI processes. This
recipe will show you how to do it.

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-datacache
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-datacache
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-datacache
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-datacache
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-datacache
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-datacache
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-datacache
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-datacache
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-datacache
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-datacache
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-datacache
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-datacache
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-datacache
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-datacache
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-datacache
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-datacache
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-datacache
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-datacache
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-datacache
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-datacache
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-datacache
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-datacache

Server-Side Development Chapter 2

[75]

Getting ready
Let's add our dependencies:

 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-entitymanager</artifactId>
 <version>5.2.10.Final</version>
 <scope>runtime</scope>
 </dependency>
 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>7.0</version>
 <scope>provided</scope>
 </dependency>

How to do it...
We first define our persistence unit:1.

 <persistence-unit name="ch02-batch-pu" >
<provider>org.hibernate.jpa.HibernatePersistenceProvider</provider>
 <jta-data-source>java:app/userDb</jta-data-source>
 <exclude-unlisted-classes>false</exclude-unlisted-classes>
 <properties>
 <property name="javax.persistence.schema-
 generation.database.action"
 value="create"/>
 <property name="hibernate.transaction.jta.platform"
 value="org.hibernate.service.jta.platform
 .internal.SunOneJtaPlatform"/>
 </properties>
 </persistence-unit>

Then we declare a User entity:2.

@Entity
@Table(name = "UserTab")
public class User implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id
 @NotNull

Server-Side Development Chapter 2

[76]

 private Integer id;

 private String name;

 private String email;

 public User() {
 }

 //DO NOT FORGET TO IMPLEMENT THE GETTERS AND SETTERS
}

Here we create a job reader:3.

@Named
@Dependent
public class UserReader extends AbstractItemReader {

 private BufferedReader br;

 @Override
 public void open(Serializable checkpoint) throws Exception {
 br = new BufferedReader(
 new InputStreamReader(
 Thread.currentThread()
 .getContextClassLoader()
 .getResourceAsStream
 ("META-INF/user.txt")));
 }

 @Override
 public String readItem() {
 String line = null;

 try {
 line = br.readLine();
 } catch (IOException ex) {
 System.out.println(ex.getMessage());
 }

 return line;
 }
}

Server-Side Development Chapter 2

[77]

Then we create a job processor:4.

@Named
@Dependent
public class UserProcessor implements ItemProcessor {

 @Override
 public User processItem(Object line) {
 User user = new User();

 StringTokenizer tokens = new StringTokenizer((String)
 line, ",");
 user.setId(Integer.parseInt(tokens.nextToken()));
 user.setName(tokens.nextToken());
 user.setEmail(tokens.nextToken());
 return user;
 }
}

And here we create a job writer:5.

@Named
@Dependent
public class UserWriter extends AbstractItemWriter {

 @PersistenceContext
 EntityManager entityManager;

 @Override
 @Transactional
 public void writeItems(List list) {
 for (User user : (List<User>) list) {
 entityManager.persist(user);
 }
 }
}

The processor, reader, and writer are referenced by the acess-user.xml file
located at META-INF.batch-jobs:

<?xml version="1.0" encoding="windows-1252"?>
<job id="userAccess"
 xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 version="1.0">
 <step id="loadData">
 <chunk item-count="3">
 <reader ref="userReader"/>

Server-Side Development Chapter 2

[78]

 <processor ref="userProcessor"/>
 <writer ref="userWriter"/>
 </chunk>
 </step>
</job>

And finally, we create a bean to interact with the batch engine:6.

@Named
@RequestScoped
public class UserBean {

 @PersistenceContext
 EntityManager entityManager;

 public void run() {
 try {
 JobOperator job = BatchRuntime.getJobOperator();
 long jobId = job.start("acess-user", new Properties());
 System.out.println("Job started: " + jobId);
 } catch (JobStartException ex) {
 System.out.println(ex.getMessage());
 }
 }

 public List<User> get() {
 return entityManager
 .createQuery("SELECT u FROM User as u", User.class)
 .getResultList();
 }
}

For the purpose of this example, we are going to use a JSF page to run the job and load the
data:

<h:body>
 <h:form>
 <h:outputLabel value="#{userBean.get()}" />

 <h:commandButton value="Run" action="index"
actionListener="#{userBean.run()}"/>
 <h:commandButton value="Reload" action="index"/>
 </h:form>
</h:body>

Run it on a Java EE server, click on the Run button and then the Reload button.

Server-Side Development Chapter 2

[79]

How it works...
To understand what is happening:

UserReader extends the AbstractItemReader class that has two key methods:1.
open() and readItem(). In our case, the first one opens the META-
INF/user.txt and the second one reads each line of the file.
The UserProcessor class extends the ItemProcessor class that has a2.
processItem() method. It gets the item read by readItem() (from
UserReader) to generate the User object that we want.
Once all items are processed and available in a list (in memory) we use the3.
UserWriter class; that extends the AbstractItemWriter class and has the
writeItems method. We use it, in our case, to persist the data read from the
user.txt file.

All set so, we just use UserBean to run the job:

 public void run() {
 try {
 JobOperator job = BatchRuntime.getJobOperator();
 long jobId = job.start("acess-user", new Properties());
 System.out.println("Job started: " + jobId);
 } catch (JobStartException ex) {
 System.out.println(ex.getMessage());
 }
 }

The job.start() method is referencing the acess-user.xml file, enabling our reader,
processor, and writer to work together.

See also
Check the full source code of this recipe at https:/ ​/​github. ​com/ ​eldermoraes/
javaee8- ​cookbook/ ​tree/ ​master/ ​chapter02/ ​ch02- ​batch

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-batch
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-batch
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-batch
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-batch
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-batch
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-batch
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-batch
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-batch
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-batch
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-batch
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-batch
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-batch
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-batch
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-batch
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-batch
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-batch
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-batch
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-batch
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-batch
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-batch
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-batch
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter02/ch02-batch

3
Building Powerful Services with

JSON and RESTful Features
Nowadays, using REST services with JSON is the most common method for data transfer
between applications over the HTTP protocol and this is not a coincidence—this is fast and
easy to do. It's an easy to read, easy to parse and, with JSON-P, easy to code!

The following recipes will show you some common scenarios and how to apply Java EE to
deal with them.

This chapter covers the following recipes:

Building server-side events with JAX-RS
Improving a service's capabilities with JAX-RS and CDI
Easing data and object representation with JSON-B
Parsing, generating, transforming, and querying JSON objects using JSON-P

Building server-side events with JAX-RS
Usually, web applications rely on the events sent by the client side. So, basically the server
will only do something if it is asked to.

But with the evolution of the technologies surrounding the internet (HTML5, mobile clients,
smartphones, and so on), the server side also had to evolve. So that gave birth to the server-
side events, events fired by the server (as the name suggests).

With this recipe, you will learn how to use the server-side event to update a user view.

Building Powerful Services with JSON and RESTful Features Chapter 3

[81]

Getting ready
Start by adding the Java EE dependency:

 <dependencies>
 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>

How to do it...
First, we build a REST endpoint to manage the server events we are going to use, and to use
REST we should start by properly configuring it:

@ApplicationPath("webresources")
public class ApplicationConfig extends Application {

}

The following is quite a big chunk of code, but don't worry, we are going to split it up and
understand each piece:

@Path("serverSentService")
@RequestScoped
public class ServerSentService {

 private static final Map<Long, UserEvent> POOL =
 new ConcurrentHashMap<>();

 @Resource(name = "LocalManagedExecutorService")
 private ManagedExecutorService executor;

 @Path("start")
 @POST
 public Response start(@Context Sse sse) {

 final UserEvent process = new UserEvent(sse);

 POOL.put(process.getId(), process);
 executor.submit(process);

 final URI uri =

Building Powerful Services with JSON and RESTful Features Chapter 3

[82]

UriBuilder.fromResource(ServerSentService.class).path
 ("register/{id}").build(process.getId());
 return Response.created(uri).build();
 }

 @Path("register/{id}")
 @Produces(MediaType.SERVER_SENT_EVENTS)
 @GET
 public void register(@PathParam("id") Long id,
 @Context SseEventSink sseEventSink) {
 final UserEvent process = POOL.get(id);

 if (process != null) {
 process.getSseBroadcaster().register(sseEventSink);
 } else {
 throw new NotFoundException();
 }
 }

 static class UserEvent implements Runnable {

 private final Long id;
 private final SseBroadcaster sseBroadcaster;
 private final Sse sse;

 UserEvent(Sse sse) {
 this.sse = sse;
 this.sseBroadcaster = sse.newBroadcaster();
 id = System.currentTimeMillis();
 }

 Long getId() {
 return id;
 }

 SseBroadcaster getSseBroadcaster() {
 return sseBroadcaster;
 }

 @Override
 public void run() {
 try {
 TimeUnit.SECONDS.sleep(5);
 sseBroadcaster.broadcast(sse.newEventBuilder().
 name("register").data(String.class, "Text from event "
 + id).build());
 sseBroadcaster.close();
 } catch (InterruptedException e) {

Building Powerful Services with JSON and RESTful Features Chapter 3

[83]

 System.out.println(e.getMessage());
 }
 }
 }
}

Here, we have a bean to manage the UI and help us with a better view of what is happening
in the server:

@ViewScoped
@Named
public class SseBean implements Serializable {

 @NotNull
 @Positive
 private Integer countClient;
 private Client client;
 @PostConstruct
 public void init(){
 client = ClientBuilder.newClient();
 }
 @PreDestroy
 public void destroy(){
 client.close();
 }

 public void sendEvent() throws URISyntaxException, InterruptedException
{
 WebTarget target = client.target(URI.create("http://localhost:8080/
 ch03-sse/"));
 Response response =
 target.path("webresources/serverSentService/start")
 .request()
 .post(Entity.json(""), Response.class);

 FacesContext.getCurrentInstance().addMessage(null,
 new FacesMessage("Sse Endpoint: " +
 response.getLocation()));

 final Map<Integer, String> messageMap = new ConcurrentHashMap<>
 (countClient);
 final SseEventSource[] sources = new
 SseEventSource[countClient];

 final String processUriString =
 target.getUri().relativize(response.getLocation()).
 toString();
 final WebTarget sseTarget = target.path(processUriString);

Building Powerful Services with JSON and RESTful Features Chapter 3

[84]

 for (int i = 0; i < countClient; i++) {
 final int id = i;
 sources[id] = SseEventSource.target(sseTarget).build();
 sources[id].register((event) -> {
 final String message = event.readData(String.class);

 if (message.contains("Text")) {
 messageMap.put(id, message);
 }
 });
 sources[i].open();
 }

 TimeUnit.SECONDS.sleep(10);

 for (SseEventSource source : sources) {
 source.close();
 }

 for (int i = 0; i < countClient; i++) {
 final String message = messageMap.get(i);

 FacesContext.getCurrentInstance().addMessage(null,
 new FacesMessage("Message sent to client " +
 (i + 1) + ": " + message));
 }
 }

 public Integer getCountClient() {
 return countClient;
 }

 public void setCountClient(Integer countClient) {
 this.countClient = countClient;
 }

}

Building Powerful Services with JSON and RESTful Features Chapter 3

[85]

And finally, the UI is code a simple JSF page:

<h:body>
 <h:form>
 <h:outputLabel for="countClient" value="Number of Clients" />
 <h:inputText id="countClient" value="#{sseBean.countClient}" />

 <h:commandButton type="submit" action="#{sseBean.sendEvent()}"
 value="Send Events" />
 </h:form>
</h:body>

How it works...
We started with our SSE engine, the ServerEvent class, and a JAX-RS endpoint—these
hold all the methods that we need for this recipe.

Let's understand the first one:

 @Path("start")
 @POST
 public Response start(@Context Sse sse) {

 final UserEvent process = new UserEvent(sse);

 POOL.put(process.getId(), process);
 executor.submit(process);

 final URI uri = UriBuilder.fromResource(ServerSentService.class).
 path("register/{id}").build(process.getId());
 return Response.created(uri).build();
 }

Following are the main points:

First things first—this method will create and prepare an event to be sent by the1.
server to the clients.
Then, the just created event is put in a HashMap called POOL.2.
Then our event is attached to a URI that represents another method in this same3.
class (details are provided next).

Building Powerful Services with JSON and RESTful Features Chapter 3

[86]

Pay attention to this parameter:

@Context Sse sse

It brings the server-side events feature from the server context and lets you use it as you
need and, of course, it is injected by CDI (yes, CDI is everywhere!).

Now we see our register() method:

 @Path("register/{id}")
 @Produces(MediaType.SERVER_SENT_EVENTS)
 @GET
 public void register(@PathParam("id") Long id,
 @Context SseEventSink sseEventSink) {
 final UserEvent event = POOL.get(id);

 if (event != null) {
 event.getSseBroadcaster().register(sseEventSink);
 } else {
 throw new NotFoundException();
 }
 }

This is the very method that sends the events to your clients—check the @Produces
annotation; it uses the new media type SERVER_SENT_EVENTS.

The engine works, thanks to this small piece of code:

@Context SseEventSink sseEventSink

...

event.getSseBroadcaster().register(sseEventSink);

The SseEventSink is a queue of events managed by the Java EE server, and it is served to
you by injection from the context.

Then you get the process broadcaster and register it to this sink, which means that
everything that this process broadcasts will be sent by the server from SseEventSink.

Building Powerful Services with JSON and RESTful Features Chapter 3

[87]

And now we check our event setup:

 static class UserEvent implements Runnable {

 ...

 UserEvent(Sse sse) {
 this.sse = sse;
 this.sseBroadcaster = sse.newBroadcaster();
 id = System.currentTimeMillis();
 }

 ...

 @Override
 public void run() {
 try {
 TimeUnit.SECONDS.sleep(5);
 sseBroadcaster.broadcast(sse.newEventBuilder().
 name("register").data(String.class, "Text from event "
 + id).build());
 sseBroadcaster.close();
 } catch (InterruptedException e) {
 System.out.println(e.getMessage());
 }
 }
 }

If you pay attention to this line:

this.sseBroadcaster = sse.newBroadcaster();

You'll remember that we've just used this broadcaster in the last class. Here we see that this
broadcaster is brought by the Sse object injected by the server.

This event implements the Runnable interface so we can use it with the executor (as
explained before), so once it runs, you can broadcast to your clients:

sseBroadcaster.broadcast(sse.newEventBuilder().name("register").
data(String.class, "Text from event " + id).build());

This is exactly the message sent to the client. This could be whatever message you need.

Building Powerful Services with JSON and RESTful Features Chapter 3

[88]

For this recipe, we used another class to interact with Sse. Let's highlight the most
important parts:

 WebTarget target = client.target(URI.create
 ("http://localhost:8080/ch03-sse/"));
 Response response = target.path("webresources/serverSentService
 /start")
 .request()
 .post(Entity.json(""), Response.class);

This is a simple code that you can use to call any JAX-RS endpoint.

And finally, the most important part of this mock client:

 for (int i = 0; i < countClient; i++) {
 final int id = i;
 sources[id] = SseEventSource.target(sseTarget).build();
 sources[id].register((event) -> {
 final String message = event.readData(String.class);

 if (message.contains("Text")) {
 messageMap.put(id, message);
 }
 });
 sources[i].open();
 }

Each message that is broadcast is read here:

final String message = messageMap.get(i);

It could be any client you want, another service, a web page, a mobile client, or anything.

Then we check our UI:

<h:inputText id="countClient" value="#{sseBean.countClient}" />
...
<h:commandButton type="submit" action="#{sseBean.sendEvent()}"
value="Send Events" />

We are using the countClient field to fill the countClient value in the client, so you can
play around with as many threads as you want.

Building Powerful Services with JSON and RESTful Features Chapter 3

[89]

There's more...
It's important to mention that SSE is not supported in MS IE/Edge web browsers and that it
is not as scalable as web sockets. In case you want to have full cross-browser support in the
desktop side and/or better scalability (so, not only mobile apps, but also web apps which
can open many more connections per instance), then WebSockets should be considered
instead. Fortunately, standard Java EE has supported WebSockets since 7.0.

See also
The full source code of this recipe is at https:/ ​/​github. ​com/ ​eldermoraes/
javaee8- ​cookbook/ ​tree/ ​master/ ​chapter03/ ​ch03- ​sse

Improving service's capabilities with JAX-RS
and CDI
This recipe will show you how to take advantage of CDI and JAX-RS features to reduce the
effort and lower the complexity of writing powerful services.

Getting ready
Start by adding the Java EE dependency:

 <dependencies>
 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-sse
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-sse
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-sse
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-sse
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-sse
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-sse
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-sse
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-sse
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-sse
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-sse
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-sse
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-sse
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-sse
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-sse
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-sse
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-sse
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-sse
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-sse
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-sse
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-sse
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-sse
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-sse

Building Powerful Services with JSON and RESTful Features Chapter 3

[90]

How to do it...
We first create a User class to be managed through our service:1.

public class User implements Serializable{

 private String name;
 private String email;

 public User(){
 }

 public User(String name, String email) {
 this.name = name;
 this.email = email;
 }

 //DO NOT FORGET TO IMPLEMENT THE GETTERS AND SETTERS

}

To have multiple sources of User objects, we create a UserBean class:2.

@Stateless
public class UserBean {
 public User getUser(){
 long ts = System.currentTimeMillis();
 return new User("Bean" + ts, "user" + ts +
 "@eldermoraes.com");
 }
}

And finally, we create our UserService endpoint:3.

@Path("userservice")
public class UserService implements Serializable{
 @Inject
 private UserBean userBean;
 private User userLocal;
 @Inject
 private void setUserLocal(){
 long ts = System.currentTimeMillis();
 userLocal = new User("Local" + ts, "user" + ts +
 "@eldermoraes.com");
 }
 @GET
 @Path("getUserFromBean")

Building Powerful Services with JSON and RESTful Features Chapter 3

[91]

 @Produces(MediaType.APPLICATION_JSON)
 public Response getUserFromBean(){
 return Response.ok(userBean.getUser()).build();
 }

 @GET
 @Path("getUserFromLocal")
 @Produces(MediaType.APPLICATION_JSON)
 public Response getUserFromLocal(){
 return Response.ok(userLocal).build();
 }
}

To load our UI, we have the UserView class that will be like a Controller between4.
the UI and the service:

@ViewScoped
@Named
public class UserView implements Serializable {

 public void loadUsers() {
 Client client = ClientBuilder.newClient();
 WebTarget target = client.target(URI.create
 ("http://localhost:8080/ch03-rscdi/"));
 User response = target.path("webresources/userservice/
 getUserFromBean")
 .request()
 .accept(MediaType.APPLICATION_JSON)
 .get(User.class);

 FacesContext.getCurrentInstance()
 .addMessage(null,
 new FacesMessage("userFromBean: " +
 response));

 response = target.path("webresources/userservice
 /getUserFromLocal")
 .request()
 .accept(MediaType.APPLICATION_JSON)
 .get(User.class);

 FacesContext.getCurrentInstance()
 .addMessage(null,
 new FacesMessage("userFromLocal:
 " + response));

Building Powerful Services with JSON and RESTful Features Chapter 3

[92]

 client.close();
 }

}

And we add simple JSF page just to show the results:5.

 <h:body>
 <h:form>
 <h:commandButton type="submit"
 action="#{userView.loadUsers()}"
 value="Load Users" />
 </h:form>
 </h:body>

How it works...
We used two kinds of injection:

From UserBean, when UserService is attached to the context
From UserService itself

Injection from UserBean is the simplest possible to perform:

 @Inject
 private UserBean userBean;

Injection from UserService itself is also simple:

 @Inject
 private void setUserLocal(){
 long ts = System.currentTimeMillis();
 userLocal = new User("Local" + ts, "user" + ts +
 "@eldermoraes.com");
 }

Here, the @Inject works like the @PostConstruct annotation, with the difference begin
in the server context running the method. But the result is quite the same.

Everything is injected, so now it's just a matter of getting the results:

response = target.path("webresources/userservice/getUserFromBean")
 .request()
 .accept(MediaType.APPLICATION_JSON)
 .get(User.class);

Building Powerful Services with JSON and RESTful Features Chapter 3

[93]

...

response = target.path("webresources/userservice/getUserFromLocal")
 .request()
 .accept(MediaType.APPLICATION_JSON)
 .get(User.class);

There's more...
As you can see, JAX-RS eases a lot of the objects parsing and represention:

 @GET
 @Path("getUserFromBean")
 @Produces(MediaType.APPLICATION_JSON)
 public Response getUserFromBean(){
 userFromBean = userBean.getUser();
 return Response.ok(userFromBean).build();
 }

 @GET
 @Path("getUserFromLocal")
 @Produces(MediaType.APPLICATION_JSON)
 public Response getUserFromLocal(){
 return Response.ok(userLocal).build();
 }

By using a Response returning object and
@Produces(MediaType.APPLICATION_JSON), you give the framework the hard job of
parsing your user object to a JSON representation. Lots of effort saved in a few lines!

You could also inject the user using a producer (the @Produces annotation). Check the CDI
recipe from Chapter 1, New Features and Improvements, for more details.

See also
Check the full source code of this recipe at https:/ ​/​github. ​com/ ​eldermoraes/
javaee8- ​cookbook/ ​tree/ ​master/ ​chapter03/ ​ch03- ​rscdi

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-rscdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-rscdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-rscdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-rscdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-rscdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-rscdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-rscdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-rscdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-rscdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-rscdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-rscdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-rscdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-rscdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-rscdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-rscdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-rscdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-rscdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-rscdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-rscdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-rscdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-rscdi
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-rscdi

Building Powerful Services with JSON and RESTful Features Chapter 3

[94]

Easing data and objects representation with
JSON-B
This recipe will show you how you can use the power of the new JSON-B API to give some
flexibility to your data representation, and also help to transform your objects into JSON
messages.

Getting ready
Start by adding the Java EE dependency:

 <dependencies>
 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>

How to do it...
We first create a User class with some customization (details ahead):1.

public class User {

 private Long id;
 @JsonbProperty("fullName")
 private String name;
 private String email;
 @JsonbTransient
 private Double privateNumber;
 @JsonbDateFormat(JsonbDateFormat.DEFAULT_LOCALE)
 private Date dateCreated;
 public User(Long id, String name, String email,
 Double privateNumber, Date dateCreated) {
 this.id = id;
 this.name = name;
 this.email = email;
 this.privateNumber = privateNumber;
 this.dateCreated = dateCreated;
 }

Building Powerful Services with JSON and RESTful Features Chapter 3

[95]

 private User(){
 }

 //DO NOT FORGET TO IMPLEMENT THE GETTERS AND SETTERS
}

Here we use UserView to return the user JSON to the UI:2.

@ViewScoped
@Named
public class UserView implements Serializable{
 private String json;
 public void loadUser(){
 long now = System.currentTimeMillis();
 User user = new User(now,
 "User" + now,
 "user" + now + "@eldermoraes.com",
 Math.random(),
 new Date());
 Jsonb jb = JsonbBuilder.create();
 json = jb.toJson(user);
 try {
 jb.close();
 } catch (Exception ex) {
 System.out.println(ex.getMessage());
 }
 }

 public String getJson() {
 return json;
 }

 public void setJson(String json) {
 this.json = json;
 }
}

Building Powerful Services with JSON and RESTful Features Chapter 3

[96]

And we add JSF page just to show the results:3.

 <h:body>
 <h:form>
 <h:commandButton type="submit" action="#{userView.loadUser()}"
 value="Load User" />

 <h:outputLabel for="json" value="User JSON" />

 <h:inputTextarea id="json" value="#{userView.json}"
 style="width: 300px; height: 300px;" />
 </h:form>
 </h:body>

How it works...
We are using some JSON-B annotations to customize our user data representation:

 @JsonbProperty("fullName")
 private String name;

The @JsonbProperty is used to change the field name to some other value:

 @JsonbTransient
 private Double privateNumber;

Use @JsonbTransient when you want to prevent some property appearing at the JSON
representation:

 @JsonbDateFormat(JsonbDateFormat.DEFAULT_LOCALE)
 private Date dateCreated;

With @JsonbDateFormat, you use the API to automatically format your dates.

And then we use our UI manager to update the view:

 public void loadUser(){
 long now = System.currentTimeMillis();
 User user = new User(now,
 "User" + now,
 "user" + now + "@eldermoraes.com",
 Math.random(),
 new Date());
 Jsonb jb = JsonbBuilder.create();

Building Powerful Services with JSON and RESTful Features Chapter 3

[97]

 json = jb.toJson(user);
 }

See also
The full source code of this recipe is at https:/ ​/​github. ​com/ ​eldermoraes/
javaee8- ​cookbook/ ​tree/ ​master/ ​chapter03/ ​ch03- ​jsonb

Parsing, generating, transforming, and
querying on JSON objects using JSON-P
Dealing with JSON objects is an activity that you can't avoid anymore. So if you can do it by
relying on a powerful and easy to use framework—even better!

This recipe will show you how you can use JSON-P to carry out some different operations
using or generating JSON objects.

Getting ready
Start by adding the Java EE dependency:

 <dependencies>
 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonb

Building Powerful Services with JSON and RESTful Features Chapter 3

[98]

How to do it...
Let's create a User class to support our operations:1.

public class User {

 private String name;
 private String email;
 private Integer[] profiles;
 public User(String name, String email, Integer[] profiles) {
 this.name = name;
 this.email = email;
 this.profiles = profiles;
 }

 //DO NOT FORGET TO IMPLEMENT THE GETTERS AND SETTERS
}

Then a UserView class to do all the JSON operations:2.

@ViewScoped
@Named
public class UserView implements Serializable{
 private static final JsonBuilderFactory BUILDERFACTORY =
 Json.createBuilderFactory(null);
 private final Jsonb jsonbBuilder = JsonbBuilder.create();
 private String fromArray;
 private String fromStructure;
 private String fromUser;
 private String fromJpointer;
 public void loadUserJson(){
 loadFromArray();
 loadFromStructure();
 loadFromUser();
 }
 private void loadFromArray(){
 JsonArray array = BUILDERFACTORY.createArrayBuilder()
 .add(BUILDERFACTORY.createObjectBuilder()
 .add("name", "User1")
 .add("email", "user1@eldermoraes.com"))
 .add(BUILDERFACTORY.createObjectBuilder()
 .add("name", "User2")
 .add("email", "user2@eldermoraes.com"))
 .add(BUILDERFACTORY.createObjectBuilder()
 .add("name", "User3")
 .add("email", "user3@eldermoraes.com"))
 .build();

Building Powerful Services with JSON and RESTful Features Chapter 3

[99]

 fromArray = jsonbBuilder.toJson(array);
 }
 private void loadFromStructure(){
 JsonStructure structure =
 BUILDERFACTORY.createObjectBuilder()
 .add("name", "User1")
 .add("email", "user1@eldermoraes.com")
 .add("profiles",
BUILDERFACTORY.createArrayBuilder()
 .add(BUILDERFACTORY.createObjectBuilder()
 .add("id", "1")
 .add("name", "Profile1"))
 .add(BUILDERFACTORY.createObjectBuilder()
 .add("id", "2")
 .add("name", "Profile2")))
 .build();
 fromStructure = jsonbBuilder.toJson(structure);

 JsonPointer pointer = Json.createPointer("/profiles");
 JsonValue value = pointer.getValue(structure);
 fromJpointer = value.toString();
 }
 private void loadFromUser(){
 User user = new User("Elder Moraes",
 "elder@eldermoraes.com",
 new Integer[]{1,2,3});
 fromUser = jsonbBuilder.toJson(user);
 }

 //DO NOT FORGET TO IMPLEMENT THE GETTERS AND SETTERS
}

Then we create a JSF page to show the results:3.

 <h:body>
 <h:form>
 <h:commandButton type="submit" action="#{userView.loadUserJson()}"
 value="Load JSONs" />

 <h:outputLabel for="fromArray" value="From Array" />

 <h:inputTextarea id="fromArray" value="#{userView.fromArray}"
 style="width: 300px; height: 150px" />

 <h:outputLabel for="fromStructure" value="From Structure" />

Building Powerful Services with JSON and RESTful Features Chapter 3

[100]

 <h:inputTextarea id="fromStructure"
value="#{userView.fromStructure}"
 style="width: 300px; height: 150px" />

 <h:outputLabel for="fromUser" value="From User" />

 <h:inputTextarea id="fromUser" value="#{userView.fromUser}"
 style="width: 300px; height: 150px" />

 <h:outputLabel for="fromJPointer" value="Query with JSON Pointer
 (from JsonStructure Above)" />

 <h:inputTextarea id="fromJPointer"
 value="#{userView.fromJpointer}"
 style="width: 300px; height: 100px" />
 </h:form>
 </h:body>

How it works...
First, the loadFromArray() method:

 private void loadFromArray(){
 JsonArray array = BUILDERFACTORY.createArrayBuilder()
 .add(BUILDERFACTORY.createObjectBuilder()
 .add("name", "User1")
 .add("email", "user1@eldermoraes.com"))
 .add(BUILDERFACTORY.createObjectBuilder()
 .add("name", "User2")
 .add("email", "user2@eldermoraes.com"))
 .add(BUILDERFACTORY.createObjectBuilder()
 .add("name", "User3")
 .add("email", "user3@eldermoraes.com"))
 .build();
 fromArray = jsonbBuilder.toJson(array);
 }

Building Powerful Services with JSON and RESTful Features Chapter 3

[101]

It uses the BuilderFactory and the createArrayBuilder method to easily build an
array of JSONs (each call of createObjectBuilder creates another array member). At the
end, we use the JSON-B to convert it to a JSON string:

 private void loadFromStructure(){
 JsonStructure structure = BUILDERFACTORY.createObjectBuilder()
 .add("name", "User1")
 .add("email", "user1@eldermoraes.com")
 .add("profiles", BUILDERFACTORY.createArrayBuilder()
 .add(BUILDERFACTORY.createObjectBuilder()
 .add("id", "1")
 .add("name", "Profile1"))
 .add(BUILDERFACTORY.createObjectBuilder()
 .add("id", "2")
 .add("name", "Profile2")))
 .build();
 fromStructure = jsonbBuilder.toJson(structure);

 JsonPointer pointer = new JsonPointerImpl("/profiles");
 JsonValue value = pointer.getValue(structure);
 fromJpointer = value.toString();
 }

Here, instead of an array, we are building a single JSON structure. Again, we use JSON-B to
convert the JsonStructure to a JSON string.

We also took advantage of having this JsonStructure ready and used it to query the user
profiles using the JsonPointer object:

private void loadFromUser(){
 User user = new User("Elder Moraes", "elder@eldermoraes.com",
 new Integer[]{1,2,3});
 fromUser = jsonbBuilder.toJson(user);
 }

And here was the simplest: creating an object and asking JSON-B to convert it to a JSON
string.

See also
Check the full source code of this recipe at https:/ ​/​github. ​com/ ​eldermoraes/
javaee8- ​cookbook/ ​tree/ ​master/ ​chapter03/ ​ch03- ​jsonp

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter03/ch03-jsonp

4
Web- and Client-Server

Communication
Web development is one of the greatest ways to use Java EE. Actually, since before J2EE
times, we could use JSP and servlets, and that's how web development using Java began.

This chapter will show some advanced features for web development that will make your
application faster and better—for you and for your client!

This chapter covers the following recipes:

Using servlet for request and response management
Building UI with template features using JSF
Improving response performance with Server Push

Using servlets for request and response
management
Servlets are the core place to deal with requests and responses using Java EE. If you are still
not familiar with it, know that even a JSP is nothing more than a way to build a servlet once
the page is called.

This recipe will show you three features you can use when using servlets:

Load on startup
Parameterized servlets
Asynchronous servlets

Web- and Client-Server Communication Chapter 4

[103]

Getting ready
Start by adding the dependency to your project:

 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>

How to do it...

The load on startup servlet
Let's start with our servlet that will load on the server's start up:

@WebServlet(name = "LoadOnStartupServlet", urlPatterns =
{"/LoadOnStartupServlet"},
loadOnStartup = 1)
public class LoadOnStartupServlet extends HttpServlet {

 @Override
 public void init() throws ServletException {
 System.out.println("*******SERVLET LOADED
 WITH SERVER's STARTUP*******");
 }

}

A servlet with init params
Now we add a servlet with some parameters for its own initialization:

@WebServlet(name = "InitConfigServlet", urlPatterns =
{"/InitConfigServlet"},
 initParams = {
 @WebInitParam(name = "key1", value = "value1"),
 @WebInitParam(name = "key2", value = "value2"),
 @WebInitParam(name = "key3", value = "value3"),
 @WebInitParam(name = "key4", value = "value4"),
 @WebInitParam(name = "key5", value = "value5")
 }

Web- and Client-Server Communication Chapter 4

[104]

)
public class InitConfigServlet extends HttpServlet {

 Map<String, String> param = new HashMap<>();
 @Override
 protected void doPost(HttpServletRequest req,
 HttpServletResponse resp)
 throws ServletException, IOException {
 doProcess(req, resp);
 }

 @Override
 protected void doGet(HttpServletRequest req,
 HttpServletResponse resp)
 throws ServletException, IOException {
 doProcess(req, resp);
 }
 private void doProcess(HttpServletRequest req,
 HttpServletResponse resp)
 throws IOException{
 resp.setContentType("text/html");
 PrintWriter out = resp.getWriter();
 if (param.isEmpty()){
 out.println("No params to show");
 } else{
 param.forEach((k,v) -> out.println("param: " + k + ",
 value: " + v + "
"));
 }
 }

 @Override
 public void init(ServletConfig config) throws ServletException {
 System.out.println("init");
 List<String> list =
 Collections.list(config.getInitParameterNames());
 list.forEach((key) -> {
 param.put(key, config.getInitParameter(key));
 });
 }

}

Web- and Client-Server Communication Chapter 4

[105]

The asynchronous servlet
And then we implement our asynchronous servlet:

@WebServlet(urlPatterns = "/AsyncServlet", asyncSupported = true)
public class AsyncServlet extends HttpServlet {

 private static final long serialVersionUID = 1L;

 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {
 long startTime = System.currentTimeMillis();
 System.out.println("AsyncServlet Begin, Name="
 + Thread.currentThread().getName() + ", ID="
 + Thread.currentThread().getId());

 String time = request.getParameter("timestamp");
 AsyncContext asyncCtx = request.startAsync();

 asyncCtx.start(() -> {
 try {
 Thread.sleep(Long.valueOf(time));
 long endTime = System.currentTimeMillis();
 long timeElapsed = endTime - startTime;
 System.out.println("AsyncServlet Finish, Name="
 + Thread.currentThread().getName() + ", ID="
 + Thread.currentThread().getId() + ", Duration="
 + timeElapsed + " milliseconds.");

 asyncCtx.getResponse().getWriter().write
 ("Async process time: " + timeElapsed + " milliseconds");
 asyncCtx.complete();
 } catch (InterruptedException | IOException ex) {
 System.err.println(ex.getMessage());
 }
 });
 }
}

Web- and Client-Server Communication Chapter 4

[106]

And finally, we need a simple web page to try all those servlets:

<body>

 InitConfigServlet

 <form action="${pageContext.request.contextPath}/AsyncServlet"
 method="GET">
 <h2>AsyncServlet</h2>
 Milliseconds

 <input type="number" id="timestamp" name="timestamp"
 style="width: 200px" value="5000"/>
 <button type="submit">Submit</button>
 </form>

</body>

How it works...

The load on startup servlet
If you want your servlet to be initialized when the server starts, then this is what you need.
Usually you will use it to load some cache, start a background process, log some
information, or whatever you need to do when the server has just started and can't wait
until somebody calls the servlet.

The key points of this kind of servlet are:

The loadOnStartup param: Accepts any number of servlets. This number
defines the order used by the server to run all the servlets that will run in the
startup. So if you have more than one servlet running this way, remember to
define the right order (if there is any). If there's no number defined or a negative
one, the server will choose the default order.
The init method: Remember to override the init method with the operation
you would like to do at the start up time, otherwise your servlet will do nothing.

Web- and Client-Server Communication Chapter 4

[107]

A servlet with init params
Sometimes you need to define some parameters for your servlet that goes beyond local
variables – initParams is the place to do it:

@WebServlet(name = "InitConfigServlet", urlPatterns =
{"/InitConfigServlet"},
 initParams = {
 @WebInitParam(name = "key1", value = "value1"),
 @WebInitParam(name = "key2", value = "value2"),
 @WebInitParam(name = "key3", value = "value3"),
 @WebInitParam(name = "key4", value = "value4"),
 @WebInitParam(name = "key5", value = "value5")
 }
)

The @WebInitParam annotation will handle them for you and those parameters will be
available for the server through the ServletConfig object.

Asynchronous servlet
Let's split our AsyncServlet class into pieces so we can understand it:

@WebServlet(urlPatterns = "/AsyncServlet", asyncSupported = true)

Here, we defined our servlet for accepting async behavior by using
the asyncSupported param:

AsyncContext asyncCtx = request.startAsync();

We used the request being processed to start a new async context.

Then we start our async process:

asyncCtx.start(() -> {...

And here we print our output to see the response and finish the async process:

 asyncCtx.getResponse().getWriter().write("Async
 process time: "
 + timeElapsed + " milliseconds");
 asyncCtx.complete();

Web- and Client-Server Communication Chapter 4

[108]

See also
To get the full source code of this recipe, check https:/ ​/​github. ​com/
eldermoraes/ ​javaee8- ​cookbook/ ​tree/ ​master/ ​chapter04/ ​ch04- ​servlet

Building UI with template's features using
JSF
The JavaServer Faces (JSF) is a powerful Java EE API for building outstanding UIs, using
both client and server features.

It goes much further than when you are using JSP, as you are not only using Java code
inside HTML code, but actually really referencing code injected in the server context.

This recipe will show you how to use the Facelet's template feature to get more flexibility
and reusability from your layout template.

Getting ready
Start by adding the dependency to your project:

 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>

How to do it...
Let's first create our page layout with a header, content section, and footer:1.

<h:body>
 <div id="layout">
 <div id="header">
 <ui:insert name="header" >
 <ui:include src="header.xhtml" />
 </ui:insert>
 </div>

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-servlet

Web- and Client-Server Communication Chapter 4

[109]

 <div id="content">
 <ui:insert name="content" >
 <ui:include src="content.xhtml" />
 </ui:insert>
 </div>
 <div id="footer">
 <ui:insert name="footer" >
 <ui:include src="footer.xhtml" />
 </ui:insert>
 </div>
 </div>
</h:body>

Define the default header section:2.

<body>
 <h1>Template header</h1>
</body>

The default content section:3.

<body>
 <h1>Template content</h1>
</body>

The default footer section:4.

<body>
 <h1>Template content</h1>
</body>

And then a simple page using our default template:5.

<h:body>
 <ui:composition template="WEB-INF/template/layout.xhtml">

 </ui:composition>
</h:body>

Web- and Client-Server Communication Chapter 4

[110]

Now, let's create another page and override just the content section:6.

<h:body>
 <ui:composition template="/template/layout.xhtml">
 <ui:define name="content">
 <h1><p style="color:red">User content. Timestamp: #
 {userBean.timestamp}</p></h1>
 </ui:define>
 </ui:composition>
</h:body>

As this code is calling UserBean, let's define it:7.

@Named
@RequestScoped
public class UserBean implements Serializable{

 public Long getTimestamp(){
 return new Date().getTime();
 }
}

Also, don't forget to include the beans.xml file inside the WEB-INF folder;8.
otherwise, this bean will not work as expected:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"
 bean-discovery-mode="all">
</beans>

If you want to try this code, run it in a Java EE compatible server and access the following
URLs:

http://localhost:8080/ch04-jsf/

http://localhost:8080/ch04-jsf/user.xhtml

How it works...
The explanation is as simple as possible: the layout.xhtml is our template. As long as you
name each section (in our case its header, content, and footer), whatever JSF page that uses
it will inherit its layout.

Web- and Client-Server Communication Chapter 4

[111]

Any page using this layout and wanting to customize some of those defined sections,
should just describe the desired section like we did in the user.xhtml file:

<ui:composition template="/template/layout.xhtml">
 <ui:define name="content">
 <h1>User content. Timestamp: #
 {userBean.timestamp}
 </h1>
 </ui:define>
</ui:composition>

See also
To get the full source code of this recipe, check https:/ ​/​github. ​com/
eldermoraes/ ​javaee8- ​cookbook/ ​tree/ ​master/ ​chapter04/ ​ch04- ​jsf

Improving the response performance with
Server Push
One of the main features of HTTP/2.0 is the Server Push. When it is available, that means,
being supported by the protocol, the server, and the browser client—it lets the server send
("push") data to the client before it asks for it.

It is one of the most wanted features in JSF 2.3 and probably the one that demands less
effort to use if your application is based on JSF—just migrate to a Java EE 8 compatible
server and then you are done.

This recipe will show you how to use it in your application and will even let you compare
the performance between HTTP/1.0 and HTTP/2.0 in the same scenario.

Getting ready
Start by adding the dependency to your project:

 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-jsf
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-jsf

Web- and Client-Server Communication Chapter 4

[112]

 </dependency>

How to do it...
This recipe has only this single servlet:

@WebServlet(name = "ServerPushServlet", urlPatterns =
{"/ServerPushServlet"})
public class ServerPushServlet extends HttpServlet {

 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doRequest(request, response);
 }

 private void doRequest(HttpServletRequest request,
 HttpServletResponse response) throws IOException{
 String usePush = request.getParameter("usePush");
 if ("true".equalsIgnoreCase(usePush)){
 PushBuilder pb = request.newPushBuilder();
 if (pb != null) {
 for(int row=0; row < 5; row++){
 for(int col=0; col < 8; col++){
 pb.path("image/keyboard_buttons/keyboard_buttons-"
 + row + "-" + col + ".jpeg")
 .addHeader("content-type", "image/jpeg")
 .push();
 }
 }
 }
 }

 try (PrintWriter writer = response.getWriter()) {
 StringBuilder html = new StringBuilder();
 html.append("<html>");
 html.append("<center>");
 html.append("<table cellspacing='0' cellpadding='0'
 border='0'>");

 for(int row=0; row < 5; row++){
 html.append(" <tr>");
 for(int col=0; col < 8; col++){
 html.append(" <td>");
 html.append("<img

Web- and Client-Server Communication Chapter 4

[113]

 src='image/keyboard_buttons/keyboard_buttons-" +
 row + "-" + col + ".jpeg' style='width:100px;
 height:106.25px;'>");
 html.append(" </td>");
 }
 html.append(" </tr>");
 }
 html.append("</table>");
 html.append("
");
 if ("true".equalsIgnoreCase(usePush)){
 html.append("<h2>Image pushed by ServerPush</h2>");
 } else{
 html.append("<h2>Image loaded using HTTP/1.0</h2>");
 }
 html.append("</center>");
 html.append("</html>");
 writer.write(html.toString());
 }
 }

}

And we creat a simple page to call both HTTP/1.0 and HTTP/2.0 cases:

<body>
 Use HTTP/2.0 (ServerPush)

 Use HTTP/1.0
</body>

And try it on a Java EE 8 compatible server using this URL:

https://localhost:8181/ch04-serverpush

How it works...
The image loaded in this recipe was shared in 25 pieces. When there's no HTTP/2.0
available, the server will wait for 25 requests made by img src (from HTML) and then
reply to each one of them with the proper image.

Web- and Client-Server Communication Chapter 4

[114]

With HTTP/2.0, the server can push them all beforehand. The "magic" is done here:

 PushBuilder pb = request.newPushBuilder();
 if (pb != null) {
 for(int row=0; row < 5; row++){
 for(int col=0; col < 8; col++){
 pb.path("image/keyboard_buttons/keyboard_buttons-"
 + row + "-" + col + ".jpeg")
 .addHeader("content-type", "image/jpeg")
 .push();
 }
 }
 }

To check if your images are loaded using Server Push or not, open the developer console of
your browser, go to network monitoring, and then load the page. One of the pieces of
information about each image should be who sent it to the browser. If there's something like
Push or ServerPush, you are using it!

There's more...
Server Push will only work under SSL. In other words, if you are using GlassFish 5 and try
to run this recipe, your URL should be something like this:

https://localhost:8181/ch04-serverpush

If you miss it, the code will still work, but using HTTP/1.0. means that when the code asks
for newPushBuilder, it will return null (not available):

if (pb != null) {
 ...
}

See also
To get the full source code of this recipe, check https:/ ​/​github. ​com/
eldermoraes/ ​javaee8- ​cookbook/ ​tree/ ​master/ ​chapter04/ ​ch04- ​serverpush

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-serverpush
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter04/ch04-serverpush

5
Security of Enterprise

Architecture
This chapter covers the following recipes:

Domain protection with authentication
Granting rights through authorization
Protecting data confidentiality and integrity with SSL/TLS
Using declarative security
Using programmatic security

Introduction
Security is surely one of the hottest topics of all time in the software industry, and there's
no reason for that to change any time soon. Actually, it will probably become even hotter as
time goes on.

With all your data being streamed through the cloud, passing through uncountable servers,
links, databases, sessions, devices, and so on, what you would expect, at least, is that it is
well-protected, secured, and that its integrity is kept.

Now, finally, Java EE has its own Security API, with Soteria being its reference
implementation.

Security is a subject worthy of dozens of books; that's a fact. But this chapter will cover
some common use cases that you may come across in your daily projects.

Security of Enterprise Architecture Chapter 5

[116]

Domain protection with authentication
Authentication is whatever process, task, and/or policy is used to define who can access
your domain. It's like, for example, a badge that you use to access your office.

In applications, the most common use of authentication is to allow access to your domain to
users who are already registered.

This recipe will show you how to use a simple code and configuration to control who can
and who cannot access some of the resources of your application.

Getting ready
We begin by adding our dependency:

 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>

How to do it
First, we do some configuration in the web.xml file:1.

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>CH05-Authentication</web-resource-name>
 <url-pattern>/authServlet</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>role1</role-name>
 </auth-constraint>
 </security-constraint>

 <security-role>
 <role-name>role1</role-name>
 </security-role>

Security of Enterprise Architecture Chapter 5

[117]

Then we create a servlet to deal with our user access:2.

@DeclareRoles({"role1", "role2", "role3"})
@WebServlet(name = "/UserAuthenticationServlet", urlPatterns =
{"/UserAuthenticationServlet"})
public class UserAuthenticationServlet extends HttpServlet {

 private static final long serialVersionUID = 1L;

 @Inject
 private javax.security.enterprise.SecurityContext
 securityContext;

 @Override
 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {

 String name = request.getParameter("name");
 if (null != name || !"".equals(name)) {
 AuthenticationStatus status =
 securityContext.authenticate(
 request, response,
AuthenticationParameters.withParams().credential
 (new CallerOnlyCredential(name)));

 response.getWriter().write("Authentication status: "
 + status.name() + "\n");
 }

 String principal = null;
 if (request.getUserPrincipal() != null) {
 principal = request.getUserPrincipal().getName();
 }

 response.getWriter().write("User: " + principal + "\n");
 response.getWriter().write("Role \"role1\" access: " +
 request.isUserInRole("role1") + "\n");
 response.getWriter().write("Role \"role2\" access: " +
 request.isUserInRole("role2") + "\n");
 response.getWriter().write("Role \"role3\" access: " +
 request.isUserInRole("role3") + "\n");
 response.getWriter().write("Access to /authServlet? " +
 securityContext.hasAccessToWebResource("/authServlet") +
 "\n");
 }
}

Security of Enterprise Architecture Chapter 5

[118]

And finally, we create the class that will define our authentication policy:3.

@ApplicationScoped
public class AuthenticationMechanism implements
HttpAuthenticationMechanism {

 @Override
 public AuthenticationStatus validateRequest(HttpServletRequest
 request,
 HttpServletResponse response, HttpMessageContext
 httpMessageContext)
 throws AuthenticationException {

 if (httpMessageContext.isAuthenticationRequest()) {

 Credential credential =
 httpMessageContext.getAuthParameters().getCredential();
 if (!(credential instanceof CallerOnlyCredential)) {
 throw new IllegalStateException("Invalid
 mechanism");
 }

 CallerOnlyCredential callerOnlyCredential =
 (CallerOnlyCredential) credential;

 if ("user".equals(callerOnlyCredential.getCaller())) {
 return
 httpMessageContext.notifyContainerAboutLogin
 (callerOnlyCredential.getCaller(), new HashSet<>
 (Arrays.asList("role1","role2")));
 } else{
 throw new AuthenticationException();
 }

 }

 return httpMessageContext.doNothing();
 }

}

If you run this project in a Java EE 8-compatible server, you should use this URL (assuming
that you are running locally. If not, make the appropriate changes):

http://localhost:8080/ch05-authentication/UserAuthenticationServlet?nam
e=user

Security of Enterprise Architecture Chapter 5

[119]

This should result in a page with these messages:

Authentication status: SUCCESS
User: user
Role "role1" access: true
Role "role2" access: true
Role "role3" access: false
Access to /authServlet? true

Try making any change to the name parameter, such as this:

http://localhost:8080/ch05-authentication/UserAuthenticationServlet?nam
e=anotheruser

Then the result will be as follows:

Authentication status: SEND_FAILURE
User: null
Role "role1" access: false
Role "role2" access: false
Role "role3" access: false
Access to /authServlet? false

How it works...
Let's split up the code shown earlier, so that we can better understand what's happening.

In the web.xml file, we are creating a security constraint:

 <security-constraint>
 ...
 </security-constraint>

We're defining a resource inside it:

 <web-resource-collection>
 <web-resource-name>CH05-Authentication</web-resource-name>
 <url-pattern>/authServlet</url-pattern>
 </web-resource-collection>

And we're defining an authorization policy. In this case, it's a role:

 <auth-constraint>
 <role-name>role1</role-name>
 </auth-constraint>

Security of Enterprise Architecture Chapter 5

[120]

Now we have UserAuthenticationServlet. We should pay attention to this annotation:

@DeclareRoles({"role1", "role2", "role3"})

It defines which roles are part of the context of this particular servlet.

Another important actor in this scene is this one:

 @Inject
 private SecurityContext securityContext;

Here, we are asking the server to give us a security context so that we can use it for our
purpose. It will make sense in a minute.

Then, if the name parameter is filled, we reach this line:

 AuthenticationStatus status = securityContext.authenticate(
 request, response, withParams().credential(new
 CallerOnlyCredential(name)));

This will ask the Java EE server to process an authentication. But...based on what? That's
where our HttpAuthenticationMechanism implementation comes in.

As the preceding code created CallerOnlyCredential, our authentication mechanism
will be based on it:

 Credential credential = httpMessageContext.getAuthParameters()
 .getCredential();
 if (!(credential instanceof CallerOnlyCredential)) {
 throw new IllegalStateException("Invalid mechanism");
 }

 CallerOnlyCredential callerOnlyCredential =
 (CallerOnlyCredential) credential;

And once we have a credential instance, we can check if the user "exists":

 if ("user".equals(callerOnlyCredential.getCaller())) {
 ...
 } else{
 throw new AuthenticationException();
 }

As an example, we have just compared the names, but in a real case you could search your
database, an LDAP server, and so on.

Security of Enterprise Architecture Chapter 5

[121]

If the user exists, we proceed with the authentication based on some rules:

return httpMessageContext.notifyContainerAboutLogin
(callerOnlyCredential.getCaller(), new HashSet<>(asList("role1","role2")));

In this case, we have said that the user has access to "role1" and "role2".

Once the authentication is done, it comes back to the servlet and uses the result to finish the
process:

 response.getWriter().write("Role \"role1\" access: " +
 request.isUserInRole("role1") + "\n");
 response.getWriter().write("Role \"role2\" access: " +
 request.isUserInRole("role2") + "\n");
 response.getWriter().write("Role \"role3\" access: " +
 request.isUserInRole("role3") + "\n");
 response.getWriter().write("Access to /authServlet? " +
 securityContext.hasAccessToWebResource("/authServlet") + "\n");

So, this code will print true for "role1" and "role2", and false for "role3".
Because "/authServlet" is allowed for "role1", the user will have access to it.

See also
The full source code of this recipe is available at https:/ ​/ ​github. ​com/
eldermoraes/ ​javaee8- ​cookbook/ ​tree/ ​master/ ​chapter05/ ​ch05-
authentication.

Granting rights through authorization
If authentication is the way to define who can access a particular resource, authorization is
the way to define what a user can and cannot do once they have access to the domain.

It's like allowing someone to get into your house, but denying them access to the remote
control for your TV (very important access, by the way). Or, allowing access to the remote
control, but denying access to adult channels.

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authentication
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authentication
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authentication
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authentication
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authentication
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authentication
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authentication
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authentication
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authentication
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authentication
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authentication
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authentication
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authentication
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authentication
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authentication
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authentication
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authentication
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authentication
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authentication
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authentication
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authentication

Security of Enterprise Architecture Chapter 5

[122]

One way to do it is through profiles, and that's what we are going to do in this recipe.

Getting ready
Let's start by adding the dependency:

 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>

How to do it...
First, we define some roles in a separate class so that we can reuse it:1.

public class Roles {
 public static final String ROLE1 = "role1";
 public static final String ROLE2 = "role2";
 public static final String ROLE3 = "role3";
}

Then we define some things that the application's users can do:2.

@Stateful
public class UserActivity {
 @RolesAllowed({Roles.ROLE1})
 public void role1Allowed(){
 System.out.println("role1Allowed executed");
 }
 @RolesAllowed({Roles.ROLE2})
 public void role2Allowed(){
 System.out.println("role2Allowed executed");
 }

 @RolesAllowed({Roles.ROLE3})
 public void role3Allowed(){
 System.out.println("role3Allowed executed");
 }

 @PermitAll
 public void anonymousAllowed(){
 System.out.println("anonymousAllowed executed");

Security of Enterprise Architecture Chapter 5

[123]

 }

 @DenyAll
 public void noOneAllowed(){
 System.out.println("noOneAllowed executed");
 }
}

Let's create an interface for executable tasks:3.

public interface Executable {
 void execute() throws Exception;
}

And let's create another for the roles that will execute them:4.

public interface RoleExecutable {
 void run(Executable executable) throws Exception;
}

For each role, we create an executor. It will be like an environment that owns the5.
rights of that role:

@Named
@RunAs(Roles.ROLE1)
public class Role1Executor implements RoleExecutable {

 @Override
 public void run(Executable executable) throws Exception {
 executable.execute();
 }
}

@Named
@RunAs(Roles.ROLE2)
public class Role2Executor implements RoleExecutable {

 @Override
 public void run(Executable executable) throws Exception {
 executable.execute();
 }
}

@Named
@RunAs(Roles.ROLE3)
public class Role3Executor implements RoleExecutable {

 @Override

Security of Enterprise Architecture Chapter 5

[124]

 public void run(Executable executable) throws Exception {
 executable.execute();
 }
}

Then we implement HttpAuthenticationMechanism:6.

@ApplicationScoped
public class AuthenticationMechanism implements
HttpAuthenticationMechanism {

 @Override
 public AuthenticationStatus validateRequest(HttpServletRequest
 request, HttpServletResponse response, HttpMessageContext
 httpMessageContext) throws AuthenticationException {

 if (httpMessageContext.isAuthenticationRequest()) {

 Credential credential =
 httpMessageContext.getAuthParameters()
 .getCredential();
 if (!(credential instanceof CallerOnlyCredential)) {
 throw new IllegalStateException("Invalid
 mechanism");
 }

 CallerOnlyCredential callerOnlyCredential =
 (CallerOnlyCredential) credential;

 if (null == callerOnlyCredential.getCaller()) {
 throw new AuthenticationException();
 } else switch (callerOnlyCredential.getCaller()) {
 case "user1":
 return
 httpMessageContext.
 notifyContainerAboutLogin
 (callerOnlyCredential.getCaller(),
 new HashSet<>
 (asList(Roles.ROLE1)));
 case "user2":
 return
 httpMessageContext.
 notifyContainerAboutLogin
 (callerOnlyCredential.getCaller(),
 new HashSet<>
 (asList(Roles.ROLE2)));
 case "user3":
 return

Security of Enterprise Architecture Chapter 5

[125]

 httpMessageContext.
 notifyContainerAboutLogin
 (callerOnlyCredential.getCaller(),
 new HashSet<>
 (asList(Roles.ROLE3)));
 default:
 throw new AuthenticationException();
 }

 }

 return httpMessageContext.doNothing();
 }

}

And finally, we create the servlet that will manage all these resources:7.

@DeclareRoles({Roles.ROLE1, Roles.ROLE2, Roles.ROLE3})
@WebServlet(name = "/UserAuthorizationServlet", urlPatterns =
{"/UserAuthorizationServlet"})
public class UserAuthorizationServlet extends HttpServlet {

 private static final long serialVersionUID = 1L;

 @Inject
 private SecurityContext securityContext;
 @Inject
 private Role1Executor role1Executor;
 @Inject
 private Role2Executor role2Executor;
 @Inject
 private Role3Executor role3Executor;
 @Inject
 private UserActivity userActivity;
 @Override
 public void doGet(HttpServletRequest request,
 HttpServletResponse
 response) throws ServletException, IOException {

 try {
 String name = request.getParameter("name");
 if (null != name || !"".equals(name)) {
 AuthenticationStatus status =
 securityContext.authenticate(
 request, response, withParams().credential(
 new CallerOnlyCredential(name)));

Security of Enterprise Architecture Chapter 5

[126]

 response.getWriter().write("Authentication
 status: " + status.name() + "\n");
 }

 String principal = null;
 if (request.getUserPrincipal() != null) {
 principal = request.getUserPrincipal().getName();
 }

 response.getWriter().write("User: " + principal +
 "\n");
 response.getWriter().write("Role \"role1\" access: " +
 request.isUserInRole(Roles.ROLE1) + "\n");
 response.getWriter().write("Role \"role2\" access: " +
 request.isUserInRole(Roles.ROLE2) + "\n");
 response.getWriter().write("Role \"role3\" access: " +
 request.isUserInRole(Roles.ROLE3) + "\n");

 RoleExecutable executable = null;

 if (request.isUserInRole(Roles.ROLE1)) {
 executable = role1Executor;
 } else if (request.isUserInRole(Roles.ROLE2)) {
 executable = role2Executor;
 } else if (request.isUserInRole(Roles.ROLE3)) {
 executable = role3Executor;
 }

 if (executable != null) {
 executable.run(() -> {
 try {
 userActivity.role1Allowed();
 response.getWriter().write("role1Allowed
 executed: true\n");
 } catch (Exception e) {
 response.getWriter().write("role1Allowed
 executed: false\n");
 }

 try {
 userActivity.role2Allowed();
 response.getWriter().write("role2Allowed
 executed: true\n");
 } catch (Exception e) {
 response.getWriter().write("role2Allowed
 executed: false\n");
 }

Security of Enterprise Architecture Chapter 5

[127]

 try {
 userActivity.role3Allowed();
 response.getWriter().write("role2Allowed
 executed: true\n");
 } catch (Exception e) {
 response.getWriter().write("role2Allowed
 executed: false\n");
 }

 });

 }

 try {
 userActivity.anonymousAllowed();
 response.getWriter().write("anonymousAllowed
 executed: true\n");
 } catch (Exception e) {
 response.getWriter().write("anonymousAllowed
 executed: false\n");
 }
 try {
 userActivity.noOneAllowed();
 response.getWriter().write("noOneAllowed
 executed: true\n");
 } catch (Exception e) {
 response.getWriter().write("noOneAllowed
 executed: false\n");
 }

 } catch (Exception ex) {
 System.err.println(ex.getMessage());
 }

 }
}

Security of Enterprise Architecture Chapter 5

[128]

To try this code out, you can run these URLs:

http://localhost:8080/ch05-authorization/UserAuthorizationServl
et?name=user1

http://localhost:8080/ch05-authorization/UserAuthorizationServl
et?name=user2

http://localhost:8080/ch05-authorization/UserAuthorizationServl
et?name=user3

The result for user1, for example, will be like this:

Authentication status: SUCCESS
User: user1
Role "role1" access: true
Role "role2" access: false
Role "role3" access: false
role1Allowed executed: true
role2Allowed executed: false
role2Allowed executed: false
anonymousAllowed executed: true
noOneAllowed executed: false

And if you try with a user that doesn't exist, the result will be like this:

Authentication status: SEND_FAILURE
User: null
Role "role1" access: false
Role "role2" access: false
Role "role3" access: false
anonymousAllowed executed: true
noOneAllowed executed: false

How it works...
Well, we have a lot of things happening here! Let's begin with our UserActivity class.

We used the @RolesAllowed annotation to define the role that can access each method of
the class:

 @RolesAllowed({Roles.ROLE1})
 public void role1Allowed(){
 System.out.println("role1Allowed executed");
 }

Security of Enterprise Architecture Chapter 5

[129]

You can add more than one role inside the annotation (it's an array).

We also had two others interesting annotations, @PermitAll and @DenyAll:

The @PermitAll annotation allows anyone to access the method, even without
any authentication.
The @DenyAll annotation denies everyone access to the method, even
authenticated users with the highest privileges.

Then we have what we called executors:

@Named
@RunAs(Roles.ROLE1)
public class Role1Executor implements RoleExecutable {

 @Override
 public void run(Executable executable) throws Exception {
 executable.execute();
 }
}

We used the @RunAs annotation at the class level, which means that this class inherits all the
privileges of the defined role (in this case, "role1"). It means that every single method of
this class will have the "role1" privileges.

Now, looking at UserAuthorizationServlet, right at the beginning we have an
important object:

 @Inject
 private SecurityContext securityContext;

Here, we are asking the server to give us a security context instance so that we can use it for
authentication purposes.

Then, if the name parameter is filled, we reach this line:

 AuthenticationStatus status = securityContext.authenticate(
 request, response, withParams().credential(new
 CallerOnlyCredential(name)));

This will ask the Java EE server to process an authentication. That's where our
HttpAuthenticationMechanism implementation comes in.

Security of Enterprise Architecture Chapter 5

[130]

As the preceding code created CallerOnlyCredential, our authentication mechanism
will be based on it:

 Credential credential = httpMessageContext.getAuthParameters().
 getCredential();
 if (!(credential instanceof CallerOnlyCredential)) {
 throw new IllegalStateException("Invalid mechanism");
 }

 CallerOnlyCredential callerOnlyCredential =
 (CallerOnlyCredential) credential;

And once we have a credential instance, we can check if the user exists:

 if (null == callerOnlyCredential.getCaller()) {
 throw new AuthenticationException();
 } else switch (callerOnlyCredential.getCaller()) {
 case "user1":
 return httpMessageContext.notifyContainerAboutLogin
 (callerOnlyCredential.getCaller(), new HashSet<>
 (asList(Roles.ROLE1)));
 case "user2":
 return httpMessageContext.notifyContainerAboutLogin
 (callerOnlyCredential.getCaller(), new HashSet<>
 (asList(Roles.ROLE2)));
 case "user3":
 return httpMessageContext.notifyContainerAboutLogin
 (callerOnlyCredential.getCaller(), new HashSet<>
 (asList(Roles.ROLE3)));
 default:
 throw new AuthenticationException();
 }

So we are saying that "user1" has access to "role1", "user2" to "role2", and so on.

Once the user role is defined, we are back to the servlet and can choose which environment
(executor) will be used:

 if (request.isUserInRole(Roles.ROLE1)) {
 executable = role1Executor;
 } else if (request.isUserInRole(Roles.ROLE2)) {
 executable = role2Executor;
 } else if (request.isUserInRole(Roles.ROLE3)) {
 executable = role3Executor;
 }

Security of Enterprise Architecture Chapter 5

[131]

And then we try all the methods of the UserActivity class. Only the methods allowed for
that specific role will be executed; the others will fall into an exception, except for the
@PermitAll method, which will run anyway, and @DenyAll, which will not run anyway.

See also
Check the full source code of this recipe at https:/ ​/ ​github. ​com/ ​eldermoraes/
javaee8- ​cookbook/ ​tree/ ​master/ ​chapter05/ ​ch05- ​authorization.

Protecting data confidentiality and integrity
with SSL/TLS
Security also means protecting the transportation of your data, and for this purpose we
have the most popular method, which is called the Secure Sockets Layer (SSL).

Transport Layer Security, or TLS, is the newest version of SSL. So, we have SSL 3.0 and
TLS 1.0 as the protocols supported by GlassFish 5.0.

This recipe will show you how to enable GlassFish 5.0 to work properly with SSL. All Java
EE servers have their own way of doing this.

Getting ready
To enable SSL in GlassFish, you need to configure an HTTP listener for SSL. All you need to
do is this:

Make sure GlassFish is up and running.1.
Use the create-ssl command to create your HTTP listener for SSL.2.
Restart the GlassFish server.3.

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authorization
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authorization
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authorization
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authorization
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authorization
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authorization
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authorization
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authorization
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authorization
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authorization
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authorization
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authorization
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authorization
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authorization
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authorization
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authorization
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authorization
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authorization
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authorization
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authorization
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authorization
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-authorization

Security of Enterprise Architecture Chapter 5

[132]

How to do it...
To do this task, you need to access the GlassFish remote command-line interface1.
(CLI). You can do it by going to this path:

$GLASSFISH_HOME/bin

Once you are there, execute the following command:2.

./asadmin

When the prompt is ready, you can execute this command:3.

create-ssl --type http-listener --certname cookbookCert http-
listener-1

Then you can restart the server and your http-listener-1 will work with SSL.4.
If you want to drop SSL from the listener, just go back to the prompt and execute
this command:

delete-ssl --type http-listener http-listener-1

How it works...
With SSL, both the client and the server encrypt data before sending it, and decrypt data
upon receiving it. When a browser opens a secured website (using HTTPS), something
happens that is called a handshake.

In the handshake, the browser asks the server for a session; the server answers by sending a
certificate and the public key. The browser validates the certificate and, if it is valid,
generates an unique session key, encrypts it with the server public key, and sends it back to
the server. Once the server receives the session key, it decrypts it with its private key.

Now, both client and server, and only them, have a copy of the session key and can ensure
that the communication is secure.

There's more...
It's strongly recommended that you use a certificate from a Certification Authority (CA)
instead of a self-created certificate like we did in this recipe.

Security of Enterprise Architecture Chapter 5

[133]

You can check out https:/ ​/ ​letsencrypt. ​org, where you can get your free certificate.

The process of using it is the same; you will just change the value in the --
certname parameter.

See also
For detailed information about all the security aspects and configuration for
GlassFish 5, check out https:/ ​/​javaee. ​github. ​io/ ​glassfish/ ​doc/ ​5.​0/
security- ​guide. ​pdf.

Using declarative security
When building your application's security features, you can basically use two approaches:
programmatic security and declarative security:

The programmatic approach is when you define the security policy of your
application using code.
The declarative approach is when you do it by declaring the policies and then
applying them accordingly.

This recipe will show you the declarative approach.

Getting ready
Let's start by adding the dependency:

 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>

https://letsencrypt.org
https://letsencrypt.org
https://letsencrypt.org
https://letsencrypt.org
https://letsencrypt.org
https://letsencrypt.org
https://letsencrypt.org
https://javaee.github.io/glassfish/doc/5.0/security-guide.pdf
https://javaee.github.io/glassfish/doc/5.0/security-guide.pdf
https://javaee.github.io/glassfish/doc/5.0/security-guide.pdf
https://javaee.github.io/glassfish/doc/5.0/security-guide.pdf
https://javaee.github.io/glassfish/doc/5.0/security-guide.pdf
https://javaee.github.io/glassfish/doc/5.0/security-guide.pdf
https://javaee.github.io/glassfish/doc/5.0/security-guide.pdf
https://javaee.github.io/glassfish/doc/5.0/security-guide.pdf
https://javaee.github.io/glassfish/doc/5.0/security-guide.pdf
https://javaee.github.io/glassfish/doc/5.0/security-guide.pdf
https://javaee.github.io/glassfish/doc/5.0/security-guide.pdf
https://javaee.github.io/glassfish/doc/5.0/security-guide.pdf
https://javaee.github.io/glassfish/doc/5.0/security-guide.pdf
https://javaee.github.io/glassfish/doc/5.0/security-guide.pdf
https://javaee.github.io/glassfish/doc/5.0/security-guide.pdf
https://javaee.github.io/glassfish/doc/5.0/security-guide.pdf
https://javaee.github.io/glassfish/doc/5.0/security-guide.pdf
https://javaee.github.io/glassfish/doc/5.0/security-guide.pdf
https://javaee.github.io/glassfish/doc/5.0/security-guide.pdf
https://javaee.github.io/glassfish/doc/5.0/security-guide.pdf
https://javaee.github.io/glassfish/doc/5.0/security-guide.pdf
https://javaee.github.io/glassfish/doc/5.0/security-guide.pdf

Security of Enterprise Architecture Chapter 5

[134]

How to do it...
Let's create a list of roles for our application:1.

public class Roles {
 public static final String ADMIN = "admin";
 public static final String USER = "user";
}

Then we create a list of tasks that could be performed by only one of the2.
roles, one task that everyone can do, and another task that no one can do:

@Stateful
public class UserBean {
 @RolesAllowed({Roles.ADMIN})
 public void adminOperation(){
 System.out.println("adminOperation executed");
 }
 @RolesAllowed({Roles.USER})
 public void userOperation(){
 System.out.println("userOperation executed");
 }

 @PermitAll
 public void everyoneCanDo(){
 System.out.println("everyoneCanDo executed");
 }

 @DenyAll
 public void noneCanDo(){
 System.out.println("noneCanDo executed");
 }
}

Now we create an environment for both the USER and ADMIN roles to do their3.
stuff:

@Named
@RunAs(Roles.USER)
public class UserExecutor implements RoleExecutable {

 @Override
 public void run(Executable executable) throws Exception {
 executable.execute();
 }
}

Security of Enterprise Architecture Chapter 5

[135]

@Named
@RunAs(Roles.ADMIN)
public class AdminExecutor implements RoleExecutable {

 @Override
 public void run(Executable executable) throws Exception {
 executable.execute();
 }
}

Then we implement HttpAuthenticationMechanism:4.

@ApplicationScoped
public class AuthenticationMechanism implements
HttpAuthenticationMechanism {

 @Override
 public AuthenticationStatus validateRequest(HttpServletRequest
 request, HttpServletResponse response, HttpMessageContext
 httpMessageContext)
 throws AuthenticationException {

 if (httpMessageContext.isAuthenticationRequest()) {

 Credential credential =
 httpMessageContext.getAuthParameters().
 getCredential();
 if (!(credential instanceof CallerOnlyCredential)) {
 throw new IllegalStateException("Invalid
 mechanism");
 }

 CallerOnlyCredential callerOnlyCredential =
 (CallerOnlyCredential)
 credential;

 if (null == callerOnlyCredential.getCaller()) {
 throw new AuthenticationException();
 } else switch (callerOnlyCredential.getCaller()) {
 case Roles.ADMIN:
 return httpMessageContext
 .notifyContainerAboutLogin
 (callerOnlyCredential.getCaller(),
 new HashSet<>
 (asList(Roles.ADMIN)));
 case Roles.USER:
 return httpMessageContext
 .notifyContainerAboutLogin

Security of Enterprise Architecture Chapter 5

[136]

 (callerOnlyCredential.getCaller(),
 new HashSet<>
 (asList(Roles.USER)));
 default:
 throw new AuthenticationException();
 }

 }

 return httpMessageContext.doNothing();
 }

}

And finally, we create one servlet for each role (USER and ADMIN):5.

@DeclareRoles({Roles.ADMIN, Roles.USER})
@WebServlet(name = "/UserServlet", urlPatterns = {"/UserServlet"})
public class UserServlet extends HttpServlet {

 private static final long serialVersionUID = 1L;

 @Inject
 private SecurityContext securityContext;

 @Inject
 private UserExecutor userExecutor;

 @Inject
 private UserBean userActivity;

 @Override
 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {

 try {
 securityContext.authenticate(
 request, response, withParams().credential(new
 CallerOnlyCredential(Roles.USER)));

 response.getWriter().write("Role \"admin\" access: " +
 request.isUserInRole(Roles.ADMIN) + "\n");
 response.getWriter().write("Role \"user\" access: " +
 request.isUserInRole(Roles.USER) + "\n");

 userExecutor.run(() -> {
 try {

Security of Enterprise Architecture Chapter 5

[137]

 userActivity.adminOperation();
 response.getWriter().write("adminOperation
 executed: true\n");
 } catch (Exception e) {
 response.getWriter().write("adminOperation
 executed: false\n");
 }

 try {
 userActivity.userOperation();
 response.getWriter().write("userOperation
 executed: true\n");
 } catch (Exception e) {
 response.getWriter().write("userOperation
 executed: false\n");
 }

 });

 try {
 userActivity.everyoneCanDo();
 response.getWriter().write("everyoneCanDo
 executed: true\n");
 } catch (Exception e) {
 response.getWriter().write("everyoneCanDo
 executed: false\n");
 }

 try {
 userActivity.noneCanDo();
 response.getWriter().write("noneCanDo
 executed: true\n");
 } catch (Exception e) {
 response.getWriter().write("noneCanDo
 executed: false\n");
 }

 } catch (Exception ex) {
 System.err.println(ex.getMessage());
 }

 }
}

@DeclareRoles({Roles.ADMIN, Roles.USER})
@WebServlet(name = "/AdminServlet", urlPatterns =
{"/AdminServlet"})
public class AdminServlet extends HttpServlet {

Security of Enterprise Architecture Chapter 5

[138]

 private static final long serialVersionUID = 1L;

 @Inject
 private SecurityContext securityContext;

 @Inject
 private AdminExecutor adminExecutor;

 @Inject
 private UserBean userActivity;

 @Override
 public void doGet(HttpServletRequest request,
 HttpServletResponse
 response) throws ServletException, IOException {

 try {
 securityContext.authenticate(
 request, response, withParams().credential(new
 CallerOnlyCredential(Roles.ADMIN)));

 response.getWriter().write("Role \"admin\" access: " +
 request.isUserInRole(Roles.ADMIN) + "\n");
 response.getWriter().write("Role \"user\" access: " +
 request.isUserInRole(Roles.USER) + "\n");

 adminExecutor.run(() -> {
 try {
 userActivity.adminOperation();
 response.getWriter().write("adminOperation
 executed: true\n");
 } catch (Exception e) {
 response.getWriter().write("adminOperation
 executed: false\n");
 }

 try {
 userActivity.userOperation();
 response.getWriter().write("userOperation
 executed: true\n");
 } catch (Exception e) {
 response.getWriter().write("userOperation
 executed: false\n");
 }

 });

 try {

Security of Enterprise Architecture Chapter 5

[139]

 userActivity.everyoneCanDo();
 response.getWriter().write("everyoneCanDo
 executed: true\n");
 } catch (Exception e) {
 response.getWriter().write("everyoneCanDo
 executed: false\n");
 }

 try {
 userActivity.noneCanDo();
 response.getWriter().write("noneCanDo
 executed: true\n");
 } catch (Exception e) {
 response.getWriter().write("noneCanDo
 executed: false\n");
 }

 } catch (Exception ex) {
 System.err.println(ex.getMessage());
 }

 }
}

How it works...
Looking at UserServlet (which applies to the USER role), we first see the authentication
step:

 securityContext.authenticate(
 request, response, withParams().credential(new
 CallerOnlyCredential(Roles.ADMIN)));

For example, we've used the role name as a username because if we look at the
AuthenticationMechanism class (implementing HttpAuthenticationMechanism), we
see it doing all the hard work of authenticating and assigning the right role to the user:

 Credential credential =
 httpMessageContext.getAuthParameters()
 .getCredential();
 if (!(credential instanceof CallerOnlyCredential)) {
 throw new IllegalStateException("Invalid mechanism");
 }

 CallerOnlyCredential callerOnlyCredential =
 (CallerOnlyCredential)

Security of Enterprise Architecture Chapter 5

[140]

 credential;

 if (null == callerOnlyCredential.getCaller()) {
 throw new AuthenticationException();
 } else switch (callerOnlyCredential.getCaller()) {
 case Roles.ADMIN:
 return httpMessageContext.notifyContainerAboutLogin
 (callerOnlyCredential.getCaller(), new HashSet<>
 (asList(Roles.ADMIN)));
 case Roles.USER:
 return httpMessageContext.notifyContainerAboutLogin
 (callerOnlyCredential.getCaller(), new HashSet<>
 (asList(Roles.USER)));
 default:
 throw new AuthenticationException();
 }

And back to our UserServlet, now that the user has the proper role assigned, it is just a
matter of what they can and cannot do:

 userExecutor.run(() -> {
 try {
 userActivity.adminOperation();
 response.getWriter().write("adminOperation
 executed: true\n");
 } catch (Exception e) {
 response.getWriter().write("adminOperation
 executed: false\n");
 }

 try {
 userActivity.userOperation();
 response.getWriter().write("userOperation
 executed: true\n");
 } catch (Exception e) {
 response.getWriter().write("userOperation
 executed: false\n");
 }

 });

And also, we try the tasks that everyone and no one can perform:

 try {
 userActivity.everyoneCanDo();
 response.getWriter().write("everyoneCanDo
 executed: true\n");
 } catch (Exception e) {

Security of Enterprise Architecture Chapter 5

[141]

 response.getWriter().write("everyoneCanDo
 executed: false\n");
 }

 try {
 userActivity.noneCanDo();
 response.getWriter().write("noneCanDo
 executed: true\n");
 } catch (Exception e) {
 response.getWriter().write("noneCanDo
 executed: false\n");
 }

The AdminServlet class goes through exactly the same steps using an AdminExecutor
environment, so we will omit it for the sake of space.

To try out this code, just run it on a Java EE 8-compatible server using these URLs:

http://localhost:8080/ch05-declarative/AdminServlet

http://localhost:8080/ch05-declarative/UserServlet

The result example for AdminServlet will be like this:

Role "admin" access: true
Role "user" access: false
adminOperation executed: true
userOperation executed: false
everyoneCanDo executed: true
noneCanDo executed: false

See also
Check the full source code of this recipe at https:/ ​/​github. ​com/ ​eldermoraes/
javaee8- ​cookbook/ ​tree/ ​master/ ​chapter05/ ​ch05- ​declarative.

Using programmatic security
We've already seen the declarative approach, so now let's see the programmatic approach.

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-declarative
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-declarative
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-declarative
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-declarative
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-declarative
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-declarative
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-declarative
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-declarative
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-declarative
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-declarative
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-declarative
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-declarative
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-declarative
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-declarative
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-declarative
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-declarative
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-declarative
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-declarative
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-declarative
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-declarative
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-declarative
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-declarative

Security of Enterprise Architecture Chapter 5

[142]

Getting ready
Let's start by adding the dependency:

 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>

How to do it...
Let's first define our roles list:1.

public class Roles {
 public static final String ADMIN = "admin";
 public static final String USER = "user";
}

Then, let's define a list of tasks to be done based on the role:2.

@Stateful
public class UserBean {
 @RolesAllowed({Roles.ADMIN})
 public void adminOperation(){
 System.out.println("adminOperation executed");
 }
 @RolesAllowed({Roles.USER})
 public void userOperation(){
 System.out.println("userOperation executed");
 }

 @PermitAll
 public void everyoneCanDo(){
 System.out.println("everyoneCanDo executed");
 }

}

Security of Enterprise Architecture Chapter 5

[143]

Now let's implement the IndentityStore interface. Here, we define our policy3.
for validating the user's identity:

@ApplicationScoped
public class UserIdentityStore implements IdentityStore {

 @Override
 public CredentialValidationResult validate(Credential
credential) {
 if (credential instanceof UsernamePasswordCredential) {
 return validate((UsernamePasswordCredential)
credential);
 }

 return CredentialValidationResult.NOT_VALIDATED_RESULT;
 }

 public CredentialValidationResult
validate(UsernamePasswordCredential
 usernamePasswordCredential) {

 if (usernamePasswordCredential.
 getCaller().equals(Roles.ADMIN)
 && usernamePasswordCredential.
 getPassword().compareTo("1234"))
 {

 return new CredentialValidationResult(
 new CallerPrincipal
 (usernamePasswordCredential.getCaller()),
 new HashSet<>(Arrays.asList(Roles.ADMIN)));
 } else if (usernamePasswordCredential.
 getCaller().equals(Roles.USER)
 && usernamePasswordCredential.
 getPassword().compareTo("1234"))
 {

 return new CredentialValidationResult(
 new CallerPrincipal
 (usernamePasswordCredential.getCaller()),
 new HashSet<>(Arrays.asList(Roles.USER)));
 }

 return CredentialValidationResult.INVALID_RESULT;
 }

}

Security of Enterprise Architecture Chapter 5

[144]

Here, we implement the HttpAuthenticationMethod interface:4.

@ApplicationScoped
public class AuthenticationMechanism implements
HttpAuthenticationMechanism {

 @Inject
 private UserIdentityStore identityStore;
 @Override
 public AuthenticationStatus validateRequest(HttpServletRequest
 request,
 HttpServletResponse response, HttpMessageContext
 httpMessageContext)
 throws AuthenticationException {

 if (httpMessageContext.isAuthenticationRequest()) {

 Credential credential =
 httpMessageContext.getAuthParameters()
 .getCredential();
 if (!(credential instanceof
UsernamePasswordCredential)) {
 throw new IllegalStateException("Invalid
 mechanism");
 }

 return httpMessageContext.notifyContainerAboutLogin
 (identityStore.validate(credential));
 }

 return httpMessageContext.doNothing();
 }

}

And finally, we create the servlet where the user will both authenticate and do5.
their stuff:

@DeclareRoles({Roles.ADMIN, Roles.USER})
@WebServlet(name = "/OperationServlet", urlPatterns =
{"/OperationServlet"})
public class OperationServlet extends HttpServlet {

 private static final long serialVersionUID = 1L;

 @Inject
 private SecurityContext securityContext;

Security of Enterprise Architecture Chapter 5

[145]

 @Inject
 private UserBean userActivity;

 @Override
 public void doGet(HttpServletRequest request,
 HttpServletResponse
 response) throws ServletException, IOException {

 String name = request.getParameter("name");
 String password = request.getParameter("password");

 Credential credential = new
UsernamePasswordCredential(name,
 new Password(password));

 AuthenticationStatus status = securityContext.authenticate(
 request, response,
 withParams().credential(credential));

 response.getWriter().write("Role \"admin\" access: " +
 request.isUserInRole(Roles.ADMIN) + "\n");
 response.getWriter().write("Role \"user\" access: " +
 request.isUserInRole(Roles.USER) + "\n");

 if (status.equals(AuthenticationStatus.SUCCESS)) {

 if (request.isUserInRole(Roles.ADMIN)) {
 userActivity.adminOperation();
 response.getWriter().write("adminOperation
 executed: true\n");
 } else if (request.isUserInRole(Roles.USER)) {
 userActivity.userOperation();
 response.getWriter().write("userOperation
 executed: true\n");
 }

 userActivity.everyoneCanDo();
 response.getWriter().write("everyoneCanDo
 executed: true\n");

 } else {
 response.getWriter().write("Authentication failed\n");
 }

 }
}

Security of Enterprise Architecture Chapter 5

[146]

To try out this code, run it in a Java EE 8-compatible server using these URLs:

http://localhost:8080/ch05-programmatic/OperationServlet?name=u
ser&password=1234

http://localhost:8080/ch05-programmatic/OperationServlet?name=a
dmin&password=1234

An example of an ADMIN role's result is as follows:

Role "admin" access: true
Role "user" access: false
adminOperation executed: true
everyoneCanDo executed: true

And if you use a wrong name/password pair, you get this result:

Role "admin" access: false
Role "user" access: false
Authentication failed

How it works...
Contrary to the declarative approach (see the previous recipe in this chapter), here we are
using code to validate the user. We've done it by implementing the IdentityStore
interface.

For example, even though we've hardcoded the password, you can use the same piece of
code to validate the password against a database, LDAP, an external endpoint, and many
more:

 if (usernamePasswordCredential.getCaller().equals(Roles.ADMIN)
 &&
 usernamePasswordCredential.getPassword().compareTo("1234"))
 {

 return new CredentialValidationResult(
 new CallerPrincipal(usernamePasswordCredential
 .getCaller()),
 new HashSet<>(asList(Roles.ADMIN)));
 } else if (usernamePasswordCredential.getCaller()
 .equals(Roles.USER)
 && usernamePasswordCredential.
 getPassword().compareTo("1234"))
 {

Security of Enterprise Architecture Chapter 5

[147]

 return new CredentialValidationResult(
 new CallerPrincipal(usernamePasswordCredential
 .getCaller()),
 new HashSet<>(asList(Roles.USER)));
 }

 return INVALID_RESULT;

Authenticating using IdentityStore means just delegating
using HttpAuthenticationMethod:

 Credential credential =
 httpMessageContext.getAuthParameters().getCredential();
 if (!(credential instanceof UsernamePasswordCredential)) {
 throw new IllegalStateException("Invalid mechanism");
 }

 return httpMessageContext.notifyContainerAboutLogin
 (identityStore.validate(credential));

And then, OperationServlet will just try an authentication:

 String name = request.getParameter("name");
 String password = request.getParameter("password");

 Credential credential = new UsernamePasswordCredential(name,
 new Password(password));

 AuthenticationStatus status = securityContext.authenticate(
 request, response,
 withParams().credential(credential));

Based on this, we will define the flow of what will happen next:

 if (status.equals(AuthenticationStatus.SUCCESS)) {

 if (request.isUserInRole(Roles.ADMIN)) {
 userActivity.adminOperation();
 response.getWriter().write("adminOperation
 executed: true\n");
 } else if (request.isUserInRole(Roles.USER)) {
 userActivity.userOperation();
 response.getWriter().write("userOperation
 executed: true\n");
 }

 userActivity.everyoneCanDo();
 response.getWriter().write("everyoneCanDo executed:

Security of Enterprise Architecture Chapter 5

[148]

 true\n");

 } else {
 response.getWriter().write("Authentication failed\n");
 }

Pay attention! That is your code defining what each role will do.

See also
See the full source code for this recipe at https:/ ​/​github. ​com/ ​eldermoraes/
javaee8- ​cookbook/ ​tree/ ​master/ ​chapter05/ ​ch05- ​programmatic.

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-programmatic
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-programmatic
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-programmatic
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-programmatic
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-programmatic
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-programmatic
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-programmatic
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-programmatic
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-programmatic
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-programmatic
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-programmatic
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-programmatic
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-programmatic
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-programmatic
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-programmatic
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-programmatic
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-programmatic
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-programmatic
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-programmatic
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-programmatic
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-programmatic
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter05/ch05-programmatic

6
Reducing the Coding Effort by

Relying on Standards
This chapter covers the following recipes:

Preparing your application to use a connection pool
Using messaging services for asynchronous communication
Understanding a servlet's life cycle
Transaction management

Introduction
One of the most important concepts that you need to know about Java EE is: it is a standard.
If you go to the Java Community Process (JCP) website, you will find the Java
Specification Request (JSR) for the Java EE platform (for Version 8 it is JSR 366).

A standard... for what? Well, for an application server! For instance, a Java EE application
server.

It means that you can develop your Java EE application knowing it will run in an
environment that provides a bunch of resources that you can rely on.

It also means you can easily move from one application server to another, as long as you
stick to the Java EE patterns instead of some vendor-specific feature (considered a bad
practice). Your application should have the same behavior no matter what Java EE-
compatible server you are using.

Oh, yes! Beyond being a standard, Java EE is also a certification. For a Java EE server to be
considered compatible, it has to pass through a number of tests to guarantee it implements
every single point of the specification (JSR).

Reducing the Coding Effort by Relying on Standards Chapter 6

[150]

This amazing ecosystem allows for less coding of your application and gives you the chance
to focus on what really matters to you or to your client. Without a standard environment,
you would need to implement your own code for request/response management, queues,
connection pooling, and other stuff.

You can definitely do it if you want, but you don't have to. Actually you can even write
your own Java EE application server, if you want to.

Having said that let's move on with the chapter! In the following recipes, you are going to
learn how to take advantage of some cool features already implemented on your favorite
Java EE application server.

Examples will be based on GlassFish 5 but, as I mentioned before, they should have the
same behavior for any other compatible implementation.

Preparing your application to use a
connection pool
One of the first things we should learn in our life, after feeding, is using a connection pool.
Especially when we are talking about databases. This is the case covered here.

Why? Because a connection opened with the database is costly in terms of resources used
for it. Even worse, if we look closer at the process of opening a new connection, it uses a lot
of CPU resources, for example.

Maybe it won't make much difference if you have two users using a database with a couple
of registers in a few tables. But it can start causing trouble if you have dozens of users, or if
the database is large and gives you sleepless nights when you have hundreds of users using
a huge database.

Actually I, myself, saw in the early days of J2EE 1.3 (the year was 2002), a performance issue
being solved by a connection pool in an application used by 20 people. There were a few
users, but the database was really big and not so well-designed (the same for the
application, I have to say).

But you may say: why does a connection pool help us with this? Because once it is
configured, the server will open all the connections you asked for, when it is starting up,
and will manage them for you.

Reducing the Coding Effort by Relying on Standards Chapter 6

[151]

The only thing you have to do is to ask: "Hey, server! Could you lend me a database connection,
please?" and kindly give it back when you are done (which means as quickly as possible).

This recipe will show you how to do it.

Getting ready
First, add the right dependency to your project:

 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>

If you still haven't downloaded GlassFish 5 to your development environment, this is the
right time to do it.

How to do it...
We will begin by configuring our connection pool in GlassFish 5. Once it is up1.
and running, go to this URL:

http://localhost:8080

Now click on the go to the Administration Console link or if you prefer, go2.
straight to the URL at:

http://localhost:4848/

Then follow this path in the left menu:3.

Resources | JDBC | JDBC Connection Pools

Reducing the Coding Effort by Relying on Standards Chapter 6

[152]

Click on the New button. It will open the New JDBC Connection Pool page. Fill4.
in the fields as described here:

Pool Name: MysqlPool
Resource Type: javax.sql.DataSource
Database Driver Vendor: MySql

Of course, you can make your own custom choices, but then we will be following
different paths!

Click on the Next button. It will open the second step for our pool creation5.
process.

This new page has three sections: General Settings, Pool Settings,
and Transaction and Additional Properties. For our recipe, we are only dealing
with General Settings and Additional Properties.

In the General Settings section make sure that DataSource Classname has this6.
value selected:

com.mysql.jdbc.jdbc2.optional.MysqlDatasource

Now let's move to the Additional Properties section. There might be a bunch of7.
properties listed, but we will just fill in a few of them:

DatabaseName: sys
ServerName: localhost
User: root
Password: mysql
PortNumber: 3306

Click on the Finish button and voilá! Your connection pool is ready... or almost.8.

You can't access it until you do one more configuration. In the same menu, on the
left, following this path:

Resources | JDBC | JDBC Resources

Click on the New button and then fill in the fields like this:9.

JNDI Name: jdbc/MysqlPool
Pool Name: MysqlPool

Reducing the Coding Effort by Relying on Standards Chapter 6

[153]

Now you are good to go! Your connection pool is ready to be used. Let's build a simple
application to try it:

First, we create a class to get a connection from the pool:1.

public class ConnectionPool {

 public static Connection getConnection() throws SQLException,
 NamingException {
 InitialContext ctx = new InitialContext();
 DataSource ds = (DataSource) ctx.lookup("jdbc/MysqlPool");

 return ds.getConnection();
 }
}

Then, a class that we will use as a representation of the sys_config table2.
(MySQL's system table):

public class SysConfig {

 private final String variable;
 private final String value;

 public SysConfig(String variable, String value) {
 this.variable = variable;
 this.value = value;
 }

 public String getVariable() {
 return variable;
 }

 public String getValue() {
 return value;
 }
}

Here we create another class, to create a list based on the data returned from the3.
database:

@Stateless
public class SysConfigBean {

 public String getSysConfig() throws SQLException,
NamingException {
 String sql = "SELECT variable, value FROM sys_config";

Reducing the Coding Effort by Relying on Standards Chapter 6

[154]

 try (Connection conn = ConnectionPool.getConnection();
 PreparedStatement ps = conn.prepareStatement(sql);
 ResultSet rs = ps.executeQuery()
 Jsonb jsonb = JsonbBuilder.create()) {

 List<SysConfig> list = new ArrayList<>();
 while (rs.next()) {
 list.add(new SysConfig(rs.getString("variable"),
 rs.getString("value")));
 }

 Jsonb jsonb = JsonbBuilder.create();
 return jsonb.toJson(list);
 }
 }
}

And finally a servlet that will try them all:4.

@WebServlet(name = "PoolTestServlet", urlPatterns =
{"/PoolTestServlet"})
public class PoolTestServlet extends HttpServlet {

 @EJB
 private SysConfigBean config;

 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 try (PrintWriter writer = response.getWriter()) {
 config = new SysConfigBean();
 writer.write(config.getSysConfig());
 } catch (SQLException | NamingException ex) {
 System.err.println(ex.getMessage());
 }
 }
}

To try it just open this URL in your browser:

http://localhost:8080/ch06-connectionpooling/PoolTestServlet

Reducing the Coding Effort by Relying on Standards Chapter 6

[155]

There's more...
Deciding how many connections your pool will hold, as well as all the other parameters, is
an architecture decision made based on a number of factors such as the type of data,
database design, application and user behavior, and so on. We could write a whole book
about it.

But if you are starting from scratch and/or still don't need much information, consider a
number between 10% to 20% of your concurrent users. In other words, if your application
has, for instance, 100 concurrent users, you should provide 10 to 20 connections to your
pool.

You will know that your connections aren't enough if some methods are taking too much
time to get a connection from the pool (it should take no time at all). It means that the server
has no available connection at that moment.

So, you need to check if there are some methods taking too long to complete, or even some
part in your code that is not closing the connection (consider what gives the connection
back to the server). Depending on the issue, it might not be a pooling problem but a design
one.

Another important thing for dealing with connection pools is to use the "try-with-resources"
statement as we did here:

 try (Connection conn = ConnectionPool.getConnection();
 PreparedStatement ps = conn.prepareStatement(sql);
 ResultSet rs = ps.executeQuery()) {

This will guarantee that these resources will be properly closed once the method is done
and also deal with their respective exceptions, also helping you to write less code.

See also
See this recipe's full source code at: https:/ ​/​github. ​com/ ​eldermoraes/ ​javaee8-
cookbook/ ​tree/ ​master/ ​chapter06/ ​ch06- ​connectionpooling

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-connectionpooling
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-connectionpooling
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-connectionpooling
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-connectionpooling
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-connectionpooling
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-connectionpooling
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-connectionpooling
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-connectionpooling
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-connectionpooling
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-connectionpooling
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-connectionpooling
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-connectionpooling
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-connectionpooling
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-connectionpooling
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-connectionpooling
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-connectionpooling
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-connectionpooling
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-connectionpooling
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-connectionpooling
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-connectionpooling
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-connectionpooling
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-connectionpooling

Reducing the Coding Effort by Relying on Standards Chapter 6

[156]

Using messaging services for asynchronous
communication
The message service, provided in Java EE by the Java Message Service (JMS) API, is one of
the most important and versatile features provided by Java EE environments.

It uses the Producer-Consumer approach, where one peer (the Producer) puts a message
into a queue and another peer (the Consumer) reads the message from there.

Both the Producer and Consumer can be different applications, even using different
technologies.

This recipe will show you how to build a messaging service using GlassFish 5. Each Java EE
server has its own way to set up the service, so if are using some other implementations,
you should take a look at its documentation.

On the other hand, the Java EE code generated here will work on any Java EE 8-compatible
implementation. Standard for the win!

Getting ready
First add the proper dependency to your project:

 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>

How to do it...
We will begin by configuring our messaging service in GlassFish 5. Once the1.
server is up and running, go to this URL:

http://localhost:8080

Reducing the Coding Effort by Relying on Standards Chapter 6

[157]

Now click on the go to the Administration Console link or if you prefer, go2.
straight to the URL at:

http://localhost:4848/

Then follow this path in the left menu:

Resources | JMS Resources | Connection Factories

Click on the New button. When the page is opened, fill the General3.
Settings section fields like this:

JNDI Name: jms/JmsFactory
Resource Type: javax.jms.ConnectionFactory

We will not touch the Pool Settings section here, so just click on the OK button to
register your new factory.

Now follow this path in the left menu:4.

Resources | JMS Resources | Destination Resources

Click on the New button. When the page is opened, fill the section fields like this:5.

JNDI Name: jms/JmsQueue
Physical Destination Name: JmsQueue
ResourceType: javax.jms.Queue

Click on the OK button and you are ready! Now you have a connection factory to access
your JMS server and a queue. So let's build an application to use it:

First, we create a message driven bean (MDB) as a listener for any message1.
dropped into our queue. This is the Consumer:

@MessageDriven(activationConfig = {
 @ActivationConfigProperty(propertyName = "destinationLookup",
 propertyValue = "jms/JmsQueue"),
 @ActivationConfigProperty(propertyName = "destinationType",
 propertyValue = "javax.jms.Queue")
})
public class QueueListener implements MessageListener {

 @Override
 public void onMessage(Message message) {
 TextMessage textMessage = (TextMessage) message;

Reducing the Coding Effort by Relying on Standards Chapter 6

[158]

 try {
 System.out.print("Got new message on queue: ");
 System.out.println(textMessage.getText());
 System.out.println();
 } catch (JMSException e) {
 System.err.println(e.getMessage());
 }
 }
}

Now we define the Producer class:2.

@Stateless
public class QueueSender {

 @Resource(mappedName = "jms/JmsFactory")
 private ConnectionFactory jmsFactory;
 @Resource(mappedName = "jms/JmsQueue")
 private Queue jmsQueue;

 public void send() throws JMSException {
 MessageProducer producer;
 TextMessage message;

 try (Connection connection = jmsFactory.createConnection();
 Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE)) {
 producer = session.createProducer(jmsQueue);
 message = session.createTextMessage();

 String msg = "Now it is " + new Date();
 message.setText(msg);
 System.out.println("Message sent to queue: " + msg);
 producer.send(message);

 producer.close();
 }
 }
}

And a servlet to access the Producer:3.

@WebServlet(name = "QueueSenderServlet", urlPatterns =
{"/QueueSenderServlet"})
public class QueueSenderServlet extends HttpServlet {
 @Inject
 private QueueSender sender;

Reducing the Coding Effort by Relying on Standards Chapter 6

[159]

 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 try(PrintWriter writer = response.getWriter()){
 sender.send();
 writer.write("Message sent to queue.
 Check the log for details.");
 } catch (JMSException ex) {
 System.err.println(ex.getMessage());
 }
 }
}

Finally, we create a page just to call our servlet:4.

<html>
 <head>
 <title>JMS recipe</title>
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">
 </head>
 <body>
 <p>
 Send Message to Queue
 </p>
 </body>
</html>

Now just deploy and run it. Each time you call QueueSenderServlet you should see
something like this on your server log:

Info: Message sent to queue: Now it is Tue Dec 19 06:52:17 BRST 2017
Info: Got new message on queue: Now it is Tue Dec 19 06:52:17 BRST 2017

How it works...
Thanks to the standards implemented in the Java EE 8 server, our MDB is 100% managed
by the container. That's why we could just refer to the queue without looking back:

@MessageDriven(activationConfig = {
 @ActivationConfigProperty(propertyName = "destinationLookup",
 propertyValue = "jms/JmsQueue"),
 @ActivationConfigProperty(propertyName = "destinationType",
 propertyValue = "javax.jms.Queue")
})

Reducing the Coding Effort by Relying on Standards Chapter 6

[160]

We could have built a Consumer by our own hands, but it would build three times as many
code lines and would be synchronous.

We get our container Producer from a session provided by our factory and made for our
queue:

 try (Connection connection = jmsFactory.createConnection();
 Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE)) {
 producer = session.createProducer(jmsQueue);
 ...
 }

Then all we have to do is to create and send the message:

 message = session.createTextMessage();

 String msg = "Now it is " + new Date();
 message.setText(msg);
 System.out.println("Message sent to queue: " + msg);
 producer.send(message);

See also
You could refer to the full source code for this recipe at: https:/ ​/​github. ​com/
eldermoraes/ ​javaee8- ​cookbook/ ​tree/ ​master/ ​chapter06/ ​ch06- ​jms

Understanding a servlet's life cycle
If you are used to creating web applications using Java EE, you probably will have already
realized: most of the time it is all about dealing with requests and responses and the most
popular way to do it is by using the Servlet API.

This recipe will show you how the server deals with its life cycles and what you should and
should not been doing in your code.

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-jms
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-jms
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-jms
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-jms
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-jms
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-jms
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-jms
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-jms
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-jms
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-jms
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-jms
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-jms
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-jms
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-jms
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-jms
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-jms
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-jms
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-jms
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-jms
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-jms
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-jms
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-jms

Reducing the Coding Effort by Relying on Standards Chapter 6

[161]

Getting ready
First, add the proper dependency to your project:

 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>

How to do it...
Just write this simple servlet:

@WebServlet(name = "LifecycleServlet",
urlPatterns = {"/LifecycleServlet"})
public class LifecycleServlet extends HttpServlet {

 @Override
 protected void doGet(HttpServletRequest req,
 HttpServletResponse resp) throws ServletException, IOException {
 try(PrintWriter writer = resp.getWriter()){
 writer.write("doGet");
 System.out.println("doGet");
 }
 }
 @Override
 protected void doPost(HttpServletRequest req,
 HttpServletResponse resp) throws ServletException, IOException {
 try(PrintWriter writer = resp.getWriter()){
 writer.write("doPost");
 System.out.println("doPost");
 }
 }
 @Override
 protected void doDelete(HttpServletRequest req,
 HttpServletResponse resp) throws ServletException, IOException {
 try(PrintWriter writer = resp.getWriter()){
 writer.write("doDelete");
 System.out.println("doDelete");
 }
 }
 @Override
 protected void doPut(HttpServletRequest req,
 HttpServletResponse resp) throws ServletException, IOException {

Reducing the Coding Effort by Relying on Standards Chapter 6

[162]

 try(PrintWriter writer = resp.getWriter()){
 writer.write("doPut");
 System.out.println("doPut");
 }
 }
 @Override
 public void init() throws ServletException {
 System.out.println("init()");
 }

 @Override
 public void destroy() {
 System.out.println("destroy");
 }
}

Once it is deployed to your Java EE server, I suggest you try it using a tool such as SoapUI
or similar. It will allow you to send requests using GET, POST, PUT, and DELETE. The
browser would only do GET.

If you do it, your system log will look just like this:

Info: init(ServletConfig config)
 Info: doGet
 Info: doPost
 Info: doPut
 Info: doDelete

And if you undeploy your application it will look as follows:

Info: destroy

How it works...
If you pay attention, you will notice that the init log will show only after your servlet is
called for the first time. That's when it is really loaded and it is the only time that this
method will be called. So if you have some one-shot code for this servlet, that's the place to
do it.

Talking about the doGet, doPost, doPut, and doDelete methods, note that they were all
automatically called by the server based on the request received. It's possible thanks to
another method implemented by the server called service.

Reducing the Coding Effort by Relying on Standards Chapter 6

[163]

You could override the service method if you want, but it's a bad practice and should be
avoided. Do it only if you know exactly what you are doing, otherwise you could give the
wrong destination to some requests. This chapter is about relying on the standards, so why
wouldn't you observe them?

Finally, we have the destroy method being called when your application is undeployed.
This is like the last breath of your servlet. It is also a bad practice to add some code here, as
you could prevent some resource from being released, and/or run into some process errors.

See also
You can refer to the full source code for this recipe at: https:/ ​/​github. ​com/
eldermoraes/ ​javaee8- ​cookbook/ ​tree/ ​master/ ​chapter06/ ​ch06- ​lifecycle

Transaction management
Transaction management is one of the trickier subjects in computer science. One single
wrong line, one unpredicted situation, and your data and/or your user will suffer the
consequences.

So it would be nice if we could count on the server to do it for us. And most of the time we
can, so let me show you how to do it.

Getting ready
First add the proper dependency to your project:

 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-lifecycle
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-lifecycle
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-lifecycle
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-lifecycle
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-lifecycle
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-lifecycle
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-lifecycle
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-lifecycle
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-lifecycle
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-lifecycle
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-lifecycle
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-lifecycle
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-lifecycle
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-lifecycle
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-lifecycle
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-lifecycle
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-lifecycle
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-lifecycle
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-lifecycle
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-lifecycle
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-lifecycle
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-lifecycle

Reducing the Coding Effort by Relying on Standards Chapter 6

[164]

How to do it...
Let's build a bean that will perform all the transactions we need:1.

@Stateful
@TransactionManagement
public class UserBean {
 private ArrayList<Integer> actions;
 @PostConstruct
 public void init(){
 actions = new ArrayList<>();
 System.out.println("UserBean initialized");
 }
 public void add(Integer action){
 actions.add(action);
 System.out.println(action + " added");
 }
 public void remove(Integer action){
 actions.remove(action);
 System.out.println(action + " removed");
 }
 public List getActions(){
 return actions;
 }
 @PreDestroy
 public void destroy(){
 System.out.println("UserBean will be destroyed");
 }
 @Remove
 public void logout(){
 System.out.println("User logout. Resources will be
 released.");
 }
 @AfterBegin
 public void transactionStarted(){
 System.out.println("Transaction started");
 }
 @BeforeCompletion
 public void willBeCommited(){
 System.out.println("Transaction will be commited");
 }
 @AfterCompletion
 public void afterCommit(boolean commited){
 System.out.println("Transaction commited? " + commited);
 }
}

Reducing the Coding Effort by Relying on Standards Chapter 6

[165]

And a test class to try it:2.

public class UserTest {
 private EJBContainer ejbContainer;
 @EJB
 private UserBean userBean;
 public UserTest() {
 }
 @Before
 public void setUp() throws NamingException {
 ejbContainer = EJBContainer.createEJBContainer();
 ejbContainer.getContext().bind("inject", this);
 }
 @After
 public void tearDown() {
 ejbContainer.close();
 }
 @Test
 public void test(){
 userBean.add(1);
 userBean.add(2);
 userBean.add(3);
 userBean.remove(2);
 int size = userBean.getActions().size();
 userBean.logout();
 Assert.assertEquals(2, size);
 }
}

If you try this test you should see this output:3.

 UserBean initialized
 Transaction started
 1 added
 Transaction will be commited
 Transaction commited? true
 Transaction started
 2 added
 Transaction will be commited
 Transaction commited? true
 Transaction started
 3 added
 Transaction will be commited
 Transaction commited? true
 Transaction started
 2 removed
 Transaction will be commited
 Transaction commited? true

Reducing the Coding Effort by Relying on Standards Chapter 6

[166]

 Transaction started
 Transaction will be commited
 Transaction commited? true
 Transaction started
 User logout. Resources will be released.
 UserBean will be destroyed
 Transaction will be commited
 Transaction commited? true

How it works...
The first thing we did was mark our bean to hold states and have its transactions managed
by the server:

@Stateful
@TransactionManagement
public class UserBean {
 ...
}

What happens then? If you note, no method that deals with adding or removing stuff does
any transaction management. But they are still managed:

 Transaction started
 1 added
 Transaction will be commited
 Transaction commited? true

So you have all the transaction intelligence without writing a single line of transaction stuff.

It will transact even when the bean would releases its resources:

 Transaction started
 User logout. Resources will be released.
 UserBean will be destroyed
 Transaction will be commited
 Transaction commited? true

See also
Refer to the full source code for this recipe at: https:/ ​/​github. ​com/
eldermoraes/ ​javaee8- ​cookbook/ ​tree/ ​master/ ​chapter06/ ​ch06- ​transaction

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter06/ch06-transaction

7
Deploying and Managing

Applications on Major Java EE
Servers

This chapter covers the following recipes:

Apache TomEE usage
GlassFish usage
WildFly usage

Introduction
One of the most important skills you should have as a Java EE developer is knowing how to
work with the most used Java EE application servers in the market.

As we've stated in previous chapters, the standards involved in the Java EE ecosystem
allow you to reuse most of the knowledge you already have no matter which server you are
using.

However, when we are talking about deployment and some administration tasks, things
could be different (and usually are). The differences are not in the way they work, but in the
way they are done.

So, in this chapter, we will cover some important and common tasks for Apache TomEE,
GlassFish, and WildFly.

Deploying and Managing Applications on Major Java EE Servers Chapter 7

[168]

Apache TomEE usage
If you have already used Apache Tomcat, you can consider yourself ready to use Apache
TomEE. It is based on the Tomcat's core and implements the Java EE specs.

Getting ready
First, you need to download it to your environment. At the time of writing, TomEE has no
Java EE 8 compatible version (actually, there is only GlassFish 5). However, the tasks
covered here shouldn't change in future versions as they are not attached to the Java EE
specs.

To download it, just visit http:/ ​/​tomee. ​apache. ​org/ ​downloads. ​html. This recipe in based
on version 7.0.2 Plume.

Wherever possible, we will focus on doing tasks using the configuration files.

How to do it...
Refer to the following detailed tasks.

Deploying EAR, WAR, and JAR files
For EAR and WAR files, the deployment folder is:

$TOMEE_HOME/webapps

For JAR files, the folder is:

$TOMEE_HOME/lib

Creating datasources and a connection pool
To create a datasource and a connection pool to help you use databases in your project, edit
the $TOMEE_HOME/conf/tomee.xml file.

http://tomee.apache.org/downloads.html
http://tomee.apache.org/downloads.html
http://tomee.apache.org/downloads.html
http://tomee.apache.org/downloads.html
http://tomee.apache.org/downloads.html
http://tomee.apache.org/downloads.html
http://tomee.apache.org/downloads.html
http://tomee.apache.org/downloads.html
http://tomee.apache.org/downloads.html
http://tomee.apache.org/downloads.html
http://tomee.apache.org/downloads.html
http://tomee.apache.org/downloads.html
http://tomee.apache.org/downloads.html

Deploying and Managing Applications on Major Java EE Servers Chapter 7

[169]

Inside the <tomee> node, insert a child node like this one:

 <Resource id="MyDataSouceDs" type="javax.sql.DataSource">
 jdbcDriver = org.postgresql.Driver
 jdbcUrl = jdbc:postgresql://[host]:[port]/[database]
 jtaManaged = true
 maxActive = 20
 maxIdle = 20
 minIdle = 0
 userName = user
 password = password
 </Resource>

The example targets PostgreSQL, so you will need to perform some changes for another
database. Of course, you will also need to change the other parameters according to your
needs.

Logging setup and rotate
To configure the logging for Apache TomEE, edit the
$TOMEE_HOME/conf/logging.properties file. The file works with handlers like this:

1catalina.org.apache.juli.AsyncFileHandler.level = FINE
1catalina.org.apache.juli.AsyncFileHandler.directory =
${catalina.base}/logs
1catalina.org.apache.juli.AsyncFileHandler.prefix = catalina.

So, you can define the logging level, directory, and prefix according to your needs.

If you need to configure log rotation, just add these lines to your handler:

1catalina.org.apache.juli.AsyncFileHandler.limit = 1024
1catalina.org.apache.juli.AsyncFileHandler.count = 10

In this example, we are defining this file to rotate on every 1024 kilobytes (1 MB) and keep
the last 10 files on our disk.

Starting and stopping
To start the Apache TomEE, just execute this script:

$TOMEE_HOME/bin/startup.sh

Deploying and Managing Applications on Major Java EE Servers Chapter 7

[170]

To stop it, execute the following script:

$TOMEE_HOME/bin/shutdown.sh

Session clustering
If you want to build a cluster using Apache TomEE nodes, you need to edit
the $TOMEE_HOME/conf/server.xml file. Then, find this line:

<Engine name="Catalina" defaultHost="localhost">

Insert a child node, like this:

 <Cluster
 className="org.apache.catalina.ha.tcp.SimpleTcpCluster"
 channelSendOptions="8">

 <Manager
 className="org.apache.catalina.ha.session
 .DeltaManager"
 expireSessionsOnShutdown="false"
 notifyListenersOnReplication="true"/>

 <Channel
 className="org.apache.catalina.tribes.group
 .GroupChannel">
 <Membership
 className="org.apache.catalina
 .tribes.membership .McastService"
 address="228.0.0.4"
 port="45564"
 frequency="500"
 dropTime="3000"/>
 <Receiver className="org.apache.catalina.tribes
 .transport.nio.NioReceiver"
 address="auto"
 port="4000"
 autoBind="100"
 selectorTimeout="5000"
 maxThreads="6"/>

 <Sender className="org.apache.catalina.tribes
 .transport.ReplicationTransmitter">
 <Transport className="org.apache.catalina.tribes
 .transport.nio.PooledParallelSender"/>
 </Sender>

Deploying and Managing Applications on Major Java EE Servers Chapter 7

[171]

 <Interceptor className="org.apache.catalina.tribes
 .group.interceptors.TcpFailureDetector"/>
 <Interceptor className="org.apache.catalina.tribes
 .group.interceptors.MessageDispatchInterceptor"/>
 </Channel>

 <Valve className="org.apache.catalina
 .ha.tcp.ReplicationValve"
 filter=""/>
 <Valve className="org.apache.catalina
 .ha.session.JvmRouteBinderValve"/>

 <Deployer className="org.apache.catalina
 .ha.deploy.FarmWarDeployer"
 tempDir="/tmp/war-temp/"
 deployDir="/tmp/war-deploy/"
 watchDir="/tmp/war-listen/"
 watchEnabled="false"/>

 <ClusterListener className="org.apache.catalina
 .ha.session.ClusterSessionListener"/>
 </Cluster>

This block will set up your server to run in a dynamic discovery cluster. What this means is
that every server that runs in the same network using this configuration will become a new
member in the cluster and so will share the alive sessions.

All these parameters are so important, so I really recommend you to keep all of them unless
you are absolutely sure of what you are doing.

There's more...
The best way to set up a Java EE cluster today is using containers (specially Docker
containers). So, I'd recommend that you have a look at Chapter 11, Rising to the Cloud – Java
EE, Containers, and Cloud Computing. If you mix the content of that chapter with the content
of this one, you will have a powerful environment for your application.

To allow your application to share its session with all the nodes in the cluster, you need to
edit the web.xml file, find the web-app node, and insert this:

<distributable/>

Without it, your session clustering will not work. You also need to keep all objects that you
are holding in the session as serializable.

Deploying and Managing Applications on Major Java EE Servers Chapter 7

[172]

See also
For more information about Apache TomEE visit http:/ ​/​tomee. ​apache. ​org/​

GlassFish usage
The great thing about GlassFish is that it is the Reference Implementation (RI). So,
whenever you have a new version of Java EE, being a developer, you already have the
respective GlassFish version to try it.

Getting ready
First, you need to download it to your environment. At the time of writing, GlassFish 5 is
the only Java EE 8 server that has been released.

To download it, just visit https:/ ​/ ​javaee. ​github. ​io/ ​glassfish/ ​download. This recipe in
based on version 5 (Java EE 8 compatible).

Wherever possible, we will focus on doing the tasks using the configuration files.

How to do it...
Refer to the following detailed tasks.

Deploying EAR, WAR, and JAR files
For EAR and WAR files, the deployment folder is:

$GLASSFISH_HOME/glassfish/domains/[domain_name]/autodeploy

Usually domain_name is domain1, unless you've changed it in the installation process.

For JAR files, the folder is:

$GLASSFISH_HOME/glassfish/lib

http://tomee.apache.org/
http://tomee.apache.org/
http://tomee.apache.org/
http://tomee.apache.org/
http://tomee.apache.org/
http://tomee.apache.org/
http://tomee.apache.org/
http://tomee.apache.org/
http://tomee.apache.org/
http://tomee.apache.org/
https://javaee.github.io/glassfish/download
https://javaee.github.io/glassfish/download
https://javaee.github.io/glassfish/download
https://javaee.github.io/glassfish/download
https://javaee.github.io/glassfish/download
https://javaee.github.io/glassfish/download
https://javaee.github.io/glassfish/download
https://javaee.github.io/glassfish/download
https://javaee.github.io/glassfish/download
https://javaee.github.io/glassfish/download
https://javaee.github.io/glassfish/download
https://javaee.github.io/glassfish/download
https://javaee.github.io/glassfish/download

Deploying and Managing Applications on Major Java EE Servers Chapter 7

[173]

Creating datasources and a connection pool
To create a datasource and a connection pool to help you use databases in your project, edit
the $GLASSFISH_HOME/glassfish/domains/[domain_name]/config/domain.xml
file. Inside the <resources> node, insert a child node like this one:

<jdbc-connection-pool
 pool-resize-quantity="4"
 max-pool-size="64"
 max-wait-time-in-millis="120000"
 driver-classname="com.mysql.jdbc.Driver"
 datasource-classname="com.mysql.jdbc.jdbc2.optional
 .MysqlDataSource"
 steady-pool-size="16"
 name="MysqlPool"
 idle-timeout-in-seconds="600"
 res-type="javax.sql.DataSource">
 <property name="databaseName" value="database"></property>
 <property name="serverName" value="[host]"></property>
 <property name="user" value="user"></property>
 <property name="password" value="password"></property>
 <property name="portNumber" value="3306"></property>
</jdbc-connection-pool>
<jdbc-resource pool-name="MySqlDs" jndi-name="jdbc/MySqlDs">
</jdbc-resource>

Then, look for this node:

<server config-ref="server-config" name="server">

Add this child to it:

<resource-ref ref="jdbc/MySqlDs"></resource-ref>

The example targets MySQL, so you will need to perform some changes for another
database. Of course, you will also need to change the other parameters according to your
needs.

Logging setup and rotate
To configure logging for GlassFish, edit
the $GLASSFISH_HOME/glassfish/domains/domain1/config/logging.properties f
ile:

Deploying and Managing Applications on Major Java EE Servers Chapter 7

[174]

The file works with handlers like this:

handlers=java.util.logging.ConsoleHandler
handlerServices=com.sun.enterprise.server.logging.GFFileHandler
java.util.logging.ConsoleHandler.formatter=com.sun.enterprise.server.loggin
g.UniformLogFormatter
com.sun.enterprise.server.logging.GFFileHandler.formatter=com.sun.enterpris
e.server.logging.ODLLogFormatter
com.sun.enterprise.server.logging.GFFileHandler.file=${com.sun.aas.instance
Root}/logs/server.log
com.sun.enterprise.server.logging.GFFileHandler.rotationTimelimitInMinutes=
0
com.sun.enterprise.server.logging.GFFileHandler.flushFrequency=1
java.util.logging.FileHandler.limit=50000
com.sun.enterprise.server.logging.GFFileHandler.logtoConsole=false
com.sun.enterprise.server.logging.GFFileHandler.rotationLimitInBytes=200000
0
com.sun.enterprise.server.logging.GFFileHandler.excludeFields=
com.sun.enterprise.server.logging.GFFileHandler.multiLineMode=true
com.sun.enterprise.server.logging.SyslogHandler.useSystemLogging=false
java.util.logging.FileHandler.count=1
com.sun.enterprise.server.logging.GFFileHandler.retainErrorsStasticsForHour
s=0
log4j.logger.org.hibernate.validator.util.Version=warn
com.sun.enterprise.server.logging.GFFileHandler.maxHistoryFiles=0
com.sun.enterprise.server.logging.GFFileHandler.rotationOnDateChange=false
java.util.logging.FileHandler.pattern=%h/java%u.log
java.util.logging.FileHandler.formatter=java.util.logging.XMLFormatter

So, you can define the logging level, directory, format, and more according to your needs.

If you need to configure log rotation, you have to focus on these lines:

com.sun.enterprise.server.logging.GFFileHandler
.rotationTimelimitInMinutes=0
com.sun.enterprise.server.logging.GFFileHandler
.rotationLimitInBytes=2000000
com.sun.enterprise.server.logging.GFFileHandler
.maxHistoryFiles=0
com.sun.enterprise.server.logging.GFFileHandler
.rotationOnDateChange=false

In this example, we are defining this file to rotate on every 2000 kilobytes (2 MB) and will
not rotate on date change. There's no limit for history files.

Deploying and Managing Applications on Major Java EE Servers Chapter 7

[175]

Starting and stopping
To start GlassFish, just execute this script:

$GLASSFISH_HOME/bin/asadmin start-domain --verbose

To stop it, excecute the following script:

$GLASSFISH_HOME/bin/asadmin stop-domain

Session clustering
Building a cluster using GlassFish is a little tricky and involves using both command line
and the admin panel, but it is completely doable! Let's check it out.

First, you need two or more instances (called nodes) up and running. You can do it in any
way you like—each one running in a different machine, using virtual machines or
containers (my favorite option). Either way you choose, the way of getting the cluster up is
the same:

So, get your first node and open its admin panel:1.

https://[hostname]:4848

Click on the Clusters option in the left menu and then click on the New button. 2.
Name the cluster myCluster and click on the OK button.
Select your cluster from the list. In the opened page, select the Instances option in3.
the tab and then click on New. Name the instance node1 and click on OK.
Now, go the General tab and click on the Start Cluster button. Voilá! Your cluster4.
is up and running with your first node.
Now, go to the second machine (VM, container, other server, or any server) with5.
GlassFish already installed and run this command:

$GLASSFISH_HOME/bin/asadmin --host [hostname_node1] --port 4848
create-local-instance --cluster myCluster node2

This will set the second machine as a member of the cluster. If you refresh the
Cluster page on the first machine, you will see the new member (node2).

You will notice that node2 has stopped. Click on it and in the new page click on6.
the Node link (it will usually show the hostname of node2).

Deploying and Managing Applications on Major Java EE Servers Chapter 7

[176]

In the opened page, change the Type value to SSH. Some new fields will show up7.
in a SSH section.
Change SSH User Authentication to SSH Password and fill the SSH User8.
Password field with the proper password.
Click on the Save button. If you run some SSH error (usually connection9.
refused), set the Force option to Enabled, and click on Save button again.
Go back to the command line on the machine hosting node2 and run this10.
command:

$GLASSFISH_HOME/glassfish/lib/nadmin start-local-instance --node
[node2_hostname] --sync normal node2

If everything went well, your node2 should be up and running and you should now have a
real cluster. You can repeat these steps how ever many times you need to add new nodes to
your cluster.

There's more...
A common issue for this clustering with GlassFish arises when you don't have the SSH
service running in your nodes; as there are tons of options of them for many operating
systems, we won't cover each one of them here.

The best way to set up a Java EE cluster today is using containers (specially Docker
containers). So, I'd recommend that you have a look at Chapter 11, Rising to the Cloud – Java
EE, Containers, and Cloud Computing. If you mix that content with this, you will have a
powerful environment for your application.

To allow your application to share its session with all the nodes in the cluster, you need to
edit the web.xml file, find the web-app node, and insert this:

<distributable/>

Without it, your session clustering will not work. You need also to keep all objects that you
are holding in the session as serializable.

Finally, there's a commercial version of GlassFish, which is Payara Server. If you are looking
for support and other commercial perks, you should take a look at it.

Deploying and Managing Applications on Major Java EE Servers Chapter 7

[177]

See also
For more information about GlassFish, visit https:/ ​/​javaee. ​github. ​io/
glassfish/ ​.

WildFly usage
WildFly is another great Java EE implementation. It was known as JBoss AS, but changed
its name some years ago (although we still have the JBoss EAP as the enterprise-production
ready version). As its administration and use are slightly different from Apache TomEE and
GlassFish, it's worth having a proper look at it.

Getting ready
First, you need to download it to your environment. At the time of writing, WildFly has no
Java EE 8-compatible version (actually there is only GlassFish 5). However, the tasks
covered here shouldn't change in a future version, as they are not attached to the Java EE
specs. To download it, just visit http:/ ​/​wildfly. ​org/​downloads/ ​.

This recipe in based on version 11.0.0.Final (Java EE7 Full and Web Distribution).

Wherever possible, we will focus on doing the tasks using the configuration files.

How to do it...
Refer to the following detailed tasks.

Deploying EAR, WAR, and JAR files
For EAR and WAR files, the deployment folder is:

$WILDFLY_HOME/standalone/deployments

For JAR files (like JDBC connections, for example), WildFly creates a flexible folder
structure. So, the best way to distribute them is using its UI, as we will show in the
connection pool topic (the next one).

https://javaee.github.io/glassfish/
https://javaee.github.io/glassfish/
https://javaee.github.io/glassfish/
https://javaee.github.io/glassfish/
https://javaee.github.io/glassfish/
https://javaee.github.io/glassfish/
https://javaee.github.io/glassfish/
https://javaee.github.io/glassfish/
https://javaee.github.io/glassfish/
https://javaee.github.io/glassfish/
https://javaee.github.io/glassfish/
http://wildfly.org/downloads/
http://wildfly.org/downloads/
http://wildfly.org/downloads/
http://wildfly.org/downloads/
http://wildfly.org/downloads/
http://wildfly.org/downloads/
http://wildfly.org/downloads/
http://wildfly.org/downloads/
http://wildfly.org/downloads/
http://wildfly.org/downloads/

Deploying and Managing Applications on Major Java EE Servers Chapter 7

[178]

Creating datasources and a connection pool
Take the following steps to create your datasources and connection pool:

To create a datasource and a connection pool to help you use databases in your1.
project, start WildFly and visit the following URL:

http://localhost:9990/

Click on Deployments and then click on the Add button. In the opened page,2.
select Upload a new deployment and click on the Next button. In the opened
page, select the proper JDBC connector (we will use MySQL for this recipe) and
click on Next.
Verify the information in the opened page and click on Finish.3.
Now that your JDBC connector is available in the server, you can go ahead and4.
create your datasource. Go to Home in the administration panel and click on the
Configuration option.
In the opened page, follow this path:5.

Subsystems | Datasources | Non-XA | Datasource | Add

In the opened window select MySQL Datasource and click on Next. Then, fill the6.
fields like this:

Name: MySqlDS
JNDI Name: java:/MySqlDS

Click on Next. In the next page, click on Detected Driver, select the proper7.
MySQL connector (the one you just uploaded) and click on Next.
The last step is to fill the connection settings fields, like this:8.

Connection URL: jdbc:mysql://localhost:3306/sys
Username: root
Password: mysql

Click on the Next button, review the information, and click on Finish. Your9.
newly created connection will appear in the datasources list. You can click on the
dropdown list and select Test to check whether everything is working well.

Deploying and Managing Applications on Major Java EE Servers Chapter 7

[179]

Logging setup and rotate
To configure the logging for WildFly, edit the
$WILDFLY_HOME/standalone/configuration/standalone.xml file.

To customize the logging properties, find the <profile> node and then find <subsystem
xmlns='urn:jboss:domain:logging:3.0'> inside it.

It is based on handles like this:

<console-handler name="CONSOLE">
 <level name="INFO"/>
 <formatter>
 <named-formatter name="COLOR-PATTERN"/>
 </formatter>
 </console-handler>
 <periodic-rotating-file-handler name="FILE"
 autoflush="true">
 <formatter>
 <named-formatter name="PATTERN"/>
 </formatter>
 <file relative-to="jboss.server.log.dir"
 path="server.log"/>
 <suffix value=".yyyy-MM-dd"/>
 <append value="true"/>
 </periodic-rotating-file-handler>
 <logger category="com.arjuna">
 <level name="WARN"/>
 </logger>
 <logger category="org.jboss.as.config">
 <level name="DEBUG"/>
 </logger>
 <logger category="sun.rmi">
 <level name="WARN"/>
 </logger>
 <root-logger>
 <level name="INFO"/>
 <handlers>
 <handler name="CONSOLE"/>
 <handler name="FILE"/>
 </handlers>
 </root-logger>
 <formatter name="PATTERN">
 <pattern-formatter pattern=
 "%d{yyyy-MM-dd HH:mm:ss,SSS} %-5p [%c] (%t) %s%e%n"/>
 </formatter>
 <formatter name="COLOR-PATTERN">

Deploying and Managing Applications on Major Java EE Servers Chapter 7

[180]

 <pattern-formatter pattern="%K{level}%d
 {HH:mm:ss,SSS} %-5p [%c] (%t) %s%e%n"/>
 </formatter>

By default, it will rotate daily:

 <periodic-rotating-file-handler name="FILE"
 autoflush="true">
 <formatter>
 <named-formatter name="PATTERN"/>
 </formatter>
 <file relative-to="jboss.server.log.dir"
 path="server.log"/>
 <suffix value=".yyyy-MM-dd"/>
 <append value="true"/>
 </periodic-rotating-file-handler>

If you want it to rotate based on the size, you should remove the preceding handler and
then insert this one:

 <size-rotating-file-handler name="FILE" autoflush="true">
 <formatter>
 <pattern-formatter pattern="%d{yyyy-MM-dd
 HH:mm:ss,SSS} %-5p [%c] (%t) %s%e%n"/>
 </formatter>
 <file relative-to="jboss.server.log.dir"
 path="server.log"/>
 <rotate-size value="2m"/>
 <max-backup-index value="5"/>
 <append value="true"/>
 </size-rotating-file-handler>

In this case, the log will rotate when the file reaches 2 MB and will keep a history of five
files in the backup.

Starting and stopping
To start GlassFish, just execute this script:

$WILDFLY_HOME/bin/standalone.sh

Deploying and Managing Applications on Major Java EE Servers Chapter 7

[181]

To stop it, execute this script:

$WILDFLY_HOME/bin/jboss-cli.sh --connect command=:shutdown

Session clustering
If you go to the $WILDFLY_HOME/standalone/configuration folder, you will see these
files:

standalone.xml

standalone-ha.xml

standalone-full.xml

standalone-full-ha.xml

standalone.xml is the default, with all default configuration. To build a cluster, we need
to use the standalone-ha.xml file (ha comes from high availability), so rename it to end
it as standalone.xml.

Then, you start the server. You should not do the following:

$WILDFLY_HOME/bin/standalone.sh

Instead, you should do this:

$WILDFLY_HOME/bin/standalone.sh -b 0.0.0.0 -bmanagement 0.0.0.0

You should now do the same in whatever other nodes (machines, VMs, containers, and so
on) that you want to get into the cluster. Of course, they need to be in the same network.

There's more...
The best way to set up a Java EE cluster today is using containers (specially Docker
containers). So, I'd recommend that you have a look at the Chapter 11, Rising to the Cloud –
Java EE, Containers, and Cloud Computing chapter. If you mix that content with this, you will
have a powerful environment for your application.

Deploying and Managing Applications on Major Java EE Servers Chapter 7

[182]

To allow your application to share its session with all nodes in the cluster, you need to edit
the web.xml file, find the web-app node, and insert this:

<distributable/>

Without it, your session clustering will not work.

See also
For more information about WildFly, visit http:/ ​/​wildfly. ​org/ ​

http://wildfly.org/
http://wildfly.org/
http://wildfly.org/
http://wildfly.org/
http://wildfly.org/
http://wildfly.org/
http://wildfly.org/
http://wildfly.org/

8
Building Lightweight Solutions

Using Microservices
This chapter covers the following recipes:

Building microservices from a monolith
Building decoupled services
Building an automated pipeline for microservices

Introduction
Microservices are really one of the top buzzwords nowadays. It's easy to understand why:
in a growing software industry where the amount of services, data, and users increases
crazily, we really need a way to build and deliver faster, decoupled, and scalable solutions.

Why are microservices good? Why use them?

Actually, with growing demand, the need to deal with each module separately has
increased. For example, in your customer application, maybe user information needs to be
scaled in a different way from the address information.

In the monolith paradigm, you need to deal with it atomically: you build a cluster for the
whole application or you scale up (or down) your entire host. The problem with this
approach is that you can't focus your effort and resources on a specific feature, module, or
function: you are always guided by what is needed at that moment.

In the microservice approach, you do it separately. Then you can not only scale (up or
down) one single unit in your application, but you can also separate your data for each
service (which you should do), separate technology (best tool for the best work), and more.

Building Lightweight Solutions Using Microservices Chapter 8

[184]

Other than scale technology, microservices are made to scale people. With a bigger
application, bigger architecture, and bigger databases, also come bigger teams. And if you
build your team like a monolith application, you are probably getting likely results.

So, as the application is split into a few (or a lot of) modules, you can also define cross-
functional teams to take care of each module. This means that each team can have its own
programmer, designer, database administrator, system administrator, network specialist,
manager, and so on. Each team has responsibility over the module it is dealing with.

It brings agility to the process of thinking about and delivering software, and then
maintaining and evolving it.

In this chapter, there are some recipes to help you get started with microservices or go
deeper into your ongoing project.

Building microservices from a monolith
One common question that I have already heard dozens of times is, "how do I break down my
monolith into microservices?", or, "how do I migrate from a monolith approach to microservices?"

Well, that's what this recipe is all about.

Getting ready
For both monolith and microservice projects, we will use the same dependency:

 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>

How to do it...
Let's begin by building a monolith to split into microservices.

Building Lightweight Solutions Using Microservices Chapter 8

[185]

Building a monolith
First, we need the entities that will represent the data kept by the application.

Here is the User entity:

@Entity
public class User implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private Long id;
 @Column
 private String name;
 @Column
 private String email;

 public User(){
 }

 public User(String name, String email) {
 this.name = name;
 this.email = email;
 }

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }
 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getEmail() {
 return email;
 }

 public void setEmail(String email) {

Building Lightweight Solutions Using Microservices Chapter 8

[186]

 this.email = email;
 }
}

Here is the UserAddress entity:

@Entity
public class UserAddress implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private Long id;

 @Column
 @ManyToOne
 private User user;
 @Column
 private String street;
 @Column
 private String number;
 @Column
 private String city;
 @Column
 private String zip;
 public UserAddress(){
 }
 public UserAddress(User user, String street, String number,
 String city, String zip) {
 this.user = user;
 this.street = street;
 this.number = number;
 this.city = city;
 this.zip = zip;
 }

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public User getUser() {
 return user;
 }

Building Lightweight Solutions Using Microservices Chapter 8

[187]

 public void setUser(User user) {
 this.user = user;
 }

 public String getStreet() {
 return street;
 }

 public void setStreet(String street) {
 this.street = street;
 }

 public String getNumber() {
 return number;
 }

 public void setNumber(String number) {
 this.number = number;
 }

 public String getCity() {
 return city;
 }

 public void setCity(String city) {
 this.city = city;
 }

 public String getZip() {
 return zip;
 }

 public void setZip(String zip) {
 this.zip = zip;
 }
}

Now we define one bean to deal with the transaction over each entity.

Here is the UserBean class:

@Stateless
public class UserBean {

 @PersistenceContext
 private EntityManager em;

 public void add(User user) {

Building Lightweight Solutions Using Microservices Chapter 8

[188]

 em.persist(user);
 }

 public void remove(User user) {
 em.remove(user);
 }

 public void update(User user) {
 em.merge(user);
 }

 public User findById(Long id) {
 return em.find(User.class, id);
 }

 public List<User> get() {
 CriteriaBuilder cb = em.getCriteriaBuilder();
 CriteriaQuery<User> cq = cb.createQuery(User.class);
 Root<User> pet = cq.from(User.class);
 cq.select(pet);
 TypedQuery<User> q = em.createQuery(cq);
 return q.getResultList();
 }
}

Here is the UserAddressBean class:

@Stateless
public class UserAddressBean {

 @PersistenceContext
 private EntityManager em;
 public void add(UserAddress address){
 em.persist(address);
 }
 public void remove(UserAddress address){
 em.remove(address);
 }
 public void update(UserAddress address){
 em.merge(address);
 }
 public UserAddress findById(Long id){
 return em.find(UserAddress.class, id);
 }
 public List<UserAddress> get() {
 CriteriaBuilder cb = em.getCriteriaBuilder();
 CriteriaQuery<UserAddress> cq = cb.createQuery(UserAddress.class);
 Root<UserAddress> pet = cq.from(UserAddress.class);

Building Lightweight Solutions Using Microservices Chapter 8

[189]

 cq.select(pet);
 TypedQuery<UserAddress> q = em.createQuery(cq);
 return q.getResultList();
 }
}

Finally, we build two services to perform the communication between the client and the
beans.

Here is the UserService class:

@Path("userService")
public class UserService {
 @EJB
 private UserBean userBean;
 @GET
 @Path("findById/{id}")
 @Consumes(MediaType.APPLICATION_JSON)
 @Produces(MediaType.APPLICATION_JSON)
 public Response findById(@PathParam("id") Long id){
 return Response.ok(userBean.findById(id)).build();
 }
 @GET
 @Path("get")
 @Consumes(MediaType.APPLICATION_JSON)
 @Produces(MediaType.APPLICATION_JSON)
 public Response get(){
 return Response.ok(userBean.get()).build();
 }
 @POST
 @Path("add")
 @Consumes(MediaType.APPLICATION_JSON)
 @Produces(MediaType.APPLICATION_JSON)
 public Response add(User user){
 userBean.add(user);
 return Response.accepted().build();
 }
 @DELETE
 @Path("remove/{id}")
 @Consumes(MediaType.APPLICATION_JSON)
 @Produces(MediaType.APPLICATION_JSON)
 public Response remove(@PathParam("id") Long id){
 userBean.remove(userBean.findById(id));
 return Response.accepted().build();
 }
}

Building Lightweight Solutions Using Microservices Chapter 8

[190]

Here is the UserAddressService class:

@Path("userAddressService")
public class UserAddressService {
 @EJB
 private UserAddressBean userAddressBean;
 @GET
 @Path("findById/{id}")
 @Consumes(MediaType.APPLICATION_JSON)
 @Produces(MediaType.APPLICATION_JSON)
 public Response findById(@PathParam("id") Long id){
 return Response.ok(userAddressBean.findById(id)).build();
 }
 @GET
 @Path("get")
 @Consumes(MediaType.APPLICATION_JSON)
 @Produces(MediaType.APPLICATION_JSON)
 public Response get(){
 return Response.ok(userAddressBean.get()).build();
 }
 @POST
 @Path("add")
 @Consumes(MediaType.APPLICATION_JSON)
 @Produces(MediaType.APPLICATION_JSON)
 public Response add(UserAddress address){
 userAddressBean.add(address);
 return Response.accepted().build();
 }
 @DELETE
 @Path("remove/{id}")
 @Consumes(MediaType.APPLICATION_JSON)
 @Produces(MediaType.APPLICATION_JSON)
 public Response remove(@PathParam("id") Long id){
 userAddressBean.remove(userAddressBean.findById(id));
 return Response.accepted().build();
 }
}

Now let's break it down!

Building Lightweight Solutions Using Microservices Chapter 8

[191]

Building microservices from the monolith
Our monolith deals with User and UserAddress. So we will break it down into three
microservices:

A user microservice
A user address microservice
A gateway microservice

A gateway service is an API between the application client and the services. Using it allows
you to simplify this communication, also giving you the freedom of doing whatever you
like with your services without breaking the API contracts (or at least minimizing it).

The user microservice
The User entity, UserBean, and UserService will remain exactly as they are in the
monolith. Only now they will be delivered as a separated unit of deployment.

The user address microservice
The UserAddress classes will suffer just a single change from the monolith version, but
keep their original APIs (that is great from the point of view of the client).

Here is the UserAddress entity:

@Entity
public class UserAddress implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private Long id;

 @Column
 private Long idUser;
 @Column
 private String street;
 @Column
 private String number;
 @Column
 private String city;
 @Column
 private String zip;

Building Lightweight Solutions Using Microservices Chapter 8

[192]

 public UserAddress(){
 }
 public UserAddress(Long user, String street, String number,
 String city, String zip) {
 this.idUser = user;
 this.street = street;
 this.number = number;
 this.city = city;
 this.zip = zip;
 }

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public Long getIdUser() {
 return idUser;
 }

 public void setIdUser(Long user) {
 this.idUser = user;
 }

 public String getStreet() {
 return street;
 }

 public void setStreet(String street) {
 this.street = street;
 }

 public String getNumber() {
 return number;
 }

 public void setNumber(String number) {
 this.number = number;
 }

 public String getCity() {
 return city;
 }

 public void setCity(String city) {

Building Lightweight Solutions Using Microservices Chapter 8

[193]

 this.city = city;
 }

 public String getZip() {
 return zip;
 }

 public void setZip(String zip) {
 this.zip = zip;
 }
}

Note that User is no longer a property/field in the UserAddress entity, but only a number
(idUser). We will get into more details about it in the following section.

The gateway microservice
First, we create a class that helps us deal with the responses:

public class GatewayResponse {

 private String response;
 private String from;

 public String getResponse() {
 return response;
 }

 public void setResponse(String response) {
 this.response = response;
 }

 public String getFrom() {
 return from;
 }

 public void setFrom(String from) {
 this.from = from;
 }
}

Then, we create our gateway service:

@Consumes(MediaType.APPLICATION_JSON)
@Path("gatewayResource")
@RequestScoped
public class GatewayResource {

Building Lightweight Solutions Using Microservices Chapter 8

[194]

 private final String hostURI = "http://localhost:8080/";
 private Client client;
 private WebTarget targetUser;
 private WebTarget targetAddress;

 @PostConstruct
 public void init() {
 client = ClientBuilder.newClient();
 targetUser = client.target(hostURI +
 "ch08-micro_x_mono-micro-user/");
 targetAddress = client.target(hostURI +
 "ch08-micro_x_mono-micro-address/");
 }

 @PreDestroy
 public void destroy(){
 client.close();
 }

 @GET
 @Path("getUsers")
 @Produces(MediaType.APPLICATION_JSON)
 public Response getUsers() {
 WebTarget service =
 targetUser.path("webresources/userService/get");

 Response response;
 try {
 response = service.request().get();
 } catch (ProcessingException e) {
 return Response.status(408).build();
 }

 GatewayResponse gatewayResponse = new GatewayResponse();
 gatewayResponse.setResponse(response.readEntity(String.class));
 gatewayResponse.setFrom(targetUser.getUri().toString());

 return Response.ok(gatewayResponse).build();
 }

 @POST
 @Path("addAddress")
 @Produces(MediaType.APPLICATION_JSON)
 public Response addAddress(UserAddress address) {
 WebTarget service =
 targetAddress.path("webresources/userAddressService/add");

 Response response;

Building Lightweight Solutions Using Microservices Chapter 8

[195]

 try {
 response = service.request().post(Entity.json(address));
 } catch (ProcessingException e) {
 return Response.status(408).build();
 }

 return Response.fromResponse(response).build();
 }

}

As we receive the UserAddress entity in the gateway, we have to have a version of it in the
gateway project too. For brevity, we will omit the code, as it is the same as in the
UserAddress project.

How it works...
Let's understand how things work here.

The monolith
The monolith application couldn't be simpler: just a project with two services using two
beans to manage two entities. If you want to understand what is happening there regarding
JAX-RS, CDI, and/or JPA, check the relevant recipes earlier in this book.

The microservices
So we split the monolith into three projects (microservices): the user service, the user
address service, and the gateway service.

The user service classes remained unchanged after the migration from the monolith version.
So there's nothing to comment on.

The UserAddress class had to be changed to become a microservice. The first change was
made on the entity.

Here is the monolith version:

@Entity
public class UserAddress implements Serializable {

 ...

Building Lightweight Solutions Using Microservices Chapter 8

[196]

 @Column
 @ManyToOne
 private User user;
 ...
 public UserAddress(User user, String street, String number,
 String city, String zip) {
 this.user = user;
 this.street = street;
 this.number = number;
 this.city = city;
 this.zip = zip;
 }

 ...

 public User getUser() {
 return user;
 }

 public void setUser(User user) {
 this.user = user;
 }

 ...

}

Here is the microservice version:

@Entity
public class UserAddress implements Serializable {

 ...

 @Column
 private Long idUser;
 ...
 public UserAddress(Long user, String street, String number,
 String city, String zip) {
 this.idUser = user;
 this.street = street;
 this.number = number;
 this.city = city;
 this.zip = zip;
 }

 public Long getIdUser() {
 return idUser;

Building Lightweight Solutions Using Microservices Chapter 8

[197]

 }

 public void setIdUser(Long user) {
 this.idUser = user;
 }

 ...

}

Note that in the monolith version, user was an instance of the User entity:

private User user;

In the microservice version, it became a number:

private Long idUser;

This happened for two main reasons:

In the monolith, we have the two tables in the same database (User and1.
UserAddress), and they both have physical and logical relationships (foreign
key). So it makes sense to also keep the relationship between both the objects.
The microservice should have its own database, completely independent from2.
the other services. So we choose to keep only the user ID, as it is enough to load
the address properly anytime the client needs.

This change also resulted in a change in the constructor.

Here is the monolith version:

public UserAddress(User user, String street, String number,
 String city, String zip)

Here is the microservice version:

public UserAddress(Long user, String street, String number,
 String city, String zip)

This could lead to a change of contract with the client regarding the change of the
constructor signature. But thanks to the way it was built, it wasn't necessary.

Here is the monolith version:

public Response add(UserAddress address)

Building Lightweight Solutions Using Microservices Chapter 8

[198]

Here is the microservice version:

public Response add(UserAddress address)

Even if the method is changed, it could easily be solved with @Path annotation, or if we
really need to change the client, it would be only the method name and not the parameters
(which used to be more painful).

Finally, we have the gateway service, which is our implementation of the API gateway
design pattern. Basically it is the one single point to access the other services.

The nice thing about it is that your client doesn't need to care about whether the other
services changed the URL, the signature, or even whether they are available. The gateway
will take care of them.

The bad part is that it is also on a single point of failure. Or, in other words, without the
gateway, all services are unreachable. But you can deal with it using a cluster, for example.

There's more...
Though Java EE is perfect for microservices, there are other options using the same bases
and that may be a little lighter in some scenarios.

One of them is KumuluzEE (https:/ ​/ ​ee. ​kumuluz. ​com/ ​). It's based on Java EE and has
many microservice must-have features, such as service discovery. It won a Duke Choice
Awards prize, which is huge!

The other one is Payara Micro (https:/ ​/​www. ​payara. ​fish/ ​payara_ ​micro). Payara is the
company that owns a commercial implementation of GlassFish, the Payara Server, and from
the Payara Server, they created the Payara Fish. The cool thing about it is that it is just a 60
MB JAR file that you start using the command line and boom! Your microservice is running.

Finally, the awesome thing about these two projects is that they are aligned with the Eclipse
MicroProfile project (http:/ ​/​microprofile. ​io/​). MicroProfile is defining the path and the
standards for microservices in the Java EE ecosystem right now, so it is worth following.

One last note about the code covered in this recipe: it would be nice in a real-world solution
to use a DTO to separate the database representation from the service one.

https://ee.kumuluz.com/
https://ee.kumuluz.com/
https://ee.kumuluz.com/
https://ee.kumuluz.com/
https://ee.kumuluz.com/
https://ee.kumuluz.com/
https://ee.kumuluz.com/
https://ee.kumuluz.com/
https://ee.kumuluz.com/
https://ee.kumuluz.com/
https://www.payara.fish/payara_micro
https://www.payara.fish/payara_micro
https://www.payara.fish/payara_micro
https://www.payara.fish/payara_micro
https://www.payara.fish/payara_micro
https://www.payara.fish/payara_micro
https://www.payara.fish/payara_micro
https://www.payara.fish/payara_micro
https://www.payara.fish/payara_micro
https://www.payara.fish/payara_micro
https://www.payara.fish/payara_micro
https://www.payara.fish/payara_micro
https://www.payara.fish/payara_micro
http://microprofile.io/
http://microprofile.io/
http://microprofile.io/
http://microprofile.io/
http://microprofile.io/
http://microprofile.io/
http://microprofile.io/
http://microprofile.io/

Building Lightweight Solutions Using Microservices Chapter 8

[199]

See also
The full source code of this recipe can be found in the following repositories:

Monolith: https:/ ​/ ​github. ​com/ ​eldermoraes/ ​javaee8- ​cookbook/ ​tree/ ​master/
chapter08/ ​ch08- ​micro_ ​x_ ​mono- ​mono

User microservice: https:/ ​/​github. ​com/ ​eldermoraes/ ​javaee8- ​cookbook/ ​tree/
master/​chapter08/ ​ch08- ​micro_ ​x_​mono- ​micro- ​user

UserAddress microservice: https:/ ​/​github. ​com/ ​eldermoraes/ ​javaee8-
cookbook/ ​tree/ ​master/ ​chapter08/ ​ch08- ​micro_ ​x_​mono- ​micro- ​address

Gateway microservice: https:/ ​/​github. ​com/ ​eldermoraes/ ​javaee8- ​cookbook/
tree/​master/ ​chapter08/ ​ch08- ​micro_ ​x_​mono- ​micro- ​gateway

Building decoupled services
Maybe you have, at least heard something about building decoupled things in the software
world: decoupled classes, decoupled modules, and also decoupled services.

But what does it mean for a software unit being decoupled from another?

In a practical way, two things are coupled when any changes made to one of them requires
you to also change the other one. For example, if you have a method that returns a String
and changes it to return a Double, all the methods calling that one are required to be
changed.

There are levels of coupling. For example, you could have all your classes and methods
very well designed for loose coupling, but they are all written in Java. If you change one of
them to .NET and would like to keep all of them together (in the same deployment
package), you need to change all the other ones to the new language.

Another thing to mention about coupling is how much one unit knows about the other one.
They are tightly coupled when they know a lot about each other and they are the opposite,
loosely coupled, if they know a little or almost nothing about each other. This point of view
is related mostly to the behavior of two (or more) parts.

The last way to look at coupling is in terms of a contract. If changing the contract breaks the
clients, they are tightly coupled. If not, they are loosely coupled. That's why the best way to
promote loose coupling is using interfaces. As they create contracts for its implementers,
using them for communication between classes promotes loose coupling.

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-mono
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-mono
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-mono
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-mono
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-mono
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-mono
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-mono
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-mono
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-mono
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-mono
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-mono
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-mono
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-mono
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-mono
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-mono
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-mono
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-mono
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-mono
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-mono
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-mono
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-mono
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-mono
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-mono
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-mono
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-mono
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-mono
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-mono
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-mono
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-address
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-address
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-address
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-address
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-address
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-address
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-address
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-address
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-address
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-address
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-address
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-address
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-address
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-address
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-address
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-address
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-address
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-address
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-address
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-address
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-address
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-address
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-address
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-address
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-address
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-address
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-address
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-address
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-address
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-address
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-gateway
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-gateway
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-gateway
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-gateway
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-gateway
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-gateway
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-gateway
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-gateway
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-gateway
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-gateway
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-gateway
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-gateway
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-gateway
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-gateway
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-gateway
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-gateway
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-gateway
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-gateway
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-gateway
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-gateway
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-gateway
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-gateway
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-gateway
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-gateway
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-gateway
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-gateway
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-gateway
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-gateway
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-gateway
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-micro_x_mono-micro-gateway

Building Lightweight Solutions Using Microservices Chapter 8

[200]

Well... what about services? In our case, microservices.

One service is loosely coupled from another one when changing it does not require
changing the other. You can think about both in terms of behavior or contract.

This is especially important when talking about microservices, because you can have
dozens, hundreds, or even thousands of them in your application and if changing one of
them requires you to change the others, you could just ruin you entire application.

This recipe will show you how to avoid tight coupling in your microservices, from the first
line of code, so you can avoid refactoring in the future (at least for this reason).

Getting ready
Let's start by adding our Java EE 8 dependency:

 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>

How to do it...
First, we create a User POJO:1.

public class User implements Serializable{

 private String name;
 private String email;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getEmail() {
 return email;
 }

Building Lightweight Solutions Using Microservices Chapter 8

[201]

 public void setEmail(String email) {
 this.email = email;
 }
}

Then we create a class with two methods (endpoints) for returning User:2.

@Path("userService")
public class UserService {
 @GET
 @Path("getUserCoupled/{name}/{email}")
 @Produces(MediaType.APPLICATION_JSON)
 public Response getUserCoupled(
 @PathParam("name") String name,
 @PathParam("email") String email){
 //GET USER CODE
 return Response.ok().build();
 }
 @GET
 @Path("getUserDecoupled")
 @Produces(MediaType.APPLICATION_JSON)
 public Response getUserDecoupled(@HeaderParam("User")
 User user){
 //GET USER CODE
 return Response.ok().build();
 }
}

Finally, we create another service (another project) to consume UserService:3.

@Path("doSomethingService")
public class DoSomethingService {
 private final String hostURI = "http://localhost:8080/";
 private Client client;
 private WebTarget target;

 @PostConstruct
 public void init() {
 client = ClientBuilder.newClient();
 target = client.target(hostURI + "ch08-decoupled-user/");
 }
 @Path("doSomethingCoupled")
 @Produces(MediaType.APPLICATION_JSON)
 public Response doSomethingCoupled(String name, String email){
 WebTarget service =
 target.path("webresources/userService/getUserCoupled");
 service.queryParam("name", name);
 service.queryParam("email", email);

Building Lightweight Solutions Using Microservices Chapter 8

[202]

 Response response;
 try {
 response = service.request().get();
 } catch (ProcessingException e) {
 return Response.status(408).build();
 }

 return
 Response.ok(response.readEntity(String.class)).build();
 }
 @Path("doSomethingDecoupled")
 @Produces(MediaType.APPLICATION_JSON)
 public Response doSomethingDecoupled(User user){
 WebTarget service =
 target.path("webresources/userService/getUserDecoupled");

 Response response;
 try {
 response = service.request().header("User",
 Entity.json(user)).get();
 } catch (ProcessingException e) {
 return Response.status(408).build();
 }

 return
 Response.ok(response.readEntity(String.class)).build();
 }
}

How it works...
As you may have already noticed, we created two situations in this code: one clearly
coupled (getUserCoupled) and another decoupled (getUserDecoupled):

 public Response getUserCoupled(
 @PathParam("name") String name,
 @PathParam("email") String email)

Why is this a coupled method and thus a coupled service? Because it is highly attached to
the method signature. Imagine it is a search service and "name" and "email" are filters.
Now imagine that sometime in the future you need to add another filter. One more
parameter in the signature.

Building Lightweight Solutions Using Microservices Chapter 8

[203]

OK, you could keep the two methods alive at the same time, so that you wouldn't break the
client and have to change the clients. How many are there? Mobile, services, web pages, and
many more. All those need to be changed to support the new feature.

Now look at this:

 public Response getUserDecoupled(@HeaderParam("User") User user)

In this User search method, what if you need to add a new parameter to the filter? OK, go
ahead and add it! No changes in the contract, all clients are happy.

If your User POJO starts with only two properties and ends with a hundred after a year, no
problem. Your service contract is left untouched and even your clients, who are not using
the new fields, are still working. Sweet!

The result of coupled/decoupled services can be seen in the calling service:

 public Response doSomethingCoupled(String name, String email){
 WebTarget service =
 target.path("webresources/userService/getUserCoupled");
 service.queryParam("name", name);
 service.queryParam("email", email);

 ...
 }

The calling service is totally coupled to the called one: it has to know the called service
properties' names and needs to add/update each time it changes.

Now look at this:

 public Response doSomethingDecoupled(User user){
 WebTarget service =
 target.path("webresources/userService/getUserDecoupled");

 Response response;
 try {
 response = service.request().header("User",
 Entity.json(user)).get();
 ...
 }

Building Lightweight Solutions Using Microservices Chapter 8

[204]

In this case, you only need to refer to the one and only service parameter ("User") and it
will never change, no matter how the User POJO is changed.

See also
See the full source code at the following links:

UserService: https:/ ​/​github. ​com/​eldermoraes/ ​javaee8- ​cookbook/ ​tree/
master/​chapter08/ ​ch08- ​decoupled- ​user

DoSomethingService: https:/ ​/ ​github. ​com/ ​eldermoraes/ ​javaee8- ​cookbook/
tree/​master/ ​chapter08/ ​ch08- ​decoupled- ​dosomethingwithuser

Building an automated pipeline for
microservices
Maybe you are wondering, "why is there an automation recipe in a Java EE 8 book?", or
even, "is there any specification under Java EE 8 that defines a pipeline automation?"

The answer to the second question is no. At least no at this very moment. The answer to the
first one I'll explain here.

Many times in conferences I am asked the question, "how do I migrate my monolith to
microservices?" It comes in some variations, but at the end of the day the question is the
same.

People want to do it for different reasons:

They want to keep up with the trend
They want to work with something that looks like a new fashion
They want to scale an application
They want to be able to use different stacks under the same solution
They want to look cool

Any of these reasons are OK and you can justify your migration to microservices with any
of them, if you want. I would question the real motivation of some of them, but...

Instead of giving them advice, tips, guidelines, or any other tech talk, I usually ask a simple
question: "Do you already have an automated pipeline for your monolith?"

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-user
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-dosomethingwithuser
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-dosomethingwithuser
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-dosomethingwithuser
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-dosomethingwithuser
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-dosomethingwithuser
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-dosomethingwithuser
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-dosomethingwithuser
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-dosomethingwithuser
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-dosomethingwithuser
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-dosomethingwithuser
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-dosomethingwithuser
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-dosomethingwithuser
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-dosomethingwithuser
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-dosomethingwithuser
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-dosomethingwithuser
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-dosomethingwithuser
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-dosomethingwithuser
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-dosomethingwithuser
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-dosomethingwithuser
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-dosomethingwithuser
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-dosomethingwithuser
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-dosomethingwithuser
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-dosomethingwithuser
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-decoupled-dosomethingwithuser

Building Lightweight Solutions Using Microservices Chapter 8

[205]

Most of the time, the answer is a disappointed "no", followed by a curious, "why?".

Well the answer is simple: if you don't automate the pipeline you, monolith, one single
package, and sometimes you have problems with it, then what makes you think that it will
be easier when you have dozens, hundreds, or even thousands of deployment files?

Let me be more specific:

Do you build your deployment artifact manually? Using an IDE or something?
Do you deploy it manually?
Did you ever have problems with the deployment for any reason such as errors,
missing artifacts, or anything else?
Did you ever have problems due to the lack of tests?

If you answered yes to at least one of these questions and don't have an automated pipeline,
imagine these problems multiplied by... again, dozens, hundreds, or thousands.

Some people don't even write unit tests. Imagine those hidden errors going to production in
a countless amount of artifacts called microservices. Your microservices project will
probably fail even before going live.

So yes, you need to automate as many things as possible in your pipeline before even
thinking of microservices. This is the only way to prevent the problems from spreading out.

There are three maturity stages for an automation pipeline:

Continuous integration (CI): Basically, this ensures that your new code will be 1.
merged into the main branch (for example, the master branch) as soon as
possible. It is based on the fact that the less code you merge, the fewer errors you
add to it. It is reached mostly by running unit tests during build time.
Continuous delivery: This is one step further from CI, where you guarantee your2.
artifact will be ready to be deployed just by a click of a button. This usually
requires an artifact repository for your binaries and a tool to manage it. When
using continuous delivery, you decide when you will do the deployment, but the
best practice is to do it as soon as possible to avoid adding a lot of new code in
production in just one shot.
Continuous deployment (CD): This is the last, state-of-the-art part of automation.3.
In CD, there's no human interaction since the code is committed until it is
deployed in production. The only thing that would prevent an artifact from being
deployed is an error in any of the pipeline stages. All the major success cases of
microservices worldwide use CD in their projects, doing hundreds or even
thousands of deployments daily.

Building Lightweight Solutions Using Microservices Chapter 8

[206]

This recipe will show you how you can go from zero (no automation at all) to three (CD) in
any Java EE project. It's little a conceptual recipe, but with also some code.

Don't argue against concepts; they are the key to your career as a Java EE developer.

"Going microservices" is a huge thing and means lots of things both in your application and
organization. Some people even say that microservices are all about scaling people, and not
technology.

Here we will, of course, keep on the tech side of things.

Getting ready
Being a lot of things, microservices will also bring a lot of tools with them. This recipe
doesn't intend to go deep into the setup of each tool, but shows you how it will work in a
microservices-automated pipeline.

The tools chosen here are not the only option for the roles they perform. They are only my
favorites for those roles.

Preparing the application
To prepare your application—your microservices—for an automation, you will need:

Apache Maven: This is mainly used to build the stage and it will also help you
with many activities surrounding it. It manages the dependencies, runs unit tests,
and many more.
JUnit: This is used to write unit tests that will be executed at the build stage.
Git: For the sake of the most sacred things you can imagine, use some version
control for your source code. Here, I'll base it on GitHub.

Preparing the environment
To prepare the environment of your pipeline, you will need:

Sonatype Nexus: This is a binary repository. In other words, when you build
your artifact, it will be stored in Nexus and be ready to be deployed wherever
you need/want.

Building Lightweight Solutions Using Microservices Chapter 8

[207]

Jenkins: I used to say that Jenkins is an automator for everything. Actually I've
worked in a project where we used it to build an automated pipeline (continuous
delivery) for about 70 applications, with completely different technologies
(languages, databases, operation systems, and so on). You will use it basically for
building and deploying.

How to do it...
You will be guided to reach each one of the three automation maturity stages: continuous
integration, continuous delivery, and continuous deployment.

Continuous integration
Here, you need to make your new code go to the main branch as soon as possible. You will
achieve it by using:

Git
Maven
JUnit

So, you will guarantee that your code is building properly and that the tests are planned
and executed successfully.

Git
I'll not get too deeply into how to use Git and its commands, as it's not the focus of this
book. If you are completely new to the Git world, get started by looking at this cheat sheet:

https:/​/​education. ​github. ​com/ ​git- ​cheat- ​sheet- ​education. ​pdf

Maven
Maven is one of the most powerful tools I've ever seen, and thus has a bunch of features
embedded. If you are new to it, check out this reference:

https:/​/​maven.​apache. ​org/ ​guides/ ​MavenQuickReferenceCard. ​pdf

https://education.github.com/git-cheat-sheet-education.pdf
https://education.github.com/git-cheat-sheet-education.pdf
https://education.github.com/git-cheat-sheet-education.pdf
https://education.github.com/git-cheat-sheet-education.pdf
https://education.github.com/git-cheat-sheet-education.pdf
https://education.github.com/git-cheat-sheet-education.pdf
https://education.github.com/git-cheat-sheet-education.pdf
https://education.github.com/git-cheat-sheet-education.pdf
https://education.github.com/git-cheat-sheet-education.pdf
https://education.github.com/git-cheat-sheet-education.pdf
https://education.github.com/git-cheat-sheet-education.pdf
https://education.github.com/git-cheat-sheet-education.pdf
https://education.github.com/git-cheat-sheet-education.pdf
https://education.github.com/git-cheat-sheet-education.pdf
https://education.github.com/git-cheat-sheet-education.pdf
https://education.github.com/git-cheat-sheet-education.pdf
https://education.github.com/git-cheat-sheet-education.pdf
https://education.github.com/git-cheat-sheet-education.pdf
https://education.github.com/git-cheat-sheet-education.pdf
https://maven.apache.org/guides/MavenQuickReferenceCard.pdf
https://maven.apache.org/guides/MavenQuickReferenceCard.pdf
https://maven.apache.org/guides/MavenQuickReferenceCard.pdf
https://maven.apache.org/guides/MavenQuickReferenceCard.pdf
https://maven.apache.org/guides/MavenQuickReferenceCard.pdf
https://maven.apache.org/guides/MavenQuickReferenceCard.pdf
https://maven.apache.org/guides/MavenQuickReferenceCard.pdf
https://maven.apache.org/guides/MavenQuickReferenceCard.pdf
https://maven.apache.org/guides/MavenQuickReferenceCard.pdf
https://maven.apache.org/guides/MavenQuickReferenceCard.pdf
https://maven.apache.org/guides/MavenQuickReferenceCard.pdf
https://maven.apache.org/guides/MavenQuickReferenceCard.pdf
https://maven.apache.org/guides/MavenQuickReferenceCard.pdf
https://maven.apache.org/guides/MavenQuickReferenceCard.pdf
https://maven.apache.org/guides/MavenQuickReferenceCard.pdf

Building Lightweight Solutions Using Microservices Chapter 8

[208]

The most important file in a Maven-based project is the pom.xml (POM stands for Project
Object Model). For example, when you create a new Java EE 8 project, it should look like
this:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.eldermoraes</groupId>
 <artifactId>javaee8-project-template</artifactId>
 <version>1.0</version>
 <packaging>war</packaging>

 <name>javaee8-project-template</name>

 <properties>
 <endorsed.dir>${project.build.directory}/endorsed</endorsed.dir>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 </properties>
 <dependencies>
 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.1</version>
 <configuration>
 <source>1.8</source>
 <target>1.8</target>
 <compilerArguments>
 <endorseddirs>${endorsed.dir}</endorseddirs>
 </compilerArguments>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>

Building Lightweight Solutions Using Microservices Chapter 8

[209]

 <artifactId>maven-war-plugin</artifactId>
 <version>2.3</version>
 <configuration>
 <failOnMissingWebXml>false</failOnMissingWebXml>
 </configuration>
 </plugin>
 </plugins>
 </build>

</project>

Then your project is ready for building using Maven like this (running in the same folder
where pom.xml is located):

mvn

JUnit
You will use JUnit to run your unit tests. Let's check it.

Here is a class to be tested:

public class JUnitExample {
 @Size (min = 6, max = 10,message = "Name should be between 6 and 10
 characters")
 private String name;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

Here is a testing class:

public class JUnitTest {
 private static Validator VALIDATOR;
 @BeforeClass
 public static void setUpClass() {
 VALIDATOR =
Validation.buildDefaultValidatorFactory().getValidator();
 }

 @Test

Building Lightweight Solutions Using Microservices Chapter 8

[210]

 public void smallName(){
 JUnitExample junit = new JUnitExample();
 junit.setName("Name");
 Set<ConstraintViolation<JUnitExample>> cv =
 VALIDATOR.validate(junit);
 assertFalse(cv.isEmpty());
 }
 @Test
 public void validName(){
 JUnitExample junit = new JUnitExample();
 junit.setName("Valid Name");
 Set<ConstraintViolation<JUnitExample>> cv =
 VALIDATOR.validate(junit);
 assertTrue(cv.isEmpty());
 }

 @Test
 public void invalidName(){
 JUnitExample junit = new JUnitExample();
 junit.setName("Invalid Name");
 Set<ConstraintViolation<JUnitExample>> cv =
 VALIDATOR.validate(junit);
 assertFalse(cv.isEmpty());
 }
}

Whenever you run the building process for this project, the preceding test will be executed
and will ensure that those conditions are still valid.

Now you are ready for continuous integration. Just make sure to merge your new and
working code into the main branch as soon as possible. Now let's move on to continuous
delivery.

Continuous delivery
Now that you are a committer machine, let's go to the next level and make your application
ready to deploy whenever you want.

First, you'll need your just-built artifact to be available in a proper repository. This is when
we use Sonatype Nexus.

I won't go into the setup details in this book. One easy way to do it is by using Docker
containers. You can see more information about it at, https:/ ​/​hub. ​docker. ​com/ ​r/
sonatype/​nexus/​.

https://hub.docker.com/r/sonatype/nexus/
https://hub.docker.com/r/sonatype/nexus/
https://hub.docker.com/r/sonatype/nexus/
https://hub.docker.com/r/sonatype/nexus/
https://hub.docker.com/r/sonatype/nexus/
https://hub.docker.com/r/sonatype/nexus/
https://hub.docker.com/r/sonatype/nexus/
https://hub.docker.com/r/sonatype/nexus/
https://hub.docker.com/r/sonatype/nexus/
https://hub.docker.com/r/sonatype/nexus/
https://hub.docker.com/r/sonatype/nexus/
https://hub.docker.com/r/sonatype/nexus/
https://hub.docker.com/r/sonatype/nexus/
https://hub.docker.com/r/sonatype/nexus/
https://hub.docker.com/r/sonatype/nexus/

Building Lightweight Solutions Using Microservices Chapter 8

[211]

Once your Nexus is available, you need to go to the pom.xml file and add this
configuration:

 <distributionManagement>
 <repository>
 <id>Releases</id>
 <name>Project</name>
 <url>[NEXUS_URL]/nexus/content/repositories/releases/</url>
 </repository>
 </distributionManagement>

Now instead of building, just use the following:

mvn

You'll do so like this:

mvn deploy

So once your artifact is built, Maven will upload it to Sonatype Nexus. Now it is properly
stored for future deployment.

Now you are almost ready to dance to the automation song. Let's bring Jenkins to the party.

As mentioned for Nexus, I will not get into the details about setting up Jenkins. I also
recommend you do it using Docker. See the following link for details:

https:/​/​hub.​docker. ​com/ ​_​/​jenkins/ ​

If you have absolutely no idea on how to use Jenkins, please refer to this official guide:

https:/​/​jenkins. ​io/ ​user- ​handbook. ​pdf

Once your Jenkins is up and running, you'll create two jobs:

Your-Project-Build: This job will be used to build your project from the source1.
code.
Your-Project-Deploy: This job will be used to deploy your artifact after being2.
built and stored in Nexus.

You will configure the first one to download the source code of your project and build it
using Maven. The second will download it from Nexus and deploy to the application
server.

https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://jenkins.io/user-handbook.pdf
https://jenkins.io/user-handbook.pdf
https://jenkins.io/user-handbook.pdf
https://jenkins.io/user-handbook.pdf
https://jenkins.io/user-handbook.pdf
https://jenkins.io/user-handbook.pdf
https://jenkins.io/user-handbook.pdf
https://jenkins.io/user-handbook.pdf
https://jenkins.io/user-handbook.pdf
https://jenkins.io/user-handbook.pdf
https://jenkins.io/user-handbook.pdf
https://jenkins.io/user-handbook.pdf
https://jenkins.io/user-handbook.pdf

Building Lightweight Solutions Using Microservices Chapter 8

[212]

Remember that the deployment process involves some steps in most cases:

Stop the application server.1.
Remove the previous version.2.
Download the new version from Nexus.3.
Deploy the new version.4.
Start the application server.5.

So you'd probably create a shell script to be executed by Jenkins. Remember, we are
automating, so no manual processes.

Downloading the artifact can be a little tricky, so maybe you could use something like this
in your shell script:

wget --user=username --password=password
"[NEXUS_URL]/nexus/service/local/artifact/maven/content?g=<group>&a=<artifa
ct>
&v=<version>&r=releases"

If everything goes fine until this point, then you'll have two buttons: one for building and
another for deploying. You are ready and set to build with no need to use any IDE to
deploy, and no need to touch the application server.

Now you are sure that both processes (build and deploy) will be executed exactly the same
way every time. You can now plan them to be executed in a shorter period of time.

Well, now we will move to the next and best step: continuous deployment.

Continuous deployment
To move from delivery to deployment is a matter of maturity—you need a reliable process
that ensures only the working code is going into production.

You already have your code running unit tests on every build. Actually, you didn't forget to
write unit tests, right?

On every success, your built artifact is properly stored and you manage the right versioning
for your application.

You have mastered the deployment process for your application, dealing properly with any
condition that might occur. Your application server is never going down again without
your knowledge and you achieved it with the help of just two buttons! Build and deploy.
You rock!

Building Lightweight Solutions Using Microservices Chapter 8

[213]

If you are at this point, your next move shouldn't be a big deal. You only need to automate
the two jobs so you don't need to hit the button anymore.

In the build job, you'll set it to be executed whenever Jenkins finds any changes in the
source code repository (check the documentation if you don't know how to do it).

Once it is done, there is just one last configuration: make the build step on the build job call
another job—the deploy job. So any time the build is executed successfully, the deploy is
also executed right away.

Cheers! You've made it.

There's more...
Of course, you will not only perform unit tests or API tests. You also need to test your UI, if
you have one.

I'd recommend to do it using the Selenium Webdriver. You can find more information
here, http:/​/​www. ​seleniumhq. ​org/ ​docs/ ​03_​webdriver. ​jsp.

In this case, you would probably want to deploy your application to a QA environment, run
the UI tests, and then go into production if everything is fine. So it's just a matter of adding
some new jobs to your pipeline, now you know how to do it.

See also
The source code of the JUnit example can be found at, https:/ ​/​github. ​com/
eldermoraes/ ​javaee8- ​cookbook/ ​tree/ ​master/ ​chapter08/ ​ch08- ​automation.

http://www.seleniumhq.org/docs/03_webdriver.jsp
http://www.seleniumhq.org/docs/03_webdriver.jsp
http://www.seleniumhq.org/docs/03_webdriver.jsp
http://www.seleniumhq.org/docs/03_webdriver.jsp
http://www.seleniumhq.org/docs/03_webdriver.jsp
http://www.seleniumhq.org/docs/03_webdriver.jsp
http://www.seleniumhq.org/docs/03_webdriver.jsp
http://www.seleniumhq.org/docs/03_webdriver.jsp
http://www.seleniumhq.org/docs/03_webdriver.jsp
http://www.seleniumhq.org/docs/03_webdriver.jsp
http://www.seleniumhq.org/docs/03_webdriver.jsp
http://www.seleniumhq.org/docs/03_webdriver.jsp
http://www.seleniumhq.org/docs/03_webdriver.jsp
http://www.seleniumhq.org/docs/03_webdriver.jsp
http://www.seleniumhq.org/docs/03_webdriver.jsp
http://www.seleniumhq.org/docs/03_webdriver.jsp
http://www.seleniumhq.org/docs/03_webdriver.jsp
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-automation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-automation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-automation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-automation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-automation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-automation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-automation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-automation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-automation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-automation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-automation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-automation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-automation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-automation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-automation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-automation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-automation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-automation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-automation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-automation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-automation
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter08/ch08-automation

9
Using Multithreading on

Enterprise Context
This chapter covers the following recipes:

Building asynchronous tasks with returning results
Using transactions with asynchronous tasks
Checking the status of asynchronous tasks
Building managed threads with returning results
Scheduling asynchronous tasks with returning results
Using injected proxies for asynchronous tasks

Introduction
Threading is a common issue in most software projects, no matter which language or other
technology is involved. When talking about enterprise applications, things become even
more important, and sometimes harder.

A single mistake in some thread can affect the whole system, or even the whole
infrastructure. Think about some resources that are never released, memory consumption
that never stops increasing, and so on.

The Java EE environment has some great features for dealing with these and plenty of other
challenges, and this chapter will show you some of them.

Using Multithreading on Enterprise Context Chapter 9

[215]

Building asynchronous tasks with returning
results
One of the first challenges you will face if you have never worked with asynchronous tasks
is: how on Earth do you return results from an asynchronous task if you don't know
when the execution will end?

Well, this recipe show you how. AsyncResponse for the win!

Getting ready
Let's first add our Java EE 8 dependency:

 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>

How to do it...
First, we create a User POJO:1.

package com.eldermoraes.ch09.async.result;

/**
 *
 * @author eldermoraes
 */
public class User {

 private Long id;
 private String name;

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

Using Multithreading on Enterprise Context Chapter 9

[216]

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
 public User(Long id, String name) {
 this.id = id;
 this.name = name;
 }
 @Override
 public String toString() {
 return "User{" + "id=" + id + ", name="
 + name + '}';
 }
}

Then we create UserService to emulate a remote slow endpoint:2.

@Stateless
@Path("userService")
public class UserService {
 @GET
 public Response userService(){
 try {
 TimeUnit.SECONDS.sleep(5);
 long id = new Date().getTime();
 return Response.ok(new User(id, "User " + id)).build();
 } catch (InterruptedException ex) {
 return
 Response.status(Response.Status.INTERNAL_SERVER_ERROR)
 .entity(ex).build();
 }
 }
}

Now we create an asynchronous client that will reach that endpoint and get the3.
result:

@Stateless
public class AsyncResultClient {

 private Client client;
 private WebTarget target;

 @PostConstruct
 public void init() {

Using Multithreading on Enterprise Context Chapter 9

[217]

 client = ClientBuilder.newBuilder()
 .readTimeout(10, TimeUnit.SECONDS)
 .connectTimeout(10, TimeUnit.SECONDS)
 .build();
 target = client.target("http://localhost:8080/
 ch09-async-result/userService");
 }

 @PreDestroy
 public void destroy(){
 client.close();
 }
 public CompletionStage<Response> getResult(){
 return
 target.request(MediaType.APPLICATION_JSON).rx().get();
 }
}

And finally, we create a service (endpoint) that will use the client to write the4.
result in the response:

@Stateless
@Path("asyncService")
public class AsyncService {

 @Inject
 private AsyncResultClient client;

 @GET
 public void asyncService(@Suspended AsyncResponse response)
 {
 try{
 client.getResult().thenApply(this::readResponse)
 .thenAccept(response::resume);
 } catch(Exception e){
 response.resume(Response.status(Response.Status.
 INTERNAL_SERVER_ERROR).entity(e).build());
 }
 }

 private String readResponse(Response response) {
 return response.readEntity(String.class);
 }
}

Using Multithreading on Enterprise Context Chapter 9

[218]

To run this example, just deploy it in GlassFish 5 and open this URL in your browser:

http://localhost:8080/ch09-async-result/asyncService

How it works...
First, our remote endpoint is creating User and converting it to a response entity:

return Response.ok(new User(id, "User " + id)).build();

So, with no effort at all, your User is now a JSON object.

Now let's take a look at the key method in AsyncResultClient:

 public CompletionStage<Response> getResult(){
 return target.request(MediaType.APPLICATION_JSON).rx().get();
 }

The rx() method is a part of the Reactive Client API introduced in Java EE 8. We'll discuss
reactive in more detail in the next chapter. It basically returns CompletionStageInvoker,
which will allow you to get CompletionStage<Response> (the returning value for this
method).

In other words, this is an asynchronous/non-blocking code that gets results from the remote
endpoint.

Note that we use the @Stateless annotation with this client so that we can inject it into our
main endpoint:

 @Inject
 private AsyncResultClient client;

Here's our asynchronous method for writing a response:

 @GET
 public void asyncService(@Suspended AsyncResponse response) {
 client.getResult().thenApply(this::readResponse)
 .thenAccept(response::resume);
 }

Note that it's a void method. It doesn't return anything because it will return the result to a
callback.

Using Multithreading on Enterprise Context Chapter 9

[219]

The @Suspended annotation combined with AsyncResponse will make the response
resume once the processing is done, and this happens because we are using the beautiful,
one-line, Java 8-style code:

client.getResult().thenApply(this::readResponse)
.thenAccept(response::resume);

Before going into the details, let's just clarify our local readResponse method:

 private String readResponse(Response response) {
 return response.readEntity(String.class);
 }

It just reads the User entity embedded in Response and transforms it to a String object (a
JSON string).

Another way that this one-line code could be written is like this:

 client.getResult()
 .thenApply(r -> readResponse(r))
 .thenAccept(s -> response.resume(s));

But the first way is more concise, less verbose, and more fun!

The key is the resume method from the AsyncReponse object. It will write the response to
the callback and return it to whoever asked it.

See also
The full source code of this recipe is at https:/ ​/​github. ​com/ ​eldermoraes/
javaee8- ​cookbook/ ​tree/ ​master/ ​chapter09/ ​ch09- ​async- ​result.

Using transactions with asynchronous tasks
Using asynchronous tasks could be already a challenge: what if you need to add some spice
and add a transaction to it?

Usually, a transaction means something like code blocking. Isn't it awkward to combine two
opposing concepts? Well, it's not! They can work together nicely, as this recipe will show
you.

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-result
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-result
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-result
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-result
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-result
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-result
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-result
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-result
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-result
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-result
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-result
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-result
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-result
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-result
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-result
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-result
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-result
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-result
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-result
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-result
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-result
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-result
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-result
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-result

Using Multithreading on Enterprise Context Chapter 9

[220]

Getting ready
Let's first add our Java EE 8 dependency:

 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>

How to do it...
Let's first create a User POJO:1.

public class User {

 private Long id;
 private String name;

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
 public User(Long id, String name) {
 this.id = id;
 this.name = name;
 }
 @Override
 public String toString() {
 return "User{" + "id=" + id + ",
 name=" + name + '}';
 }
}

Using Multithreading on Enterprise Context Chapter 9

[221]

And here is a slow bean that will return User:2.

@Stateless
public class UserBean {
 public User getUser(){
 try {
 TimeUnit.SECONDS.sleep(5);
 long id = new Date().getTime();
 return new User(id, "User " + id);
 } catch (InterruptedException ex) {
 System.err.println(ex.getMessage());
 long id = new Date().getTime();
 return new User(id, "Error " + id);
 }
 }
}

Now we create a task to be executed that will return User using some transaction3.
stuff:

public class AsyncTask implements Callable<User> {

 private UserTransaction userTransaction;
 private UserBean userBean;

 @Override
 public User call() throws Exception {
 performLookups();
 try {
 userTransaction.begin();
 User user = userBean.getUser();
 userTransaction.commit();
 return user;
 } catch (IllegalStateException | SecurityException |
 HeuristicMixedException | HeuristicRollbackException |
 NotSupportedException | RollbackException |
 SystemException e) {
 userTransaction.rollback();
 return null;
 }
 }

 private void performLookups() throws NamingException{
 userBean = CDI.current().select(UserBean.class).get();
 userTransaction = CDI.current()
 .select(UserTransaction.class).get();
 }

Using Multithreading on Enterprise Context Chapter 9

[222]

}

And finally, here is the service endpoint that will use the task to write the result4.
to a response:

@Path("asyncService")
@RequestScoped
public class AsyncService {
 private AsyncTask asyncTask;
 @Resource(name = "LocalManagedExecutorService")
 private ManagedExecutorService executor;
 @PostConstruct
 public void init(){
 asyncTask = new AsyncTask();
 }
 @GET
 public void asyncService(@Suspended AsyncResponse response){
 Future<User> result = executor.submit(asyncTask);
 while(!result.isDone()){
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException ex) {
 System.err.println(ex.getMessage());
 }
 }
 try {
 response.resume(Response.ok(result.get()).build());
 } catch (InterruptedException | ExecutionException ex) {
 System.err.println(ex.getMessage());
 response.resume(Response.status(Response
 .Status.INTERNAL_SERVER_ERROR)
 .entity(ex.getMessage()).build());
 }
 }
}

To try this code, just deploy it to GlassFish 5 and open this URL:

http://localhost:8080/ch09-async-transaction/asyncService

Using Multithreading on Enterprise Context Chapter 9

[223]

How it works...
The magic happens in the AsyncTask class, where we will first take a look at
the performLookups method:

 private void performLookups() throws NamingException{
 Context ctx = new InitialContext();
 userTransaction = (UserTransaction)
 ctx.lookup("java:comp/UserTransaction");
 userBean = (UserBean) ctx.lookup("java:global/
 ch09-async-transaction/UserBean");
 }

It will give you the instances of both UserTransaction and UserBean from the
application server. Then you can relax and rely on the things already instantiated for you.

As our task implements a Callabe<V> object that it needs to implement the call()
method:

 @Override
 public User call() throws Exception {
 performLookups();
 try {
 userTransaction.begin();
 User user = userBean.getUser();
 userTransaction.commit();
 return user;
 } catch (IllegalStateException | SecurityException |
 HeuristicMixedException | HeuristicRollbackException
 | NotSupportedException | RollbackException |
 SystemException e) {
 userTransaction.rollback();
 return null;
 }
 }

You can see Callable as a Runnable interface that returns a result.

Our transaction code lives here:

 userTransaction.begin();
 User user = userBean.getUser();
 userTransaction.commit();

Using Multithreading on Enterprise Context Chapter 9

[224]

And if anything goes wrong, we have the following:

 } catch (IllegalStateException | SecurityException |
 HeuristicMixedException | HeuristicRollbackException
 | NotSupportedException | RollbackException |
 SystemException e) {
 userTransaction.rollback();
 return null;
 }

Now we will look at AsyncService. First, we have some declarations:

 private AsyncTask asyncTask;
 @Resource(name = "LocalManagedExecutorService")
 private ManagedExecutorService executor;
 @PostConstruct
 public void init(){
 asyncTask = new AsyncTask();
 }

We are asking the container to give us an instance from
ManagedExecutorService, which It is responsible for executing the task
in the enterprise context.

Then we call an init() method, and the bean is constructed (@PostConstruct). This
instantiates the task.

Now we have our task execution:

 @GET
 public void asyncService(@Suspended AsyncResponse response){
 Future<User> result = executor.submit(asyncTask);
 while(!result.isDone()){
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException ex) {
 System.err.println(ex.getMessage());
 }
 }
 try {
 response.resume(Response.ok(result.get()).build());
 } catch (InterruptedException | ExecutionException ex) {
 System.err.println(ex.getMessage());
 response.resume(Response.status(Response.
 Status.INTERNAL_SERVER_ERROR)
 .entity(ex.getMessage()).build());

Using Multithreading on Enterprise Context Chapter 9

[225]

 }
 }

Note that the executor returns Future<User>:

Future<User> result = executor.submit(asyncTask);

This means this task will be executed asynchronously. Then we check its execution status
until it's done:

 while(!result.isDone()){
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException ex) {
 System.err.println(ex.getMessage());
 }
 }

And once it's done, we write it down to the asynchronous response:

response.resume(Response.ok(result.get()).build());

See also
The full source code of this recipe is at https:/ ​/​github. ​com/ ​eldermoraes/
javaee8- ​cookbook/ ​tree/ ​master/ ​chapter09/ ​ch09- ​async- ​transaction.

Checking the status of asynchronous tasks
Beyond executing asynchronous tasks, which opens up a lot of possibilities, sometimes it is
useful and necessary to get the status of those tasks.

For example, you could use it as a check the time elapsed on each task stage. You should
also think about logging and monitoring.

This recipe will show you an easy way to do this.

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-transaction
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-async-transaction

Using Multithreading on Enterprise Context Chapter 9

[226]

Getting ready
Let's first add our Java EE 8 dependency:

 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>

How to do it...
Let's first create a User POJO:1.

public class User {

 private Long id;
 private String name;

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
 public User(Long id, String name) {
 this.id = id;
 this.name = name;
 }
 @Override
 public String toString() {
 return "User{" + "id=" + id + ",
 name=" + name + '}';
 }
}

Using Multithreading on Enterprise Context Chapter 9

[227]

Then we create a slow bean for returning User:2.

public class UserBean {
 public User getUser(){
 try {
 TimeUnit.SECONDS.sleep(5);
 long id = new Date().getTime();
 return new User(id, "User " + id);
 } catch (InterruptedException ex) {
 long id = new Date().getTime();
 return new User(id, "Error " + id);
 }
 }
}

Now we create a managed task so we can monitor it:3.

@Stateless
public class AsyncTask implements Callable<User>,
ManagedTaskListener {

 private final long instantiationMili = new Date().getTime();
 private static final Logger LOG = Logger.getAnonymousLogger();
 @Override
 public User call() throws Exception {
 return new UserBean().getUser();
 }

 @Override
 public void taskSubmitted(Future<?> future,
 ManagedExecutorService mes, Object o) {
 long mili = new Date().getTime();
 LOG.log(Level.INFO, "taskSubmitted: {0} -
 Miliseconds since instantiation: {1}",
 new Object[]{future, mili - instantiationMili});
 }

 @Override
 public void taskAborted(Future<?> future,
 ManagedExecutorService mes, Object o, Throwable thrwbl)
 {
 long mili = new Date().getTime();
 LOG.log(Level.INFO, "taskAborted: {0} -
 Miliseconds since instantiation: {1}",
 new Object[]{future, mili - instantiationMili});
 }

 @Override

Using Multithreading on Enterprise Context Chapter 9

[228]

 public void taskDone(Future<?> future,
 ManagedExecutorService mes, Object o,
 Throwable thrwbl) {
 long mili = new Date().getTime();
 LOG.log(Level.INFO, "taskDone: {0} -
 Miliseconds since instantiation: {1}",
 new Object[]{future, mili - instantiationMili});
 }

 @Override
 public void taskStarting(Future<?> future,
 ManagedExecutorService mes, Object o) {
 long mili = new Date().getTime();
 LOG.log(Level.INFO, "taskStarting: {0} -
 Miliseconds since instantiation: {1}",
 new Object[]{future, mili - instantiationMili});
 }

}

And finally, we create a service endpoint to execute our task and return its4.
results:

@Stateless
@Path("asyncService")
public class AsyncService {

 @Resource
 private ManagedExecutorService executor;

 @GET
 public void asyncService(@Suspended AsyncResponse response) {
 int i = 0;

 List<User> usersFound = new ArrayList<>();
 while (i < 4) {
 Future<User> result = executor.submit(new AsyncTask());

 while (!result.isDone()) {
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException ex) {
 System.err.println(ex.getMessage());
 }
 }

 try {

Using Multithreading on Enterprise Context Chapter 9

[229]

 usersFound.add(result.get());
 } catch (InterruptedException | ExecutionException ex)
{
 System.err.println(ex.getMessage());
 }

 i++;
 }

 response.resume(Response.ok(usersFound).build());
 }

}

To try this code, just deploy it to GlassFish 5 and open this URL:

http://localhost:8080/ch09-task-status/asyncService

How it works...
If you have been through the last recipe, you will already be familiar with the Callable
task, so I won't give you more details about it here. But now, we are implementing our task
using both the Callable and ManagedTaskListener interfaces. The second one gives us
all the methods for checking the task's status:

 @Override
 public void taskSubmitted(Future<?> future,
 ManagedExecutorService mes, Object o) {
 long mili = new Date().getTime();
 LOG.log(Level.INFO, "taskSubmitted: {0} -
 Miliseconds since instantiation: {1}",
 new Object[]{future, mili - instantiationMili});
 }

 @Override
 public void taskAborted(Future<?> future,
 ManagedExecutorService mes, Object o, Throwable thrwbl) {
 long mili = new Date().getTime();
 LOG.log(Level.INFO, "taskAborted: {0} -
 Miliseconds since instantiation: {1}",
 new Object[]{future, mili - instantiationMili});
 }

 @Override
 public void taskDone(Future<?> future,

Using Multithreading on Enterprise Context Chapter 9

[230]

 ManagedExecutorService mes, Object o, Throwable thrwbl) {
 long mili = new Date().getTime();
 LOG.log(Level.INFO, "taskDone: {0} -
 Miliseconds since instantiation: {1}",
 new Object[]{future, mili - instantiationMili});
 }

 @Override
 public void taskStarting(Future<?> future,
 ManagedExecutorService mes, Object o) {
 long mili = new Date().getTime();
 LOG.log(Level.INFO, "taskStarting: {0} -
 Miliseconds since instantiation: {1}",
 new Object[]{future, mili - instantiationMili});
 }

The best part is that you don't need to call any of them—ManagedExecutorService

(explained next) will do it for you.

Finally, we have AsyncService. The first declaration is for our executor:

 @Resource
 private ManagedExecutorService executor;

In the service itself, we are getting four users from our asynchronous task:

 List<User> usersFound = new ArrayList<>();
 while (i < 4) {
 Future<User> result = executor.submit(new AsyncTask());

 while (!result.isDone()) {
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException ex) {
 System.err.println(ex.getMessage());
 }
 }

 try {
 usersFound.add(result.get());
 } catch (InterruptedException | ExecutionException ex) {
 System.err.println(ex.getMessage());
 }

 i++;
 }

Using Multithreading on Enterprise Context Chapter 9

[231]

Once it's done, it's written to the asynchronous response:

response.resume(Response.ok(usersFound).build());

Now, if you look at your server log output, there are messages from
the ManagedTaskListener interface.

See also
See the full source code of this recipe at https:/ ​/​github. ​com/ ​eldermoraes/
javaee8- ​cookbook/ ​tree/ ​master/ ​chapter09/ ​ch09- ​task- ​status.

Building managed threads with returning
results
Sometimes you need to improve the way you look at the threads you are using; maybe to
improve your logging features, maybe to manage their priorities. It would be nice if you
could also get the results back from them. This recipe will show you how to do it.

Getting ready
Let's first add our Java EE 8 dependency:

 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>

How to do it...
Let's first create a User POJO:1.

public class User {

 private Long id;

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-task-status
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-task-status
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-task-status
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-task-status
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-task-status
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-task-status
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-task-status
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-task-status
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-task-status
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-task-status
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-task-status
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-task-status
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-task-status
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-task-status
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-task-status
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-task-status
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-task-status
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-task-status
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-task-status
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-task-status
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-task-status
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-task-status
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-task-status
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-task-status

Using Multithreading on Enterprise Context Chapter 9

[232]

 private String name;

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
 public User(Long id, String name) {
 this.id = id;
 this.name = name;
 }
 @Override
 public String toString() {
 return "User{" + "id=" + id + ",
 name=" + name + '}';
 }
}

And then, we create a slow bean to return User:2.

@Stateless
public class UserBean {
 @GET
 public User getUser(){
 try {
 TimeUnit.SECONDS.sleep(5);
 long id = new Date().getTime();
 return new User(id, "User " + id);
 } catch (InterruptedException ex) {
 long id = new Date().getTime();
 return new User(id, "Error " + id);
 }
 }
}

Using Multithreading on Enterprise Context Chapter 9

[233]

And finally, we create an endpoint to get the result from the task:3.

@Stateless
@Path("asyncService")
public class AsyncService {

 @Inject
 private UserBean userBean;

 @Resource(name = "LocalManagedThreadFactory")
 private ManagedThreadFactory factory;

 @GET
 public void asyncService(@Suspended AsyncResponse
 response) {
 Thread thread = factory.newThread(() -> {
 response.resume(Response.ok(userBean
 .getUser()).build());
 });
 thread.setName("Managed Async Task");
 thread.setPriority(Thread.MIN_PRIORITY);
 thread.start();
 }

}

To try this code, just deploy it to GlassFish 5 and open this URL:

http://localhost:8080/ch09-managed-thread/asyncService

How it works...
The only way you should use threads in an enterprise context, and if you really want to use
it, is when the application server creates the thread. So here, we are kindly asking the
container to do it using factory:

 @Resource(name = "LocalManagedThreadFactory")
 private ManagedThreadFactory factory;

Using some functional-style code, we create our thread:

 Thread thread = factory.newThread(() -> {
 response.resume(Response.ok(userBean.getUser()).build());
 });

Using Multithreading on Enterprise Context Chapter 9

[234]

Now, moving to the managed stuff, we can set the name and priority of the just-created
thread:

 thread.setName("Managed Async Task");
 thread.setPriority(Thread.MIN_PRIORITY);

And don't forget to ask the container to start it:

 thread.start();

See also
See the full source code of this recipe at https:/ ​/​github. ​com/ ​eldermoraes/
javaee8- ​cookbook/ ​tree/ ​master/ ​chapter09/ ​ch09- ​managed- ​thread.

Scheduling asynchronous tasks with
returning results
Using tasks means also being able to define when they should be executed. This recipe is all
about this topic, and also about getting the returning results whenever they return.

Getting ready
Let's first add our Java EE 8 dependency:

 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-managed-thread
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-managed-thread
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-managed-thread
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-managed-thread
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-managed-thread
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-managed-thread
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-managed-thread
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-managed-thread
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-managed-thread
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-managed-thread
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-managed-thread
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-managed-thread
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-managed-thread
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-managed-thread
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-managed-thread
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-managed-thread
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-managed-thread
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-managed-thread
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-managed-thread
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-managed-thread
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-managed-thread
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-managed-thread
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-managed-thread
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-managed-thread

Using Multithreading on Enterprise Context Chapter 9

[235]

How to do it...
Let's first create a User POJO:1.

public class User {

 private Long id;
 private String name;

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
 public User(Long id, String name) {
 this.id = id;
 this.name = name;
 }
 @Override
 public String toString() {
 return "User{" + "id=" + id + ",
 name=" + name + '}';
 }
}

And then, we create a slow bean to return User:2.

public class UserBean {
 public User getUser(){
 try {
 TimeUnit.SECONDS.sleep(5);
 long id = new Date().getTime();
 return new User(id, "User " + id);
 } catch (InterruptedException ex) {
 long id = new Date().getTime();
 return new User(id, "Error " + id);
 }

Using Multithreading on Enterprise Context Chapter 9

[236]

 }
}

Now we create a simple Callable task to communicate with the bean:3.

public class AsyncTask implements Callable<User> {

 private final UserBean userBean =
 CDI.current().select(UserBean.class).get();

 @Override
 public User call() throws Exception {
 return userBean.getUser();
 }
}

And finally, we create our service to schedule and write the task's result in the4.
response:

@Stateless
@Path("asyncService")
public class AsyncService {

 @Resource(name = "LocalManagedScheduledExecutorService")
 private ManagedScheduledExecutorService executor;

 @GET
 public void asyncService(@Suspended AsyncResponse response) {

 ScheduledFuture<User> result = executor.schedule
 (new AsyncTask(), 5, TimeUnit.SECONDS);

 while (!result.isDone()) {
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException ex) {
 System.err.println(ex.getMessage());
 }
 }

 try {
 response.resume(Response.ok(result.get()).build());
 } catch (InterruptedException | ExecutionException ex) {
 System.err.println(ex.getMessage());
 response.resume(Response.status(Response.Status
 .INTERNAL_SERVER_ERROR).entity(ex.getMessage())
 .build());
 }

Using Multithreading on Enterprise Context Chapter 9

[237]

 }

}

To try this code, just deploy it to GlassFish 5 and open this URL:

http://localhost:8080/ch09-scheduled-task/asyncService

How it works...
All the magic relies on the AsyncService class, so we will focus on that.

First, we ask the server an instance of an executor:

 @Resource(name = "LocalManagedScheduledExecutorService")
 private ManagedScheduledExecutorService executor;

But it is not just any executor—it's an executor that's specific to scheduling:

ScheduledFuture<User> result = executor.schedule(new AsyncTask(),
5, TimeUnit.SECONDS);

So, we are scheduling our task to be executed in five seconds. Note that we are also not
using a regular Future, but ScheduledFuture.

The rest is a usual task execution:

 while (!result.isDone()) {
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException ex) {
 System.err.println(ex.getMessage());
 }
 }

And this is how we write the results to the response:

response.resume(Response.ok(result.get()).build());

See also
See the full source code of this recipe at https:/ ​/​github. ​com/ ​eldermoraes/
javaee8- ​cookbook/ ​tree/ ​master/ ​chapter09/ ​ch09- ​scheduled- ​task.

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-scheduled-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-scheduled-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-scheduled-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-scheduled-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-scheduled-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-scheduled-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-scheduled-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-scheduled-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-scheduled-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-scheduled-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-scheduled-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-scheduled-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-scheduled-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-scheduled-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-scheduled-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-scheduled-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-scheduled-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-scheduled-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-scheduled-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-scheduled-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-scheduled-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-scheduled-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-scheduled-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-scheduled-task

Using Multithreading on Enterprise Context Chapter 9

[238]

Using injected proxies for asynchronous
tasks
When using tasks, you could also create your own executor. If you have very specific needs,
it could be really handy.

This recipe will show you how to create a proxy executor that can be injected and used in
the whole context of your application.

Getting ready
Let's first add our Java EE 8 dependency:

 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>

How to do it...
First, we create a User POJO:1.

public class User implements Serializable{

 private Long id;
 private String name;

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {

Using Multithreading on Enterprise Context Chapter 9

[239]

 this.name = name;
 }
 public User(Long id, String name) {
 this.id = id;
 this.name = name;
 }
 @Override
 public String toString() {
 return "User{" + "id=" + id + ",
 name=" + name + '}';
 }
}

Then we create a slow bean to return User:2.

public class UserBean {
 public User getUser(){
 try {
 TimeUnit.SECONDS.sleep(5);
 long id = new Date().getTime();
 return new User(id, "User " + id);
 } catch (InterruptedException ex) {
 long id = new Date().getTime();
 return new User(id, "Error " + id);
 }
 }
}

Now we create a simple Callable task to communicate with the slow bean:3.

@Stateless
public class AsyncTask implements Callable<User>{

 @Override
 public User call() throws Exception {
 return new UserBean().getUser();
 }

}

Here, we call our proxy:4.

@Singleton
public class ExecutorProxy {

 @Resource(name = "LocalManagedThreadFactory")
 private ManagedThreadFactory factory;

Using Multithreading on Enterprise Context Chapter 9

[240]

 @Resource(name = "LocalContextService")
 private ContextService context;

 private ExecutorService executor;

 @PostConstruct
 public void init(){
 executor = new ThreadPoolExecutor(1, 5, 10,
 TimeUnit.SECONDS, new ArrayBlockingQueue<>(5),
 factory);
 }
 public Future<User> submit(Callable<User> task){
 Callable<User> ctxProxy =
 context.createContextualProxy(task, Callable.class);
 return executor.submit(ctxProxy);
 }
}

And finally, we create the endpoint that will use the proxy:5.

@Stateless
@Path("asyncService")
public class AsyncService {

 @Inject
 private ExecutorProxy executor;

 @GET
 public void asyncService(@Suspended AsyncResponse response)
 {
 Future<User> result = executor.submit(new AsyncTask());
 response.resume(Response.ok(result).build());
 }

}

To try this code, just deploy it to GlassFish 5 and open this URL:

http://localhost:8080/ch09-proxy-task/asyncService

Using Multithreading on Enterprise Context Chapter 9

[241]

How it works...
The magic really happens here in the ExecutorProxy task. First note that we are defining it
as follows:

@Singleton

We are making sure to have one and only one instance of it in the context.

Now note that even though we are creating our own executor, we are still relying on the
application server context for it:

 @Resource(name = "LocalManagedThreadFactory")
 private ManagedThreadFactory factory;

 @Resource(name = "LocalContextService")
 private ContextService context;

This guarantees that you don't violate any context rules and ruin your application for good.

Then we create a pool for executing threads:

 private ExecutorService executor;

 @PostConstruct
 public void init(){
 executor = new ThreadPoolExecutor(1, 5, 10,
 TimeUnit.SECONDS, new ArrayBlockingQueue<>(5), factory);
 }

And finally, we create the method for sending tasks to the executing queue:

 public Future<User> submit(Callable<User> task){
 Callable<User> ctxProxy = context.createContextualProxy(task,
 Callable.class);
 return executor.submit(ctxProxy);
 }

Now our proxy is ready to be injected:

 @Inject
 private ExecutorProxy executor;

Using Multithreading on Enterprise Context Chapter 9

[242]

It is also ready to be called and to return results:

 @GET
 public void asyncService(@Suspended AsyncResponse response) {
 Future<User> result = executor.submit(new AsyncTask());
 response.resume(Response.ok(result).build());
 }

See also
See the full source code of this recipe at https:/ ​/​github. ​com/ ​eldermoraes/
javaee8- ​cookbook/ ​tree/ ​master/ ​chapter09/ ​ch09- ​proxy- ​task.

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-proxy-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-proxy-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-proxy-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-proxy-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-proxy-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-proxy-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-proxy-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-proxy-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-proxy-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-proxy-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-proxy-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-proxy-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-proxy-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-proxy-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-proxy-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-proxy-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-proxy-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-proxy-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-proxy-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-proxy-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-proxy-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-proxy-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-proxy-task
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter09/ch09-proxy-task

10
Using Event-Driven

Programming to Build Reactive
Applications

This chapter covers the following recipes:

Building reactive applications using asynchronous servlets
Building reactive applications using events and observers
Building reactive applications using websockets
Building reactive applications using message-driven beans
Building reactive applications using JAX-RS
Building reactive applications using asynchronous session beans
Using lambdas and CompletableFuture to improve reactive applications

Introduction
Reactive development became a trending topic in many developers conferences, meetups,
blog posts, and other countless content sources (both online and offline).

But what is a reactive application? Well, there's a official definition of it contained in
something called The Reactive Manifesto (please refer to https:/ ​/​www.
reactivemanifesto. ​org for more details).

In short, according to the manifesto, reactive systems are:

Responsive: The system responds in a timely manner if at all possible
Resilient: The system stays responsive in the face of failure

https://www.reactivemanifesto.org
https://www.reactivemanifesto.org
https://www.reactivemanifesto.org
https://www.reactivemanifesto.org
https://www.reactivemanifesto.org
https://www.reactivemanifesto.org
https://www.reactivemanifesto.org
https://www.reactivemanifesto.org

Using Event-Driven Programming to Build Reactive Applications Chapter 10

[244]

Elastic: The system stays responsive under varying workloads
Message driven: Reactive systems rely on asynchronous message-passing to
establish a boundary between components that ensures loose coupling, isolation,
and location transparency

So, this chapter will show you how to use Java EE 8 features to meet one or more of those
reactive system requirements.

Building reactive applications using
asynchronous servlets
Servlets are probably one of most well-known Java EE technologies (perhaps even the most
known). Actually, servlets existed even before J2EE became a real specification.

This recipe will show you how to use servlets asynchronously.

Getting ready
Let's first add our Java EE 8 dependency:

 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>

How to do it...
First, we create a User POJO:1.

public class User implements Serializable{

 private Long id;
 private String name;
 public User(long id, String name){
 this.id = id;
 this.name = name;
 }

Using Event-Driven Programming to Build Reactive Applications Chapter 10

[245]

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

Then, create a slow UserBean to return a User:2.

@Stateless
public class UserBean {
 public User getUser(){
 long id = new Date().getTime();

 try {
 TimeUnit.SECONDS.sleep(5);
 return new User(id, "User " + id);
 } catch (InterruptedException ex) {
 System.err.println(ex.getMessage());
 return new User(id, "Error " + id);
 }
 }
}

And finally, create our asynchronous servlet:3.

@WebServlet(name = "UserServlet", urlPatterns = {"/UserServlet"},
asyncSupported = true)
public class UserServlet extends HttpServlet {

 @Inject
 private UserBean userBean;
 private final Jsonb jsonb = JsonbBuilder.create();
 @Override
 protected void doGet(HttpServletRequest req,
 HttpServletResponse resp) throws ServletException,
 IOException {
 AsyncContext ctx = req.startAsync();

Using Event-Driven Programming to Build Reactive Applications Chapter 10

[246]

 ctx.start(() -> {
 try (PrintWriter writer =
 ctx.getResponse().getWriter()){
 writer.write(jsonb.toJson(userBean.getUser()));
 } catch (IOException ex) {
 System.err.println(ex.getMessage());
 }
 ctx.complete();
 });
 }

 @Override
 public void destroy() {
 try {
 jsonb.close();
 } catch (Exception ex) {
 System.err.println(ex.getMessage());
 }
 }

}

How it works...
From the all important things here, we should start with a simple annotation:

asyncSupported = true

This will tell the application server that this very servlet supports asynchronous features. By
the way, you will need this in the whole servlet chain (including filters, if there are any),
otherwise application server will not work.

As the servlets are instantiated by the server, we can inject other context members on it,
such as our stateless bean:

@Inject
private UserBean userBean;

Using Event-Driven Programming to Build Reactive Applications Chapter 10

[247]

The main servlet method holds the actual request and response references, and the request
will give us the context reference to the async API:

AsyncContext ctx = req.startAsync();

Then, you can execute your previous blocking function in a non-blocking way:

ctx.start(() -> {
 ...
 ctx.complete();
});

See also
The full source code of this recipe is at https:/ ​/​github. ​com/ ​eldermoraes/
javaee8- ​cookbook/ ​tree/ ​master/ ​chapter10/ ​ch10- ​async- ​servlet.

Building reactive applications using events
and observers
Events and observers are a great way to write code in a reactive way without thinking too
much about it, thanks to the great work done by the CDI specification.

This recipe will show you how easy is to use it to improve the user experience of your
application.

Getting ready
Let's first add our Java EE 8 dependency:

 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-servlet
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-servlet

Using Event-Driven Programming to Build Reactive Applications Chapter 10

[248]

How to do it...
Let's first create a User POJO:1.

public class User implements Serializable{

 private Long id;
 private String name;
 public User(long id, String name){
 this.id = id;
 this.name = name;
 }

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

And then, let's create a REST endpoint with event and observer features:2.

@Stateless
@Path("asyncService")
public class AsyncService {
 @Inject
 private Event<User> event;
 private AsyncResponse response;
 @GET
 public void asyncService(@Suspended AsyncResponse response){
 long id = new Date().getTime();
 this.response = response;
 event.fireAsync(new User(id, "User " + id));
 }

Using Event-Driven Programming to Build Reactive Applications Chapter 10

[249]

 public void onFireEvent(@ObservesAsync User user){
 response.resume(Response.ok(user).build());
 }
}

How it works...
First, we ask the application server to create a Event source for the User POJO:

@Inject
private Event<User> event;

This means that it will listen to any events fired against any User object. So what we need
to do is create a method to deal with it:

public void onFireEvent(@ObservesAsync User user){
 response.resume(Response.ok(user).build());
}

So now this method is the proper listener. The @ObserversAsync annotation guarantees it.
So once an async event is fired, it will do whatever we asked (or coded).

Then, we created a simple asynchronous endpoint to fire it:

@GET
public void asyncService(@Suspended AsyncResponse response){
 long id = new Date().getTime();
 this.response = response;
 event.fireAsync(new User(id, "User " + id));
}

See also
The full source code of this recipe is at https:/ ​/​github. ​com/ ​eldermoraes/
javaee8- ​cookbook/ ​tree/ ​master/ ​chapter10/ ​ch10- ​event- ​observer.

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-event-observer
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-event-observer
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-event-observer
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-event-observer
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-event-observer
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-event-observer
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-event-observer
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-event-observer
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-event-observer
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-event-observer
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-event-observer
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-event-observer
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-event-observer
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-event-observer
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-event-observer
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-event-observer
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-event-observer
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-event-observer
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-event-observer
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-event-observer
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-event-observer
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-event-observer
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-event-observer
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-event-observer

Using Event-Driven Programming to Build Reactive Applications Chapter 10

[250]

Building reactive applications using
websockets
Websockets are a great way to create decoupled communication channels for your
applications. Doing it asynchronously is even better and cooler for non-blocking features.

This recipe will show how to do it.

Getting ready
Let's first add our Java EE 8 dependency:

 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>

How to do it...
The first thing we need is our server endpoint:1.

@Singleton
@ServerEndpoint(value = "/asyncServer")
public class AsyncServer {
 private final List<Session> peers =
Collections.synchronizedList(new ArrayList<>());
 @OnOpen
 public void onOpen(Session peer){
 peers.add(peer);
 }
 @OnClose
 public void onClose(Session peer){
 peers.remove(peer);
 }
 @OnError
 public void onError(Throwable t){
 System.err.println(t.getMessage());
 }
 @OnMessage
 public void onMessage(String message, Session peer){

Using Event-Driven Programming to Build Reactive Applications Chapter 10

[251]

 peers.stream().filter((p) ->
 (p.isOpen())).forEachOrdered((p) -> {
 p.getAsyncRemote().sendText(message +
 " - Total peers: " + peers.size());
 });
 }
}

Then, we need a client to communicate with the server:2.

@ClientEndpoint
public class AsyncClient {

 private final String asyncServer = "ws://localhost:8080
 /ch10-async-websocket/asyncServer";

 private Session session;
 private final AsyncResponse response;

 public AsyncClient(AsyncResponse response) {
 this.response = response;
 }

 public void connect() {
 WebSocketContainer container =
 ContainerProvider.getWebSocketContainer();
 try {
 container.connectToServer(this, new URI(asyncServer));
 } catch (URISyntaxException | DeploymentException |
 IOException ex) {
 System.err.println(ex.getMessage());
 }

 }

 @OnOpen
 public void onOpen(Session session) {
 this.session = session;
 }

 @OnMessage
 public void onMessage(String message, Session session) {
 response.resume(message);
 }

 public void send(String message) {
 session.getAsyncRemote().sendText(message);
 }

Using Event-Driven Programming to Build Reactive Applications Chapter 10

[252]

 public void close(){
 try {
 session.close();
 } catch (IOException ex) {
 System.err.println(ex.getMessage());
 }
 }
}

And finally, we need a simple REST endpoint to talk to the client:3.

@Stateless
@Path("asyncService")
public class AsyncService {
 @GET
 public void asyncService(@Suspended AsyncResponse response){
 AsyncClient client = new AsyncClient(response);
 client.connect();
 client.send("Message from client " + new Date().getTime());
 client.close();
 }
}

How it works...
The first important thing in our server is this annotation:

@Singleton

Of course, we must ensure that we have one and only one instance of the server endpoint.
This will ensure that all peers are managed under the same umbrella.

Let's move on to talk about peers:

private final List<Session> peers = Collections.synchronizedList
(new ArrayList<>());

The list holding them is a synchronized list. This is important because you will add/remove
peers while iterating on the list, so things could be messed up if you don't protect it.

Using Event-Driven Programming to Build Reactive Applications Chapter 10

[253]

All the default websocket methods are managed by the application server:

@OnOpen
public void onOpen(Session peer){
 peers.add(peer);
}
@OnClose
public void onClose(Session peer){
 peers.remove(peer);
}
@OnError
public void onError(Throwable t){
 System.err.println(t.getMessage());
}
@OnMessage
public void onMessage(String message, Session peer){
 peers.stream().filter((p) -> (p.isOpen())).forEachOrdered((p) ->
 {
 p.getAsyncRemote().sendText(message + " - Total peers: "
 + peers.size());
 });
}

Also, let's give a special mention to the code on our onMessage method:

 @OnMessage
 public void onMessage(String message, Session peer){
 peers.stream().filter((p) -> (p.isOpen())).forEachOrdered((p)
 -> {
 p.getAsyncRemote().sendText(message + " - Total peers: "
 + peers.size());
 });
 }

We are sending a message to the peer only if it is open.

Now looking to our client, we have a reference to the server URI:

private final String asyncServer = "ws://localhost:8080/
ch10-async-websocket/asyncServer";

Note that the protocol is ws, specific to websocket communication.

Using Event-Driven Programming to Build Reactive Applications Chapter 10

[254]

Then, we have a method to open the connection with the server endpoint:

public void connect() {
 WebSocketContainer container =
 ContainerProvider.getWebSocketContainer();
 try {
 container.connectToServer(this, new URI(asyncServer));
 } catch (URISyntaxException | DeploymentException | IOException ex) {
 System.err.println(ex.getMessage());
 }
}

And once we have the message confirmation from the server, we can do something about it:

@OnMessage
public void onMessage(String message, Session session) {
 response.resume(message);
}

This response will appear on the endpoint that is calling the client:

@GET
public void asyncService(@Suspended AsyncResponse response){
 AsyncClient client = new AsyncClient(response);
 client.connect();
 client.send("Message from client " + new Date().getTime());
}

We are passing the reference to the client so the client can use it to write the message on it.

See also
The full source code of this recipe is at https:/ ​/​github. ​com/ ​eldermoraes/
javaee8- ​cookbook/ ​tree/ ​master/ ​chapter10/ ​ch10- ​async- ​websocket.

Building reactive applications using
message-driven beans
The Java Messaging Service is one of the oldest Java EE APIs, and it's been reactive since
day one: just read the manifesto linked in the introduction of this chapter.

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-websocket
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-websocket
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-websocket
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-websocket
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-websocket
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-websocket
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-websocket
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-websocket
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-websocket
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-websocket
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-websocket
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-websocket
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-websocket
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-websocket
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-websocket
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-websocket
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-websocket
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-websocket
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-websocket
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-websocket
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-websocket
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-websocket
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-websocket
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-websocket

Using Event-Driven Programming to Build Reactive Applications Chapter 10

[255]

This recipe will show you how to use message-driven beans, or MDBs, to deliver and
consume asynchronous messages with just a few annotations.

Getting ready
Let's first add our Java EE 8 dependency:

 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>

To check the details about queue setup in GlassFish 5, please refer to the recipe Using
Messaging Services for Asynchronous Communication at Chapter 5, Security of Enterprise
Architecture.

How to do it...
First, we create a User POJO:1.

public class User implements Serializable{

 private Long id;
 private String name;
 public User(long id, String name){
 this.id = id;
 this.name = name;
 }

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

Using Event-Driven Programming to Build Reactive Applications Chapter 10

[256]

 public void setName(String name) {
 this.name = name;
 }
}

Then, we create a message sender:2.

@Stateless
public class Sender {
 @Inject
 private JMSContext context;
 @Resource(lookup = "jms/JmsQueue")
 private Destination queue;
 public void send(User user){
 context.createProducer()
 .setDeliveryMode(DeliveryMode.PERSISTENT)
 .setDisableMessageID(true)
 .setDisableMessageTimestamp(true)
 .send(queue, user);
 }
}

Now, we create a message consumer. This is our MDB:3.

@MessageDriven(activationConfig = {
 @ActivationConfigProperty(propertyName = "destinationLookup",
 propertyValue = "jms/JmsQueue"),
 @ActivationConfigProperty(propertyName = "destinationType",
 propertyValue = "javax.jms.Queue")
})
public class Consumer implements MessageListener{

 @Override
 public void onMessage(Message msg) {
 try {
 User user = msg.getBody(User.class);
 System.out.println("User: " + user);
 } catch (JMSException ex) {
 System.err.println(ex.getMessage());
 }
 }
}

Using Event-Driven Programming to Build Reactive Applications Chapter 10

[257]

And finally, we create an endpoint, just to send a mock user to the queue:4.

@Stateless
@Path("mdbService")
public class MDBService {
 @Inject
 private Sender sender;
 public void mdbService(@Suspended AsyncResponse response){
 long id = new Date().getTime();
 sender.send(new User(id, "User " + id));
 response.resume("Message sent to the queue");
 }
}

How it works...
We start by asking the application server a JMS context instance:

@Inject
private JMSContext context;

We also send a reference to the queue we want to work with:

@Resource(lookup = "jms/JmsQueue")
private Destination queue;

Then, using the context, we create a producer to send the message to the queue:

context.createProducer()
 .setDeliveryMode(DeliveryMode.PERSISTENT)
 .setDisableMessageID(true)
 .setDisableMessageTimestamp(true)
 .send(queue, user);

Pay attention to these three methods:

setDeliveryMode: This method can be PERSISTENT or NON_PERSISTENT. If
using PERSISTENT, the server will take special care of the message and not lose
it.
setDisableMessageID: This one is used for creating MessageID, which
increases the server effort to create and deliver the message and also increases its
size. This property (true or false) gives a hint to the server that you are not
going to need/use it, so it can improve the process.

Using Event-Driven Programming to Build Reactive Applications Chapter 10

[258]

setDisableMessageTimestamp: This is the same as for
setDisableMessageID.

Also, note that we are sending a User instance to the queue. So you can easily send object
instances, not only text messages, as long as they implement the serializable interface.

The MDB itself, or our message consumer, is basically a few annotations and an interface
implementation.

Here is its annotation:

@MessageDriven(activationConfig = {
 @ActivationConfigProperty(propertyName = "destinationLookup",
 propertyValue = "jms/JmsQueue"),
 @ActivationConfigProperty(propertyName = "destinationType",
 propertyValue = "javax.jms.Queue")
})

Here, we are using two properties: one to define which queue we are looking up
(destinationLookup) and another to define that it is really the queue type we are using
(destinationType).

Here is the implementation:

@Override
public void onMessage(Message msg) {
 try {
 User user = msg.getBody(User.class);
 System.out.println("User: " + user);
 } catch (JMSException ex) {
 System.err.println(ex.getMessage());
 }
}

Note that it is easy to get the User instance from the message's body:

User user = msg.getBody(User.class);

No heavy lifting at all.

And the endpoint used to send the message couldn't be simpler. We inject the Sender
(which is a stateless bean):

@Inject
private Sender sender;

Using Event-Driven Programming to Build Reactive Applications Chapter 10

[259]

Then, we call an asynchronous method:

public void mdbService(@Suspended AsyncResponse response){
 long id = new Date().getTime();
 sender.send(new User(id, "User " + id));
 response.resume("Message sent to the queue");
}

See also
See the full source code of this recipe at https:/ ​/​github. ​com/ ​eldermoraes/
javaee8- ​cookbook/ ​tree/ ​master/ ​chapter10/ ​ch10- ​mdb.

Building reactive applications using JAX-RS
The JAX-RS API also has some great features for event-driven programming. This recipe
will show you can use an async invoker from the request to write responses through
callbacks.

Getting ready
Let's first add our Java EE 8 dependency:

 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>

How to do it...
First, we create a User POJO:1.

public class User implements Serializable{

 private Long id;
 private String name;
 public User(long id, String name){

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-mdb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-mdb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-mdb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-mdb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-mdb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-mdb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-mdb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-mdb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-mdb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-mdb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-mdb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-mdb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-mdb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-mdb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-mdb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-mdb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-mdb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-mdb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-mdb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-mdb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-mdb
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-mdb

Using Event-Driven Programming to Build Reactive Applications Chapter 10

[260]

 this.id = id;
 this.name = name;
 }

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

Here, we define UserBean, which will act as a remote endpoint:2.

@Stateless
@Path("remoteUser")
public class UserBean {

 @GET
 public Response remoteUser() {
 long id = new Date().getTime();
 try {
 TimeUnit.SECONDS.sleep(5);
 return Response.ok(new User(id, "User " + id))
 .build();
 } catch (InterruptedException ex) {
 System.err.println(ex.getMessage());
 return Response.ok(new User(id, "Error " + id))
 .build();
 }
 }

}

Using Event-Driven Programming to Build Reactive Applications Chapter 10

[261]

Then finally, we define a local endpoint that will consume the remote one:3.

@Stateless
@Path("asyncService")
public class AsyncService {
 private Client client;
 private WebTarget target;

 @PostConstruct
 public void init() {
 client = ClientBuilder.newBuilder()
 .readTimeout(10, TimeUnit.SECONDS)
 .connectTimeout(10, TimeUnit.SECONDS)
 .build();
 target = client.target("http://localhost:8080/
 ch10-async-jaxrs/remoteUser");
 }

 @PreDestroy
 public void destroy(){
 client.close();
 }
 @GET
 public void asyncService(@Suspended AsyncResponse response){
 target.request().async().get(new
 InvocationCallback<Response>() {
 @Override
 public void completed(Response rspns) {
 response.resume(rspns);
 }

 @Override
 public void failed(Throwable thrwbl) {
 response.resume(Response.status(Response.Status.
 INTERNAL_SERVER_ERROR).entity(thrwbl.getMessage())
 .build());
 }
 });
 }
}

Using Event-Driven Programming to Build Reactive Applications Chapter 10

[262]

How it works...
We start the bean by creating the communication with the remote endpoint right in the bean
instantiation. Doing this will avoid the overhead of doing it later while the invocation is
happening:

private Client client;
private WebTarget target;

@PostConstruct
public void init() {
 client = ClientBuilder.newBuilder()
 .readTimeout(10, TimeUnit.SECONDS)
 .connectTimeout(10, TimeUnit.SECONDS)
 .build();
 target = client.target("http://localhost:8080/
 ch10-async-jaxrs/remoteUser");
}

Then, we created an anonymous InvocationCallback implementation within our async
invoker:

 target.request().async().get(new InvocationCallback<Response>()
 {
 @Override
 public void completed(Response rspns) {
 response.resume(rspns);
 }

 @Override
 public void failed(Throwable thrwbl) {
 System.err.println(thrwbl.getMessage());
 }
 });

Using Event-Driven Programming to Build Reactive Applications Chapter 10

[263]

That way, we can rely on the completed and failed events and deal with them properly.

See also
See the full source code of this recipe at https:/ ​/​github. ​com/ ​eldermoraes/
javaee8- ​cookbook/ ​tree/ ​master/ ​chapter10/ ​ch10- ​async- ​jaxrs.

Building reactive applications using
asynchronous session beans
Session beans can also become reactive and event driven just by using annotations. This
recipe will show you how to do it.

Getting ready
Let's first add our Java EE 8 dependency:

 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>

How to do it...
First, we create a User POJO:1.

public class User implements Serializable{

 private Long id;
 private String name;
 public User(long id, String name){
 this.id = id;
 this.name = name;
 }

 public Long getId() {

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-jaxrs
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-jaxrs

Using Event-Driven Programming to Build Reactive Applications Chapter 10

[264]

 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

Then, we create our asynchronous session bean:2.

@Stateless
public class UserBean {
 @Asynchronous
 public Future<User> getUser(){
 long id = new Date().getTime();
 User user = new User(id, "User " + id);
 return new AsyncResult(user);
 }
 @Asynchronous
 public void doSomeSlowStuff(User user){
 try {
 TimeUnit.SECONDS.sleep(5);
 } catch (InterruptedException ex) {
 System.err.println(ex.getMessage());
 }
 }
}

And finally, we create the endpoint that will call the bean:3.

@Stateless
@Path("asyncService")
public class AsyncService {
 @Inject
 private UserBean userBean;
 @GET
 public void asyncService(@Suspended AsyncResponse response){
 try {
 Future<User> result = userBean.getUser();
 while(!result.isDone()){

Using Event-Driven Programming to Build Reactive Applications Chapter 10

[265]

 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException ex) {
 System.err.println(ex.getMessage());
 }
 }
 response.resume(Response.ok(result.get()).build());
 } catch (InterruptedException | ExecutionException ex) {
 System.err.println(ex.getMessage());
 }
 }
}

How it works...
Let's first check the getUser method from the session bean:

 @Asynchronous
 public Future<User> getUser(){
 long id = new Date().getTime();
 User user = new User(id, "User " + id);
 return new AsyncResult(user);
 }

Once we user the @Asynchronous annotation, we have to turn its returning value to a
Future instance of something (in our case, User).

We also created a void method to show you how to create a non-blocking code with session
beans:

 @Asynchronous
 public void doSomeSlowStuff(User user){
 try {
 TimeUnit.SECONDS.sleep(5);
 } catch (InterruptedException ex) {
 System.err.println(ex.getMessage());
 }
 }

Using Event-Driven Programming to Build Reactive Applications Chapter 10

[266]

And finally, we created our calling endpoint:

 @GET
 public void asyncService(@Suspended AsyncResponse response){
 try {
 Future<User> result = userBean.getUser();
 while(!result.isDone()){
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException ex) {
 System.err.println(ex.getMessage());
 }
 }
 response.resume(Response.ok(result.get()).build());
 } catch (InterruptedException | ExecutionException ex) {
 System.err.println(ex.getMessage());
 }
 }

As getUser returns Future, we can work with an async status check. Once it is done, we
write the results in the response (also asynchronous).

See also
See the full source code of this recipe at https:/ ​/​github. ​com/ ​eldermoraes/
javaee8- ​cookbook/ ​tree/ ​master/ ​chapter10/ ​ch10- ​async- ​bean.

Using lambdas and CompletableFuture to
improve reactive applications
The Java language always had the reputation of being a verbose language. But since the
advent of lambdas, this issue has improved a lot.

We can use lambdas and also bring CompletableFuture to the party to improve not only
the coding, but also the behavior of reactive applications. This recipe will show you how.

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-bean
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-bean
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-bean
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-bean
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-bean
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-bean
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-bean
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-bean
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-bean
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-bean
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-bean
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-bean
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-bean
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-bean
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-bean
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-bean
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-bean
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-bean
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-bean
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-bean
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-bean
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-bean
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-bean
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-async-bean

Using Event-Driven Programming to Build Reactive Applications Chapter 10

[267]

Getting ready
Let's first add our Java EE 8 dependency:

 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
 </dependency>

How to do it...
First, we create a User POJO:1.

public class User implements Serializable{

 private Long id;
 private String name;
 public User(long id, String name){
 this.id = id;
 this.name = name;
 }

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

Using Event-Driven Programming to Build Reactive Applications Chapter 10

[268]

Then, we call UserBean to return a User instance:2.

@Stateless
public class UserBean {

 public User getUser() {
 long id = new Date().getTime();
 try {
 TimeUnit.SECONDS.sleep(5);
 return new User(id, "User " + id);
 } catch (InterruptedException ex) {
 System.err.println(ex.getMessage());
 return new User(id, "Error " + id);
 }
 }

}

And finally, we create an async endpoint to call the bean:3.

@Stateless
@Path("asyncService")
public class AsyncService {

 @Inject
 private UserBean userBean;

 @GET
 public void asyncService(@Suspended AsyncResponse response)
 {
 CompletableFuture
 .supplyAsync(() -> userBean.getUser())
 .thenAcceptAsync((u) -> {
 response.resume(Response.ok(u).build());
 }).exceptionally((t) -> {
 response.resume(Response.status
 (Response.Status.
 INTERNAL_SERVER_ERROR).entity(t.getMessage())
 .build());
 return null;
 });
 }
}

Using Event-Driven Programming to Build Reactive Applications Chapter 10

[269]

How it works...
We are using basically two CompletableFuture methods:

supplyAsync: This will start an async call to whatever you put inside of it. We
put in a lambda call.
thenAcceptAsync: Once the async process is done, the returning value will
come here. Thanks to lambdas, we can call this returning value as u (and could be
whatever we want). Then, we use it to write it down to the asynchronous
response.

See also
See the full source code of this recipe at https:/ ​/​github. ​com/ ​eldermoraes/
javaee8- ​cookbook/ ​tree/ ​master/ ​chapter10/ ​ch10- ​completable- ​future.

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-completable-future
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-completable-future
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-completable-future
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-completable-future
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-completable-future
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-completable-future
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-completable-future
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-completable-future
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-completable-future
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-completable-future
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-completable-future
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-completable-future
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-completable-future
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-completable-future
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-completable-future
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-completable-future
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-completable-future
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-completable-future
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-completable-future
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-completable-future
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-completable-future
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-completable-future
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-completable-future
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter10/ch10-completable-future

11
Rising to the Cloud – Java EE,

Containers, and Cloud
Computing

This chapter covers the following recipes:

Building Java EE containers using Docker
Using Oracle Cloud for container orchestration in the cloud
Using Jelastic for container orchestration in the cloud
Using OpenShift for container orchestration in the cloud
Using AWS for container orchestration in the cloud

Introduction
There are two things that have happened in the computer industry that have changed it for
good—cloud computing and containers. Cloud computing came first and changed the way
to look at infrastructure, the way to consume software, and the way to grow many
businesses. Now, computation is a commodity.

Containers change and are changing the way we build and deliver software. They are also
the essential glue for DevOps and the way to take CI/CD to another level.

Put them together and you will have one of the most powerful environments in IT. But can
Java EE take advantage of it? Of course! If an application server is an abstraction of Java EE
applications, containers are an abstraction of the server, and once you have them built in a
standard such as Docker, you have the power to use such tools to manage an application
server.

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[271]

This chapter will show you how to put your Java EE application inside a container and how
to deliver this container with some of the best providers we have today.

Building Java EE containers using Docker
Since day one, Java EE has been based on containers. If you doubt it, just have a look at this
diagram:

Java EE architecture: https://docs.oracle.com/javaee/6/tutorial/doc/bnacj.html

It belongs to Oracle's official documentation for Java EE 6 and, actually, has been much the
same architecture since the times of Sun.

If you pay attention, you will notice that there are different containers: a web container, an
EJB container, and an application client container. In this architecture, it means that the
applications developed with those APIs will rely on many features and services provided
by the container.

When we take the Java EE application server and put it inside a Docker container, we are
doing the same thing— it is relying on some of the features and services provided by the
Docker environment.

This recipe will show you how to deliver a Java EE application in a container bundle, which
is called an appliance.

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[272]

Getting ready
First, of course, you need the Docker platform installed in your environment. There are
plenty of options, so I suggest you go the following link and get more details:

https:/​/​docs.​docker. ​com/ ​install/ ​

And if you are not familiar with Docker commands, I recommend you have a look at this
beautiful cheat sheet:

https:/​/​zeroturnaround. ​com/ ​rebellabs/ ​docker- ​commands- ​and- ​best- ​practices- ​cheat-
sheet/​

You'll also need to create an account at Docker Hub so you can store your own images.
Check it out: https:/ ​/​hub. ​docker. ​com/ ​.

It's free for public images.

How to do it...
To build your Java EE container, you'll first need a Docker image. To build it, you'll need
a Dockerfile such as this:

FROM openjdk:8-jdk

ENV GLASSFISH_HOME /usr/local/glassfish
ENV PATH ${GLASSFISH_HOME}/bin:$PATH
ENV GLASSFISH_PKG latest-glassfish.zip
ENV GLASSFISH_URL
https://download.oracle.com/glassfish/5.0/nightly/latest-glassfish.zip

RUN mkdir -p ${GLASSFISH_HOME}

WORKDIR ${GLASSFISH_HOME}

RUN set -x \
 && curl -fSL ${GLASSFISH_URL} -o ${GLASSFISH_PKG} \
 && unzip -o $GLASSFISH_PKG \
 && rm -f $GLASSFISH_PKG \
 && mv glassfish5/* ${GLASSFISH_HOME} \
 && rm -Rf glassfish5

RUN addgroup glassfish_grp \
 && adduser --system glassfish \
 && usermod -G glassfish_grp glassfish \

https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://zeroturnaround.com/rebellabs/docker-commands-and-best-practices-cheat-sheet/
https://zeroturnaround.com/rebellabs/docker-commands-and-best-practices-cheat-sheet/
https://zeroturnaround.com/rebellabs/docker-commands-and-best-practices-cheat-sheet/
https://zeroturnaround.com/rebellabs/docker-commands-and-best-practices-cheat-sheet/
https://zeroturnaround.com/rebellabs/docker-commands-and-best-practices-cheat-sheet/
https://zeroturnaround.com/rebellabs/docker-commands-and-best-practices-cheat-sheet/
https://zeroturnaround.com/rebellabs/docker-commands-and-best-practices-cheat-sheet/
https://zeroturnaround.com/rebellabs/docker-commands-and-best-practices-cheat-sheet/
https://zeroturnaround.com/rebellabs/docker-commands-and-best-practices-cheat-sheet/
https://zeroturnaround.com/rebellabs/docker-commands-and-best-practices-cheat-sheet/
https://zeroturnaround.com/rebellabs/docker-commands-and-best-practices-cheat-sheet/
https://zeroturnaround.com/rebellabs/docker-commands-and-best-practices-cheat-sheet/
https://zeroturnaround.com/rebellabs/docker-commands-and-best-practices-cheat-sheet/
https://zeroturnaround.com/rebellabs/docker-commands-and-best-practices-cheat-sheet/
https://zeroturnaround.com/rebellabs/docker-commands-and-best-practices-cheat-sheet/
https://zeroturnaround.com/rebellabs/docker-commands-and-best-practices-cheat-sheet/
https://zeroturnaround.com/rebellabs/docker-commands-and-best-practices-cheat-sheet/
https://zeroturnaround.com/rebellabs/docker-commands-and-best-practices-cheat-sheet/
https://zeroturnaround.com/rebellabs/docker-commands-and-best-practices-cheat-sheet/
https://zeroturnaround.com/rebellabs/docker-commands-and-best-practices-cheat-sheet/
https://zeroturnaround.com/rebellabs/docker-commands-and-best-practices-cheat-sheet/
https://zeroturnaround.com/rebellabs/docker-commands-and-best-practices-cheat-sheet/
https://zeroturnaround.com/rebellabs/docker-commands-and-best-practices-cheat-sheet/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[273]

 && chown -R glassfish:glassfish_grp ${GLASSFISH_HOME} \
 && chmod -R 777 ${GLASSFISH_HOME}

COPY docker-entrypoint.sh /
RUN chmod +x /docker-entrypoint.sh

USER glassfish

ENTRYPOINT ["/docker-entrypoint.sh"]

EXPOSE 4848 8080 8181
CMD ["asadmin", "start-domain", "-v"]

This image will be our base image from which we will construct other images in this
chapter. Now we need to build it:

docker build -t eldermoraes/gf-javaee-jdk8 .

Go ahead and push it to your Docker Registry at Docker Hub:

docker push eldermoraes/gf-javaee-jdk8

Now you can create another image by customizing the previous one, and then put your app
on it:

FROM eldermoraes/gf-javaee-jdk8

ENV DEPLOYMENT_DIR ${GLASSFISH_HOME}/glassfish/domains/domain1/autodeploy/

COPY app.war ${DEPLOYMENT_DIR}

In the same folder, we have a Java EE application file (app.war) that will be deployed
inside the container. Check the See also section to download all the files.

Once you save your Dockerfile, you can build your image:

docker build -t eldermoraes/gf-javaee-cookbook .

Now you can create the container:

docker run -d --name gf-javaee-cookbook \
 -h gf-javaee-cookbook \
 -p 80:8080 \
 -p 4848:4848 \
 -p 8686:8686 \
 -p 8009:8009 \
 -p 8181:8181 \
 eldermoraes/gf-javaee-cookbook

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[274]

Wait a few seconds and open this URL in your browser:

http://localhost/app

How it works...
Let's understand our first Dockerfile:

FROM openjdk:8-jdk

This FROM keyword will ask Docker to pull the openjdk:8-jdk image, but what does it
mean?

It means that there's a registry somewhere where your Docker will find prebuilt images. If
there's no image registry in your local environment, it will search for it in Docker Hub, the
official and public Docker registry in the cloud.

And when you say that you are using a pre-built image, it means that you don't need to
build, in our case, the whole Linux container from scratch. There's already a template that
you can rely on:

ENV GLASSFISH_HOME /usr/local/glassfish
ENV PATH ${GLASSFISH_HOME}/bin:$PATH
ENV GLASSFISH_PKG latest-glassfish.zip
ENV GLASSFISH_URL
https://download.oracle.com/glassfish/5.0/nightly/latest-glassfish.zip

RUN mkdir -p ${GLASSFISH_HOME}

WORKDIR ${GLASSFISH_HOME}

Here are just some environment variables to help with the coding.

RUN set -x \
 && curl -fSL ${GLASSFISH_URL} -o ${GLASSFISH_PKG} \
 && unzip -o $GLASSFISH_PKG \
 && rm -f $GLASSFISH_PKG \
 && mv glassfish5/* ${GLASSFISH_HOME} \
 && rm -Rf glassfish5

The RUN clause in Dockerfiles execute some bash commands inside the container when it
has been created. Basically, what is happening here is that GlassFish is being downloaded
and then prepared in the container:

RUN addgroup glassfish_grp \

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[275]

 && adduser --system glassfish \
 && usermod -G glassfish_grp glassfish \
 && chown -R glassfish:glassfish_grp ${GLASSFISH_HOME} \
 && chmod -R 777 ${GLASSFISH_HOME}

For safety, we define the user that will hold the permissions for GlassFish files and
processes:

COPY docker-entrypoint.sh /
RUN chmod +x /docker-entrypoint.sh

Here we are including a bash script inside the container to perform some GlassFish
administrative tasks:

#!/bin/bash

if [[-z $ADMIN_PASSWORD]]; then
 ADMIN_PASSWORD=$(date| md5sum | fold -w 8 | head -n 1)
 echo "##########GENERATED ADMIN PASSWORD: $ADMIN_PASSWORD
 ##########"
fi

echo "AS_ADMIN_PASSWORD=" > /tmp/glassfishpwd
echo "AS_ADMIN_NEWPASSWORD=${ADMIN_PASSWORD}" >> /tmp/glassfishpwd

asadmin --user=admin --passwordfile=/tmp/glassfishpwd change-admin-password
--domain_name domain1
asadmin start-domain

echo "AS_ADMIN_PASSWORD=${ADMIN_PASSWORD}" > /tmp/glassfishpwd

asadmin --user=admin --passwordfile=/tmp/glassfishpwd enable-secure-admin
asadmin --user=admin stop-domain
rm /tmp/glassfishpwd

exec "$@"

After copying the bash file into the container, we go to the final block:

USER glassfish

ENTRYPOINT ["/docker-entrypoint.sh"]

EXPOSE 4848 8080 8181
CMD ["asadmin", "start-domain", "-v"]

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[276]

The USER clause defines the user that will be used from this point in the file. It's great
because from there, all the tasks will be done by the glassfish user.

The ENTRYPOINT clause will execute the docker-entrypoint.sh script.

The EXPOSE clause will define the ports that will be available for containers that use this
image.

And finally, the CMD clause will call the GlassFish script that will initialize the container.

Now let's understand our second Dockerfile:

FROM eldermoraes/gf-javaee-jdk8

We need to take into account the same considerations about the prebuilt image, but now the
image was made by you. Congratulations!

ENV DEPLOYMENT_DIR ${GLASSFISH_HOME}/glassfish/domains/domain1/autodeploy/

Here, we are building an environment variable to help with the deployment. It's done in the
same way as for Linux systems:

COPY app.war ${DEPLOYMENT_DIR}

This COPY command will literally copy the app.war file to the folder defined in the
DEPLOYMENT_DIR environment variable.

From here, you are ready to build an image and create a container. The image builder is
self-explanatory:

docker build -t eldermoraes/gf-javaee-cookbook .

Let's check the docker run command:

docker run -d --name gf-javaee-cookbook \
 -h gf-javaee-cookbook \
 -p 80:8080 \
 -p 4848:4848 \
 -p 8686:8686 \
 -p 8009:8009 \
 -p 8181:8181 \
 eldermoraes/gf-javaee-cookbook

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[277]

If we break it down, this is what the various elements of the command mean:

-h: Defines the host name of the container.
-p: Defines which ports will be exposed and how it will be done. It is useful, for
example, when more than one container is using the same port by default—you
just use them differently.
eldermoraes/gf-javaee-cookbook: The reference to the image you just built.

See also
The source code and files used in this recipe are at https:/ ​/​github. ​com/
eldermoraes/ ​javaee8- ​cookbook/ ​tree/ ​master/ ​chapter11/ ​ch11- ​docker.

Using Oracle Cloud for container
orchestration in the cloud
The best way to use containers in the cloud is by using a provider. Why? Because they can
provide a good infrastructure and a nice service for a small price.

This recipe will show you how to get the container created in the first recipe of this chapter
and deliver it using Oracle Cloud.

Getting ready
If you don't have an account with Oracle Cloud you can register for a trial at https:/ ​/
cloud.​oracle.​com/ ​tryit.

That's all you need, beyond having created the Docker image in the first recipe of this
chapter.

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-docker
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-docker
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-docker
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-docker
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-docker
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-docker
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-docker
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-docker
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-docker
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-docker
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-docker
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-docker
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-docker
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-docker
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-docker
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-docker
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-docker
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-docker
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-docker
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-docker
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-docker
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-docker
https://cloud.oracle.com/tryit
https://cloud.oracle.com/tryit
https://cloud.oracle.com/tryit
https://cloud.oracle.com/tryit
https://cloud.oracle.com/tryit
https://cloud.oracle.com/tryit
https://cloud.oracle.com/tryit
https://cloud.oracle.com/tryit
https://cloud.oracle.com/tryit
https://cloud.oracle.com/tryit

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[278]

How to do it...
After logging in to the platform, you will see this dashboard:1.

Oracle Cloud dashboard

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[279]

Scroll down the page until you find Oracle Cloud Infrastructure - Container2.
Service and click on it:

Container Service Access

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[280]

On the main page of the container service (the following screenshot), click on3.
the My Services URL link :

Container Service Overview page

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[281]

You will get to the Cloud Services dashboard. Click on Container Classic:4.

Cloud Services Dashboard

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[282]

On the page that opens, click on the Open Service Console button:5.

Service Console Access

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[283]

On the next page, click on the Create Instance button:6.

Container Cloud Service welcome page

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[284]

Fill in the form like this:7.

Fields for instance creation

In the SSH Public Key field, you need to set a valid public key that has a
private pair. Without it, you will not be able to log in to the service using
SSH.

Click on Next.

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[285]

On the page that opens, confirm your data and click on the Create button:8.

Data confirmation

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[286]

Then you'll be back to the main page while the service is created (note the9.
Creating service... label):

New service being created

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[287]

Once the service is created, click on the Options button and click on Container10.
Console:

Access to the Container Console

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[288]

You are now in the dashboard of the service you have just created:

Container Cloud Service dashboard

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[289]

Click on Services (left side) and then New Service (right side):11.

Services page

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[290]

In the popup, give a name to the service (the Service Name field), and in the12.
Image field you need to fill in the details of the pre-built image:

Fields for service creation

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[291]

In the Available Options field, check the Ports option. It will open13.
the Ports section under Environment Variables. Click on the Add button and fill
in the form in the popup like this:

Ports forwarding

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[292]

Now your service is on this list. Click on its Deploy button:14.

Services list

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[293]

In the popup, fill in the form as shown in the screenshot and click on Deploy:15.

Popup for service deployment

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[294]

Now, just wait a moment until your new service is up and running:16.

Ongoing deployment

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[295]

Once your deployment is done, it will become green and you will have17.
information about the container you have created. Click on the link under
the Container Name label:

Deployment done

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[296]

You now will see details about your container:

Container details

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[297]

Click on the tab labeled Environment Variables and find a variable called18.
OCCS_HOSTIPS. On the same line there's an IP in the public_ip label. Copy it:

Environment variable for the container

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[298]

Use it to navigate to http://[public_ip]:8080/app:

Test page for our application

If you can see the preceding image, you've made it! Now your container is orchestrated in
the cloud using Oracle Cloud.

How it works...
The reason why it's so simple is that you are using a platform that was designed to make it
simple. So, all the heavy lifting that you'd have to do in your own infrastructure is done by
the platform.

There's more...
The reason why you should use a provider to orchestrate your containers in the cloud is not
only because of the ease of creating services, but also because the platform will take care of
keeping it up and running.

So, if your container goes wrong and needs to be stopped, restarted, or even killed and
recreated, the platform will do it automatically.

Using Jelastic for container orchestration in
the cloud
The best way to use containers in the cloud is by using a provider. Why? Because they can
provide you a good infrastructure and a nice service for a small price.

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[299]

This recipe will show you how to get the container created in the first recipe of this chapter
and deliver it using Jelastic.

Getting ready
If you don't have an account with Jelastic, you can sign for a free trial at https:/ ​/ ​jelastic.
com/​.

How to do it...
After logging into the platform you will get to this main page:1.

Jelastic main page

https://jelastic.com/
https://jelastic.com/
https://jelastic.com/
https://jelastic.com/
https://jelastic.com/
https://jelastic.com/
https://jelastic.com/

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[300]

First things first. Click on the Settings button (top right). It will open the Account2.
settings section (bottom left):

Account settings

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[301]

Click on Public inside SSH Keychain and upload your public SSH key:3.

SSH Public Key information

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[302]

Make sure your SSH key is really uploaded, otherwise you will not be able to log4.
into the platform using SSH:

SSH confirmation

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[303]

At the top of the page, click on the Marketplace button. Go on to the5.
Other section and select Docker Engine CE. Click on Install:

Marketplace popup

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[304]

Give this environment a name and click on Install:6.

Docker Engine CE configuration popup

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[305]

Wait until it's done:

Installation status

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[306]

Once it's finished, it will show a popup with the command you'll have to use to7.
log in to the platform. Copy it:

Install confirmation and commands for connection

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[307]

Open a Terminal in your machine and paste the copied command:8.

Command execution on terminal

At the end of the output of the console window, there is the command:

docker-machine env [environment-name]

The output will be like this:

Environment variables output

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[308]

Now, you can just run your command to create a container:9.

docker run -d --name gf-javaee-cookbook \
 -h gf-javaee-cookbook \
 -p 80:8080 \
 -p 4848:4848 \
 -p 8686:8686 \
 -p 8009:8009 \
 -p 8181:8181 \
 eldermoraes/gf-javaee-cookbook

Check the output:

Container log output

It's quite the same as if you were running in your own local machine, but you are actually
running on the Jelastic platform.

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[309]

Now, if you go back to the main page you will see your environment up and running:

Main page with the node created

Under the Docker Engine CE label there's the URL of your environment. Just click on it and
add /app to the end:

Test page for our application

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[310]

If you can see this page, congratulations! Your application is deployed on Jelastic.

How it works...
The reason why it's so simple is because you are using a platform that's designed to make it
simple. So all the heavy lifting that you'd need to do it in your own infrastructure is done by
the platform.

There's more...
The reason why you should use a provider to orchestrate your containers in the cloud is not
only regarding the ease of creating services, but also because the platform will take care of
keeping it up and running.

So if your container goes wrong and needs to be stopped, restarted, or even killed and
recreated, the platform will do it automatically.

Using OpenShift for container orchestration
in the cloud
The best way to use containers in the cloud is by using a provider. Why? Because they can
provide you a good infrastructure and a nice service for a small price.

This recipe will show you how to get the container created in the first recipe of this chapter
and deliver it using OpenShift.

Getting ready
If you don't have an account with OpenShift you can sign up for a free trial. Visit https:/ ​/
www.​openshift.​com/ ​ and click on Sign up for free.

https://www.openshift.com/
https://www.openshift.com/
https://www.openshift.com/
https://www.openshift.com/
https://www.openshift.com/
https://www.openshift.com/
https://www.openshift.com/
https://www.openshift.com/
https://www.openshift.com/

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[311]

How to do it...
After logging in to the platform, you will see this main page:1.

Openshift main page

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[312]

Click on the Create Project button and fill in the blanks. Click on Create:2.

Filling fields for a new project

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[313]

Once your project is created, click on it:3.

Access for the new project

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[314]

On the opened page, click on Add to Project (top right) and then Deploy Image:4.

Project main page

In the popup select Image Name, fill in the form with our pre-built image5.
(eldermoraes/gf-javaee-cookbook) and click on the Search icon.

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[315]

You will see a warning like this:

Image deployment popup

Let me save you time: don't deploy it, because it will not work. The OpenShift
platform demands that your container should run with a user other than root. So
we need to build another image for it.

Fortunately, it's quite simple. The new Dockerfile is like this:

FROM eldermoraes/gf-javaee-jdk8

ENV DEPLOYMENT_DIR
${GLASSFISH_HOME}/glassfish/domains/domain1/autodeploy/

COPY app.war ${DEPLOYMENT_DIR}

USER root

RUN chown -R glassfish:glassfish_grp ${DEPLOYMENT_DIR}/app.war \
 && chmod -R 777 ${DEPLOYMENT_DIR}/app.war

USER glassfish

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[316]

Then you build a new image based on this Dockerfile:6.

docker build -t eldermoraes/gf-javaee-cookbook-os .

Then push this new image to the Docker Hub:7.

docker push eldermoraes/gf-javaee-cookbook-os

Now you are good to go:

Image deployment popup

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[317]

There are no warnings, so go ahead and click on Deploy. In the page that opens,8.
click on the Continue to the project overview label:

Image deployment confirmation

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[318]

Watch the following page until the pod icon is blue. When it's ready, click on the9.
Create Route link:

Monitoring the pod creation

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[319]

In the popup, fill in the Path field with /app and in Target Port choose 8080 ->10.
8080 (TCP):

Route creation

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[320]

Click on Create and wait:11.

Route confirmation

Once it's done, click on the Overview menu (top left). In the same row as the12.
application name, there's a URL pointing to your container:

Test page for our application

If you can see the page, congratulations! Your application is now orchestrated at OpenShift.

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[321]

How it works...
The reason why it's so simple is because you are using a platform that's designed to make it
simple. So all the heavy lifting that you'd need to do it in your own infrastructure is done by
the platform.

The change we've made to make the application run in the OpenShift is quite simple:

USER root

RUN chown -R glassfish:glassfish_grp ${DEPLOYMENT_DIR}/app.war \
 && chmod -R 777 ${DEPLOYMENT_DIR}/app.war

USER glassfish

First, we use the root user to change the permissions of app.war. Then the main point is to
specify to use the glassfish user. This feature tells Docker that the internal process will be
owned by the glassfish user, and not by root.

There's more...
The reason why you should use a provider to orchestrate your containers in the cloud is not
only based on the ease of creating services, but also because the platform will take care of
keeping it up and running.

So, if your container goes wrong and needs to be stopped, restarted, or even killed and
recreated, the platform will do it automatically.

See also
See the full source code for this recipe at https:/ ​/​github. ​com/ ​eldermoraes/
javaee8- ​cookbook/ ​tree/ ​master/ ​chapter11/ ​ch11- ​openshift.

Using AWS for container orchestration in the
cloud
The best way to use containers in the cloud is by using a provider. Why? Because they can
provide you with a good infrastructure and a nice service for a small price.

https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-openshift
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-openshift
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-openshift
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-openshift
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-openshift
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-openshift
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-openshift
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-openshift
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-openshift
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-openshift
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-openshift
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-openshift
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-openshift
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-openshift
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-openshift
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-openshift
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-openshift
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-openshift
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-openshift
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-openshift
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-openshift
https://github.com/eldermoraes/javaee8-cookbook/tree/master/chapter11/ch11-openshift

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[322]

This recipe will show you how to get the container created in the first recipe of this chapter
and deliver it using Amazon Web Services (AWS).

Getting ready
If you don't have an account with AWS, register for a free trial at https:/ ​/​aws. ​amazon. ​com/
free/​start-​your- ​free- ​trial/ ​.

How to do it...
Once you log in to the platform, you will get to this main page:1.

AWS main page

https://aws.amazon.com/free/start-your-free-trial/
https://aws.amazon.com/free/start-your-free-trial/
https://aws.amazon.com/free/start-your-free-trial/
https://aws.amazon.com/free/start-your-free-trial/
https://aws.amazon.com/free/start-your-free-trial/
https://aws.amazon.com/free/start-your-free-trial/
https://aws.amazon.com/free/start-your-free-trial/
https://aws.amazon.com/free/start-your-free-trial/
https://aws.amazon.com/free/start-your-free-trial/
https://aws.amazon.com/free/start-your-free-trial/
https://aws.amazon.com/free/start-your-free-trial/
https://aws.amazon.com/free/start-your-free-trial/
https://aws.amazon.com/free/start-your-free-trial/
https://aws.amazon.com/free/start-your-free-trial/
https://aws.amazon.com/free/start-your-free-trial/
https://aws.amazon.com/free/start-your-free-trial/
https://aws.amazon.com/free/start-your-free-trial/
https://aws.amazon.com/free/start-your-free-trial/
https://aws.amazon.com/free/start-your-free-trial/

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[323]

Click on the Services menu (top left) and then Elastic Container Service (under2.
the Compute menu):

Services list

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[324]

On the page that opens, click on Get started:3.

Getting started page for ECS

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[325]

Check only the Deploy a sample application onto an Amazon ECS4.
Cluster option. Then click on Continue:

First page for ECS creation

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[326]

Fill in the blanks as follows, paying special attention to the Image field, where5.
you will use our prebuilt image:

Task definition page

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[327]

Scroll down the page and set Port mappings as shown here. Click on Continue:6.

Port mappings

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[328]

Give the service a name and set the Desired number of tasks to 1. Click on Next7.
step:

Service and network configuration

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[329]

Configure the cluster as shown here:8.

Cluster configuration

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[330]

Scroll down to the page and click on Launch instance & run service:9.

Launch instance

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[331]

You can follow the status of the process on the following page. When it's done,10.
click on the View service button:

Launch status

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[332]

You'll see the details of your service on the following page. Click on the default11.
> label:

Cluster information

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[333]

On the page that opens, you can see more details about the cluster:

Cluster details

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[334]

Click on the Tasks tab to see information about the tasks and the containers12.
created:

Container tasks

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[335]

Click on the Container Instance label to see details about the container that has13.
been created:

Container details

Rising to the Cloud – Java EE, Containers, and Cloud Computing Chapter 11

[336]

Check the Public IP label and copy the IP. It's automatically mapped to the 808014.
port. Use http://[public-ip]/app to try it:

Test page for our application

If you can see the same screenshot, that's great! You are now orchestrating your container in
AWS.

How it works...
The reason why it's so simple is because you are using a platform that's designed to make it
simple. So, all the heavy lifting that you'd make to do it in your own infrastructure is done
by the platform.

There's more...
The reason why you should use a provider to orchestrate your containers in the cloud is not
only because of the ease of creating services, but also because the platform will take care of
keeping it up and running.

So if your container goes wrong and needs to be stopped, restarted, or even killed and
recreated, the platform will do it automatically.

12
Appendix: The Power of

Sharing Knowledge
This appendix covers the following topics:

Why contributing to the Adopt a JSR program can make you a better professional

The secret to unsticking your project, your career... and even your life!

Introduction
Wait... career, knowledge sharing, community... in a cookbook?

Well, I should really thank my editors, who have surrendered to my charm (and insistence)
and allowed me to put this chapter in this book.

The reasons why I stressed them about it were the following:

I am sure that this content is quite important and can be life changing for you and
your career
I don't know if or when I'll write another book, so I wanted to take the chance
now

I consider this content as important as the rest of the book. Actually, if you apply its
principles to your own career, you could be the next one writing a book.

Appendix: The Power of Sharing Knowledge Chapter 12

[338]

Why contributing to the Adopt a JSR
program can make you a better professional
Did you ever hear the phrase, "Help others to help yourself"? Yes? This section is all about it.
Believe me, I wrote that.

Maybe you've never heard about the Adopt a JSR program, or maybe you've heard about it
but have no idea what it is. Or you do know it, but don't know how it could have anything
to do with your career.

Allow me to have your company for the next few pages and enjoy the ride.

Understanding the Adopt a JSR program
First of all, what is the Adopt a JSR program?

It's an initiative intended to bring the community closer together in the process of evolving
Java. By community we mean Java User Groups (JUGs), individuals, and any other kind of
organization.

To understand it, maybe we should hold on for a second and understand the Java evolution
process.

Java technology is a set of standards called JSR, the abbreviation for Java Specification
Request. Every API and any aspects of the language have to be written in some JSR.

Every JSR has a spec leader, an individual in charge of leading the process of building that
specification. Each spec lead works with a group called an EG, or Expert Group,
which works with the spec lead and does all the heavy lifting of creating and/or evolving a
JSR.

In each JSR there are also contributors, people from the community who volunteer to
collaborate with a JSR. They don't have the same role as the spec leader or the EG, but can
also do a lot for this process.

For each JSR, there's a Reference Implementation (RI). The RI is the real code that JSR is
working as a real Java code. It exists to bring all those conceptual lines of a specification to
the real world. It's vital for proving that what was once specified really works.

Appendix: The Power of Sharing Knowledge Chapter 12

[339]

Examples of RIs are Mojarra for JSF, Soteria for Security, and GlassFish for Java EE.

When we say that the RI is a proof that some JSR really works, this is not just some
conceptual stuff. It is really tested. That's why we have the TCKs, or Technology
Compatibility Kits.

TCKs are a set of tests designed to test the implementations specified in the JSR. So when an
RI is written, it should pass in the TCKs to prove that it's really working (at least in theory).

Those three parts—the JSR, the RI, and the TCK—are the pieces ratified by the Java
Community Process or JCP.

So in the JCP, you have all the working JSRs and their own processes monitored by the
Executive Committee (EC), a group formed by companies, individuals, and JUGs that
guarantee that all JSRs are working under the best practices defined by the JCP, and moving
towards to the best results for the Java ecosystem and the community that relies on it.

So the next time you think "how can I contribute to Java?", "how can I make my contribution?"
or, more specific to this section, "how can I adopt a JSR?", know that you can do it by doing
the following:

Joining as a contributor to some JSRs. Most spec leaders will be happy and open
to accepting help with the hard work of evolving a JSR.
Helping write the specification or at least helping with useful suggestions.
Writing tests for TCKs or helping solve issues found in the TCK tests.
Coding for the RIs.

All those topics you can do by yourself, but they are all much more productive (and fun!) if
you do it with the community. You can do it by joining a JUG, or starting a small group in
your company, or wherever you can find some people to work together. It's a lot of work,
so it's better to have some company!

For more information about adopting a JSR program, you could check the following links:

https:/​/ ​jcp. ​org/ ​aboutJava/ ​communityprocess/ ​community/ ​JCPAdoptJSR. ​pdf

https:/​/ ​community. ​oracle. ​com/ ​community/ ​java/ ​jcp/ ​adopt- ​a-​jsr

https:/​/ ​developercareers. ​wordpress. ​com/ ​2011/ ​11/ ​01/​give- ​your- ​career- ​a-
boost-​by- ​adopting- ​a-​jsr/ ​

And to get to work, visit: https:/ ​/ ​jcp. ​org.

https://jcp.org/aboutJava/communityprocess/community/JCPAdoptJSR.pdf
https://jcp.org/aboutJava/communityprocess/community/JCPAdoptJSR.pdf
https://jcp.org/aboutJava/communityprocess/community/JCPAdoptJSR.pdf
https://jcp.org/aboutJava/communityprocess/community/JCPAdoptJSR.pdf
https://jcp.org/aboutJava/communityprocess/community/JCPAdoptJSR.pdf
https://jcp.org/aboutJava/communityprocess/community/JCPAdoptJSR.pdf
https://jcp.org/aboutJava/communityprocess/community/JCPAdoptJSR.pdf
https://jcp.org/aboutJava/communityprocess/community/JCPAdoptJSR.pdf
https://jcp.org/aboutJava/communityprocess/community/JCPAdoptJSR.pdf
https://jcp.org/aboutJava/communityprocess/community/JCPAdoptJSR.pdf
https://jcp.org/aboutJava/communityprocess/community/JCPAdoptJSR.pdf
https://jcp.org/aboutJava/communityprocess/community/JCPAdoptJSR.pdf
https://jcp.org/aboutJava/communityprocess/community/JCPAdoptJSR.pdf
https://jcp.org/aboutJava/communityprocess/community/JCPAdoptJSR.pdf
https://jcp.org/aboutJava/communityprocess/community/JCPAdoptJSR.pdf
https://jcp.org/aboutJava/communityprocess/community/JCPAdoptJSR.pdf
https://jcp.org/aboutJava/communityprocess/community/JCPAdoptJSR.pdf
https://community.oracle.com/community/java/jcp/adopt-a-jsr
https://community.oracle.com/community/java/jcp/adopt-a-jsr
https://community.oracle.com/community/java/jcp/adopt-a-jsr
https://community.oracle.com/community/java/jcp/adopt-a-jsr
https://community.oracle.com/community/java/jcp/adopt-a-jsr
https://community.oracle.com/community/java/jcp/adopt-a-jsr
https://community.oracle.com/community/java/jcp/adopt-a-jsr
https://community.oracle.com/community/java/jcp/adopt-a-jsr
https://community.oracle.com/community/java/jcp/adopt-a-jsr
https://community.oracle.com/community/java/jcp/adopt-a-jsr
https://community.oracle.com/community/java/jcp/adopt-a-jsr
https://community.oracle.com/community/java/jcp/adopt-a-jsr
https://community.oracle.com/community/java/jcp/adopt-a-jsr
https://community.oracle.com/community/java/jcp/adopt-a-jsr
https://community.oracle.com/community/java/jcp/adopt-a-jsr
https://community.oracle.com/community/java/jcp/adopt-a-jsr
https://community.oracle.com/community/java/jcp/adopt-a-jsr
https://community.oracle.com/community/java/jcp/adopt-a-jsr
https://community.oracle.com/community/java/jcp/adopt-a-jsr
https://community.oracle.com/community/java/jcp/adopt-a-jsr
https://community.oracle.com/community/java/jcp/adopt-a-jsr
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://developercareers.wordpress.com/2011/11/01/give-your-career-a-boost-by-adopting-a-jsr/
https://jcp.org
https://jcp.org
https://jcp.org
https://jcp.org
https://jcp.org
https://jcp.org
https://jcp.org

Appendix: The Power of Sharing Knowledge Chapter 12

[340]

Collaborating on the future of Java EE
So if you are reading this book, I believe that you are interested in Java EE. And if you reach
this very line, I hope that I'm beginning to convince you that you can help Java EE to move
forward and it can help your career.

Yes, you can definitely help Java EE move forward, and talking from my own experience, I
can assure you that you should start it right now! But, in terms of process, things are
slightly different for Java EE.

A few months since the time of writing, Oracle decided to transfer Java EE to the Eclipse
Foundation. So while I'm writing these lines, the transfer process is happening!

Just a little note: this is valid only for Java EE, not for Java! Other Java specifications will
continue under the JCP (at least for now).

What does it change for you in terms of collaboration? Nothing. There are still groups,
specifications, tests, RIs, and so on. The only thing that is being changed are the names, as
the process is now owned by the Eclipse Foundation.

So Java EE was transferred to Eclipse as Eclipse Enterprise for Java, or EE4J. It's the project
umbrella that holds all other projects under it. These other projects are the former JSRs.
More details about EE4J are at https:/ ​/​projects. ​eclipse. ​org/ ​projects/ ​ee4j/ ​charter.

The transfer process and EE4J itself has a lot of answered questions here:

https:/​/​www.​eclipse. ​org/ ​ee4j/ ​faq. ​php

The project in Eclipse is led by the Project Management Committee (PMC), like the EC in
the JCP. More details about the PMC are at https:/ ​/​projects. ​eclipse. ​org/ ​projects/
ee4j/​pmc.

The bottom line here is that you can, and I believe that you should, make your contribution
to the future of Java EE. Maybe you think that you don't have what it takes. Yes, you have!
Every suggestion counts, every good idea, every line of working code, every test that
passes. Give it a shot and see the results!

Setting yourself up for collaboration
There are some things you need to do in order to collaborate on the future of Java EE.

https://projects.eclipse.org/projects/ee4j/charter
https://projects.eclipse.org/projects/ee4j/charter
https://projects.eclipse.org/projects/ee4j/charter
https://projects.eclipse.org/projects/ee4j/charter
https://projects.eclipse.org/projects/ee4j/charter
https://projects.eclipse.org/projects/ee4j/charter
https://projects.eclipse.org/projects/ee4j/charter
https://projects.eclipse.org/projects/ee4j/charter
https://projects.eclipse.org/projects/ee4j/charter
https://projects.eclipse.org/projects/ee4j/charter
https://projects.eclipse.org/projects/ee4j/charter
https://projects.eclipse.org/projects/ee4j/charter
https://projects.eclipse.org/projects/ee4j/charter
https://projects.eclipse.org/projects/ee4j/charter
https://projects.eclipse.org/projects/ee4j/charter
https://www.eclipse.org/ee4j/faq.php
https://www.eclipse.org/ee4j/faq.php
https://www.eclipse.org/ee4j/faq.php
https://www.eclipse.org/ee4j/faq.php
https://www.eclipse.org/ee4j/faq.php
https://www.eclipse.org/ee4j/faq.php
https://www.eclipse.org/ee4j/faq.php
https://www.eclipse.org/ee4j/faq.php
https://www.eclipse.org/ee4j/faq.php
https://www.eclipse.org/ee4j/faq.php
https://www.eclipse.org/ee4j/faq.php
https://www.eclipse.org/ee4j/faq.php
https://www.eclipse.org/ee4j/faq.php
https://www.eclipse.org/ee4j/faq.php
https://www.eclipse.org/ee4j/faq.php
https://projects.eclipse.org/projects/ee4j/pmc
https://projects.eclipse.org/projects/ee4j/pmc
https://projects.eclipse.org/projects/ee4j/pmc
https://projects.eclipse.org/projects/ee4j/pmc
https://projects.eclipse.org/projects/ee4j/pmc
https://projects.eclipse.org/projects/ee4j/pmc
https://projects.eclipse.org/projects/ee4j/pmc
https://projects.eclipse.org/projects/ee4j/pmc
https://projects.eclipse.org/projects/ee4j/pmc
https://projects.eclipse.org/projects/ee4j/pmc
https://projects.eclipse.org/projects/ee4j/pmc
https://projects.eclipse.org/projects/ee4j/pmc
https://projects.eclipse.org/projects/ee4j/pmc
https://projects.eclipse.org/projects/ee4j/pmc

Appendix: The Power of Sharing Knowledge Chapter 12

[341]

Set aside a specific time for it
If you just do it when you have time for it, you may never ever do it! So make time. Define
some time you are willing to do it per week (one hour per day, three hours per week, and so
on). Write it down and make an appointment.

Choose where you'll concentrate your effort
It's useless to start sending emails to dozens of spec leaders asking them to join the group
and collaborate. I know it, I've already done it before.

Instead, take a step back, think about what you are really interested in, and choose one
single specification to start. Join the mailing list, find its repository on GitHub, and start
watching it.

A great way to start collaboration on any open source project is with documentation. It's
important, but often people involved with writing specification and coding don't have
enough time to go deeper into the documentation. So, they are usually glad when
somebody else is willing to do it.

I know many people who start collaborating this way today are committed to some of the
biggest open source projects.

Do it!
Any plan just makes sense if you do something about it. So stop procrastinating and get to
work! Don't wait until Monday, or after vacations, or after the end of college, or when you
get a better job, or whatever.

Have in mind that you probably will never feel like you are ready for it. So stop feeling and
start doing, even if you don't feel like it. If you do the hard work the results will come, be
assured about that!

The secret to unstucking your project, your
career... even your life!
Are you feeling stuck in your career? I've felt like that too. Let me tell you a story and a
secret that made my career explode.

Appendix: The Power of Sharing Knowledge Chapter 12

[342]

The year is 2002. I'm in the American Chamber of Commerce in San Paolo, attending the
Sun Tech Days. The venue is full and I'm a little lost.

Maybe lost doesn't define it very well. Out of place sounds much better. After all, I'm just a
tech newbie in the middle of giants.

I see some known faces. Bruno Souza, Fabio Velloso. Should I introduce myself?

Of course not... who am I? Leave the guys alone, they are too busy in a conference like this.

I read the program and see that there is a keynote in the main room. Looks like it's someone
important called James Gosling. I have no idea who he is, but I go there.

I'm the first in line. Of course, I'm a newbie! Everyone is having some conversation while
I'm here alone in front of the door. What are they talking about? For sure, some super
technical discussion that I can't understand. Better stay here and wait.

Five minutes before they open the doors and there are 200 people after me in the line. Hey,
looks like I'm a lucky newbie, huh?!

I walked in and took a seat in the second row, waiting for the keynote to start.

Holy God, that James Gosling is the Java creator! What a dumb newbie I am...

His talk is awesome! You know, he is not the best speaker in the world, but there are some
things in his speech that amaze everyone in the room. Maybe it's his passion, his
knowledge, or even the super cool project that he is working on: the operating system for a
remote-controlled Mars rover. Damn!

It's already the end of the second day of the conference and I'm absolutely disturbed: there
are so many possibilities with this Java thing. I've tried it a little by myself, but seeing all
those Sun evangelists talking about real and cool projects took me to a whole new world of
possibilities in my mind. My career needs to go in that direction.

After some days out of the office I'm back and can't help myself: I need to tell everybody
what I've just seen during those days. You know, most of us work here with Visual Basic
and Delphi... but Java brings a new set of possibilities to our projects.

Just six months since I've attended those Sun Tech Days and I'm in my first Java project.
Yes! The company outsourced a project and asked me to work together with our partner.

What a terrible idea! Our partner's lead developer knows as much as I do about Java... OK,
let's do this. At least I have the opportunity to work on a real Java project.

Appendix: The Power of Sharing Knowledge Chapter 12

[343]

It's 2004, and I'm about to talk in a big conference for the first time ever. I have to admit, I'm
terrified. But actually I'm joining in on a talk with a new friend, Mauricio Leal. He is one of
the top Java influencers in Brazil and agreed to give a talk with me to the Just Java
conference. Or was it me that agreed to him? Well, it doesn't matter now...

It was very hard for me to go there as my mother had started a fight against cancer just a
few months before. I'm not only very concerned about her, but I also didn't have enough
time to get prepared for the conference. However, she herself encouraged me to be here and
said she was proud of her child talking at a big event. Thanks, mom!

We gave our talk and it was great! I have a lot to learn from Mauricio and all his Java
friends. Actually, I need to keep going with this community thing: events, open source,
talks, and so on.

Here I am in 2005, and I've decided to join a big project at the same company that I've been
working with for the last three years. No, it's not a Java project, but it's so big that I can't
miss the chance. It will be good for my career and I'll have some opportunities as a project
manager.

We are in June, 2006, and my mother has just lost the fight against cancer. I'm destroyed. I
never thought in my entire life that I would lose her when she was only 58 and I'm 26...
Who cares about career? Who cares about the job? Who cares about anything?

The year is 2015. The month is December. I'm driving my car. My wife is at my side and my
baby daughter in the back seat. I'm telling my wife that I'm very concerned about my career.

I'm not a kid anymore. I'm 36, have a good job, getting decent money from it, but... I'm
stuck. Since when... 2004? I know, it was a big mistake to join that project, even though it
was a big one. We all failed on it.

I tell her: "You know, I have to do something...".

After a couple of sleepless nights, some hours of research on the internet, and some reading
of reference books, I think I have a good list for someone who has done nothing for years:

Write a technical article for publishing
Give a tech talk at some small event
Get a Java EE Architect certification

I've decided to go with Java until the end. I know a lot about it. I've being studying it and
working with it for many years. I have to focus on it and I can definitely do it.

Appendix: The Power of Sharing Knowledge Chapter 12

[344]

And suddenly, in the middle of this big confusion and lots of doubts, I've made it! Now I'm
a partner in the company.

Well, maybe I've done something right, huh?! All these years of hard work and study finally
paid off.

But… what was I thinking? I hate sales, I hate dealing with clients, I hate negotiations, I hate
wearing a suit, and I hate chasing money. I hate this partner stuff!

To have my own business was always a dream, but my life right now is much more of a
nightmare. This wrong decision literally made everything fall apart. The situation is
unbearable to the point that I now need medicine for depression.

All this poison in my mind makes me think, "what the hell am I doing with my life?" That's not
the path I want to follow. I mean... yes, the company is great and they are doing great, but
not in a way that works for me.

I really need a change. I need to make a move. If I don't, what about my family’s future?
What kind of support will I be able to give my wife and daughter when I get old and retire?

It's just another terrible day and then I got an email from... Bruno Souza? The Brazilian
Javaman? How the heck does this guy have my email? Oh, yes... I'm subscribed to some
mailing list.

He is talking about dreams, saying that one of his friends will help him this year with a
career dream, so he decided to help others too. He says: "Tell me your career dreams for 2016
and I'll try to help you with them".

Well, I'm sure this guy won't even read my email, but let me reply to it anyway. At least
writing down my dreams for this year will help me visualize them. I'll use that list that I
told my wife a few weeks ago.

What? Just half an hour and he replied?

OK... he is saying that he can help me this way:

Article: He can help me on finding a good topic and publish it at the Oracle
Technology Network? Is this serious? I was just thinking about a blog post or
whatever.
Talk: Once we have the article, he can help me turn it into a talk. Ok, sounds
interesting.

Appendix: The Power of Sharing Knowledge Chapter 12

[345]

Certification: He won't help me at all. I should sit down and study. Yeah, makes
sense.

From all the conversations I have with Bruno one thing is always on top: sharing. Share
knowledge, share what you know, share to help others, share, share, share. Seems like this
guy really wants to help people.

So I manage to leave the company (and the partnership) and finally got a position that I
really want: systems architect!

That's it, I love architecture, and I love to deal with all those trade offs when planning an
application from scratch or scaling/refactoring some legacy application.

That's it, now I've found my place!

Not so fast, pal. Not so fast, within a month or so the company changes its CEO and the guy
just decides that Java would die there and then. The focus now is .NET! OK, let's try it.

In the meantime, Bruno and I publish our first article in the OTN and it gets thousands of
views in just a few days. That's awesome!

This article becomes a proposal on the same subject for The Developer's Conference (the
biggest developer event in Latin America) and JavaOne Latin America. Both are accepted
and I have the opportunity to talk with Bruno to hundreds of people at these events.

On the last day before submitting to JavaOne San Francisco I decide to give up on it. I don't
have the money to afford it. Bruno almost kicks my ass and says: "Come on! Submit it! If it
gets approved you figure out how to afford it".

The talk gets approved and Cristina Saito, a former boss (and partner!) sends me a gift: the
air tickets to JavaOne. She said she was proud of me. I could probably never thank her
enough for her kindness and generosity, and I hope this mention here goes some way
towards that thanks.

It's hard to believe. Just 10 months since I opened Bruno's email, 10 months since the
depression medication, 10 months since the darkest moment of my career, I'm in San
Francisco, California. In a couple of minutes, I'll be giving a talk with Bruno at JavaOne, the
biggest Java event in the world. A movie just went through my mind. And here I am now.

The talk was great! Some stuff went wrong, but... we made it! Seems like this sharing stuff is
really working. I'm feeling really confident and can't wait to be back in Brazil and getting
back to work. Getting things done. Climbing my own success mountain.

Appendix: The Power of Sharing Knowledge Chapter 12

[346]

So I land in Brazil, go to the office, and... get fired? Really? I thought that all this sharing
stuff would help me, not cause me to lose my job... somebody lied to me!

OK, OK... let's take a deep breath... you know, I'm more confident now. No, I wasn't
prepared for something like getting fired after achieving the best accomplishment of my
career until now, but... I think I'll figure something out.

It doesn't take long until I get a position at Summa Technologies. Yes, sharing is working: I
didn't even need to send a resume. They heard about me (because of sharing) and here I am,
working with things that I've been talking and writing about.

The company is great, the team is highly skilled, and the project is challenging. But, you
know… six months later and it looks like the things are getting stuck again… the results are
just OK, the project is just OK, and there is no big deal to learn or to do here.

We are in May, 2017. In a few months, Java EE 8 will be released. What if we interview
some top Java EE influencers from all over the world and share all the information,
expectations, and news they have about it? Sounds good. Let's call it Java EE 8 - The Next
Frontier.

Bruno was skilled enough to convince me to do this Java EE 8 stuff, and SouJava would
give all the support needed. Actually, it was a SouJava initiative from the very first
moment.

But, come on, why would all those Java EE experts give me an interview? Who am I?

It's been just three months since I've been working with SouJava for the Java EE project.
We've already interviewed 15 of the top Java EE influencers. Thousands of developers from
almost 70 countries see the interviews. Our playlist on YouTube is featured on the official
Java channel. All the content gets thousands of views a month.

I have to be honest: I would never have imagined that the Java EE community would be so
open to this initiative. I mean, it's like they were expecting this content. They are willing to
consume it.

The thing I was lacking this entire time? Focus! Anything you do without focus is almost
useless. It can be helpful, but won't have continuity.

These projects led me to write this book you are reading right now. In one of my
conversations with Packt I asked them how they found me. They said, "well, you've been
sharing a lot of Java EE 8 content... that's what we need".

Appendix: The Power of Sharing Knowledge Chapter 12

[347]

And just a few days after signing with Packt I got a call from... Oracle? "That" Oracle?

So I'm here, writing these lines and working at one of the biggest companies in the world,
doing exactly what I'm telling you in this chapter: sharing knowledge.

I insist to you: if sharing changed my career, it can also change yours. Don't think you don't
have what it takes for it: you have it! I can assure you that you know many things that other
people would love to learn.

Why don't you find some good way to help them? Can I give you some suggestions on how
you could help others based on what you just read here? Here they are:

You can write a little block of code based on something you learned in this book.
Share it on Twitter or in some blog post.
Record a video explaining some insight you had when reading something in this
book. Share it!
If you don't want to expose yourself at this point, email me telling me anything
that this book has taught you. I'd love to read it! Write to
elder@eldermoraes.com.

Sharing is a habit. Exercise it!

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Java EE 8 and Angular
Prashant Padmanabhan

ISBN: 978-1-78829-120-0

Write CDI-based code in Java EE 8 applications
Build an understanding of Microservices and what they mean in Java EE context
Use Docker to build and run a microservice application
Use configuration options to work effectively with JSON documents
Understand asynchronous task handling and writing REST API clients
Explore the fundamentals of TypeScript, which sets the foundation for working
on Angular projects
Use Angular CLI to add and manage new features
Use JSON Web tokens to secure Angular applications against malicious attacks

https://www.packtpub.com/application-development/java-ee-8-and-angular

Other Books You May Enjoy

[349]

Architecting Modern Java EE Applications
Sebastian Daschner

ISBN: 978-1-78839-385-0

What enterprise software engineers should focus on
Implement applications, packages, and components in a modern way
Design and structure application architectures
Discover how to realize technical and cross-cutting aspects
Get to grips with containers and container orchestration technology
Realize zero-dependency, 12-factor, and Cloud-native applications
Implement automated, fast, reliable, and maintainable software tests
Discover distributed system architectures and their requirements

https://www.packtpub.com/application-development/architecting-modern-java-ee-applications

Other Books You May Enjoy

[350]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
Adopt a JSR program
 about 338
 collaboration, setting up 340, 341
 contributing 338
 Java EE collaboration 340
 references 339
Apache Maven 206
Apache TomEE
 connection pool, creating 168
 datasources, creating 168
 EAR file, deploying 168
 JAR file, deploying 168
 log rotation, configuring 169
 logging, setting up 169
 session, clustering 170, 171
 session, sharing to nodes in cluster 171
 starting 169
 stopping 170
 URL 168, 172
 usage 168
 WAR file, deploying 168
appliance 271
application
 preparing, with connection pool 150, 152, 153,

155

asynchronous communication
 messaging services, using 156, 157, 158, 160
asynchronous servlet
 defining 107
 implementing 105, 106
 reactive applications, building 244, 246, 247
asynchronous session beans
 reactive applications, building 263, 264, 265,

266

asynchronous tasks

 building, with returning results 215, 216, 218,
219

 injected proxies, using 238, 239, 240, 241
 scheduling, with returning results 234, 235, 237
 status, checking 225, 227, 228, 229, 230
 transactions, using 219, 221, 222, 223, 224,

225

authentication
 for domain protection 116, 117, 119, 120, 121
authorization
 rights, granting 121, 123, 125, 128, 130, 131
automated pipeline
 Apache Maven, using 206
 application, preparing 206
 building, for microservices 204, 205, 206, 213
 environment, preparing 206
 Git, using 206
 JUnit, using 206
 maturity stages 205
AWS
 using, for container orchestration in cloud 321,

326, 331, 336

B
batch processing
 using 74, 75, 77, 78, 79
Bean Validation 2.0 code
 executing 8, 11
 references 13
Bean Validation
 used, for data validation 48, 49, 50

C
CDI 2.0 code
 executing 13, 15, 16
 references 16

[352]

certificate
 URL 133
Certification Authority (CA) 133
cloud computing 270
cloud
 AWS, using for container orchestration 321, 326,

331, 336
 Jelastic, using for container orchestration 299,

303, 308, 310
 OpenShift, using for container orchestration 310,

315, 321
 Oracle Cloud, using for container orchestration

277, 280, 287, 293, 298
command-line interface (CLI) 132
CompletableFuture
 reactive applications, improving 266, 268, 269
 supplyAsync method 269
 thenAcceptAsync method 269
concurrency management
 with EJB 63, 64, 65, 66
connection pool
 used, for preparing application 150, 152, 153,

155

container orchestration
 AWS, using in cloud 321, 326, 331, 336
 Jelastic, using in cloud 303, 308, 310
 OpenShift, using in cloud 310, 315, 321
 Oracle Cloud, using in cloud 277, 280, 287, 293
containers 270
Context and Dependency Injection (CDI)
 service's capabilities, improving 89, 91, 92
 used, for injecting context and dependency 40,

41, 43, 45, 46, 47
continuous delivery 205, 210, 212
continuous deployment (CD) 205, 212
continuous integration (CI)
 about 205, 207
 Git, using 207
 JUnit, using 209, 210
 Maven, using 207, 209
coupling 199

D
data caching
 with EJB 71, 72, 73, 74

 with Java Persistence API (JPA) 71, 72, 73, 74
data confidentiality
 protecting, with SSL/TLS 131, 132
data integrity
 protecting, with SSL/TLS 131, 132
data persistence
 with Java Persistence API (JPA) 67, 68, 69, 70,

71

data representation
 easing, with JSON-B 94, 95, 96, 97
data validation
 with Bean Validation 48, 49, 50
declarative security
 about 36, 133
 using 133, 134, 136, 139, 141
decoupled services
 building 199, 200, 201, 202, 204
Docker
 references 272
 used, for building Java EE containers 271, 273,

275

domain protection
 with authentication 116, 117, 119, 120, 121

E
Eclipse Enterprise for Java (EE4J)
 URL 340
EJB
 used, for concurrency management 63, 64, 65,

66

 used, for data caching 71, 72, 74
 used, for transaction management 59, 61, 62,

63

events
 reactive applications, building 247, 248, 249
Executive Committee (EC) 339
Expert Group (EG) 338

G
gateway microservice 193, 195
Git
 about 206, 207
 URL 207
GlassFish 5
 connection pool, creating 173

[353]

 datasources, creating 173
 EAR file, deploying 172
 JAR file, deploying 172
 log rotation, configuring 174
 logging, setting up 173
 session, clustering 175, 176
 session, sharing with nodes in cluster 176
 starting 175
 stopping 175
 URL 133, 172, 177
 usage 172
 using 47
 WAR file, deploying 172

H
handshake 132
high availability 181

I
injected proxies
 using, for asynchronous tasks 238, 239, 240,

241

Internet Engineering Task Force (IETF) 27

J
Java Community Process (JCP) 149, 339
Java EE containers
 building, with Docker 271, 273, 275
Java Message Service (JMS) 156
Java Persistence API (JPA)
 used, for data caching 71, 72, 73, 74
 used, for data persistence 67, 68, 69, 70, 71
Java Specification Request (JSR) 149, 338
Java Transaction API (JTA)
 used, for transaction management 59, 60, 62,

63

Java User Groups (JUGs) 338
JavaServer Faces (JSF)
 about 108
 used, for building UI with template's features

108, 109, 110
JAX-RS 2.1 code
 executing 16, 18, 20
 references 21

JAX-RS
 objects, parsing 93
 reactive applications, building 259, 260, 262,

263

 server-side events, building 80, 81, 83, 85, 86,
88, 89

 service's capabilities, improving 89, 91, 92
JBoss AS 177
Jelastic
 using, for container orchestration in cloud 299,

303, 308, 310
Jenkins
 about 207
 jobs, creating 211
 URL 211
JSF 2.3 code
 executing 21, 24
 references 25
JSON-B
 code, executing 27, 29
 data representation, easing 94, 95, 96, 97
 objects representation, easing 94, 95, 96, 97
 references 29
JSON-P 1.1 code
 executing 25, 27
 references 27
JSON-P
 JSON objects, generating 97, 99, 101
 JSON objects, parsing 97, 99, 101
 JSON objects, querying 97, 98, 101
 JSON objects, transforming 97, 99, 101
JUnit 206, 209, 210

K
KumuluzEE
 about 198
 URL 198

L
lambdas
 reactive applications, improving 266, 268, 269

[354]

M
managed threads
 building, with returning results 231, 232, 233
maturity stages, automation pipeline
 continuous delivery 210, 212
 continuous deployment (CD) 205, 212
 continuous integration (CI) 205, 207
Maven
 about 207, 209
 URL 207
Message Drive Bean (MDB) 157
message-driven beans
 reactive applications, building 255, 256, 257,

258

 setDeliveryMode method 257
 setDisableMessageID method 257
 setDisableMessageTimestamp method 258
messaging services
 using, for asynchronous communication 156,

157, 158, 160
MicroProfile
 about 198
 URL 198
microservices
 about 183
 advantages 183
 automated pipeline, building 204, 205, 206, 213
 building, from monolith 184, 195, 197, 198
 gateway microservice 191
 user address microservice 191
 user microservice 191
monolith
 about 195
 building 185, 187, 189
 microservices, building from 184, 195, 197, 198
MVC 1.0 code
 executing 36, 37, 38

O
objects representation
 easing, with JSON-B 94, 95, 96, 97
observers
 reactive applications, building 247, 248, 249
OpenShift

 using, for container orchestration in cloud 310,
315, 321

Oracle Cloud
 URL 277
 using, for container orchestration in cloud 277,

280, 287, 293, 298

P
Payara Micro 198
programmatic security
 about 36, 133
 using 141, 143, 144, 146, 147
Project Management Committee (PMC)
 URL 340
Project Object Model (POM) 208

R
reactive applications
 building, with asynchronous servlets 244, 245,

246, 247
 building, with asynchronous session beans 263,

264, 265, 266
 building, with events 247, 248, 249
 building, with JAX-RS 259, 260, 262, 263
 building, with message-driven beans 255, 256,

257, 258
 building, with observers 247, 248, 249
 building, with websockets 250, 251, 252, 253,

254

 improving, with CompletableFuture 266, 268,
269

 improving, with lambdas 266, 268, 269
Reactive Manifesto
 URL 243
reactive systems
 features 243
Reference Implementation (RI) 172, 338
request and response management
 with Servlet 51, 52, 54, 102
Request for Comments (RFC) 6901 27
rights
 granting, through authorization 121, 123, 125,

128, 130, 131

S
Secure Sockets Layer (SSL) 131
security 115
Security API code
 executing 31, 34
 references 36
Selenium Webdriver
 URL 213
 using 213
self-managed beans
 avoiding 66
Server Push
 PushBuilder 58
 response performance, improving 111, 113, 114
 used, for availability of objects 54, 56, 57, 58
Server Sent Events (SSE) 17
server-side events
 building, with JAX-RS 80, 81, 83, 85, 86, 88, 89
Servlet 4.0 code
 executing 29, 31
 references 31
Servlet
 asynchronous servlet, defining 107
 asynchronous servlet, implementing 105, 106
 destroy() method 54
 init() function 54
 life cycle 160, 162, 163
 startup servlet, loading 103, 106
 used, for request and response management 51,

53, 54, 102
 with init params 103, 107
Sonatype Nexus 206
 URL 210
SSL/TLS
 data confidentiality and integrity, protecting 131,

132

T

Technology Compatibility Kit (TCKs) 339
threading 214
transaction management
 about 163, 165, 166
 with EJB 59, 61, 62, 63
 with Java Transaction API (JTA) 59, 60, 62, 63
transactions
 using, with asynchronous tasks 219, 221, 222,

223, 224, 225
Transport Layer Security (TLS) 131

U
UI with template's features
 building, with JavaServer Faces (JSF) 108, 109,

110

user address microservice 191, 193
user microservice 191

W
WebSockets 89
websockets
 reactive applications, building 250, 251, 252,

253, 254
WildFly
 about 177
 connection pool, creating 178
 datasources, creating 178
 EAR file, deploying 177
 JAR file, deploying 177
 log rotation, configuring 180
 logging, setting up 179
 session, clustering 181
 session, sharing with nodes in cluster 182
 starting 180
 stopping 181
 URL 177, 182
 usage 177
 WAR file, deploying 177

	Cover
	Copyright and Credits
	Dedication
	Packt Upsell
	Foreword
	Contributors
	Table of Contents
	Preface
	Chapter 1: New Features and Improvements
	Running your first Bean Validation 2.0 code
	Getting ready
	How to do it...
	How it works...
	See also

	Running your first CDI 2.0 code
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Running your first JAX-RS 2.1 code
	Getting ready
	How to do it...
	How it works...
	See also

	Running your first JSF 2.3 code
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Running your first JSON-P 1.1 code
	Getting ready
	How to do it...
	How it works...
	See also

	Running your first JSON-B code
	Getting ready
	How to do it...
	How it works...
	See also

	Running your first Servlet 4.0 code
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Running your first Security API code
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Running your first MVC 1.0 code
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 2: Server-Side Development
	Using CDI to inject context and dependency
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using Bean Validation for data validation
	Getting ready
	How to do it...
	How it works...
	See also

	Using servlet for request and response management
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using Server Push to make objects available beforehand
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using EJB and JTA for transaction management
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using EJB to deal with concurrency
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using JPA for smart data persistence
	Getting ready
	How to do it...
	How it works...
	See also

	Using EJB and JPA for data caching
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using batch processing
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 3: Building Powerful Services with JSON and RESTful Features
	Building server-side events with JAX-RS
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Improving service's capabilities with JAX-RS and CDI
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Easing data and objects representation with JSON-B
	Getting ready
	How to do it...
	How it works...
	See also

	Parsing, generating, transforming, and querying on JSON objects using JSON-P
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 4: Web- and Client-Server Communication
	Using servlets for request and response management
	Getting ready
	How to do it...
	The load on startup servlet
	A servlet with init params
	The asynchronous servlet

	How it works...
	The load on startup servlet
	A servlet with init params
	Asynchronous servlet

	See also

	Building UI with template's features using JSF
	Getting ready
	How to do it...
	How it works...
	See also

	Improving the response performance with Server Push
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 5: Security of Enterprise Architecture
	Introduction
	Domain protection with authentication
	Getting ready
	How to do it
	How it works...
	See also

	Granting rights through authorization
	Getting ready
	How to do it...
	How it works...
	See also

	Protecting data confidentiality and integrity with SSL/TLS
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using declarative security
	Getting ready
	How to do it...
	How it works...
	See also

	Using programmatic security
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 6: Reducing the Coding Effort by Relying on Standards
	Introduction
	Preparing your application to use a connection pool
	Getting ready
	How to do it...
	There's more...
	See also

	Using messaging services for asynchronous communication
	Getting ready
	How to do it...
	How it works...
	See also

	Understanding a servlet's life cycle
	Getting ready
	How to do it...
	How it works...
	See also

	Transaction management
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 7: Deploying and Managing Applications on Major Java EE Servers
	Introduction
	Apache TomEE usage
	Getting ready
	How to do it...
	Deploying EAR, WAR, and JAR files
	Creating datasources and a connection pool
	Logging setup and rotate
	Starting and stopping
	Session clustering

	There's more...
	See also

	GlassFish usage
	Getting ready
	How to do it...
	Deploying EAR, WAR, and JAR files
	Creating datasources and a connection pool
	Logging setup and rotate
	Starting and stopping
	Session clustering

	There's more...
	See also

	WildFly usage
	Getting ready
	How to do it...
	Deploying EAR, WAR, and JAR files
	Creating datasources and a connection pool
	Logging setup and rotate
	Starting and stopping
	Session clustering

	There's more...
	See also

	Chapter 8: Building Lightweight Solutions Using Microservices
	Introduction
	Building microservices from a monolith
	Getting ready
	How to do it...
	Building a monolith
	Building microservices from the monolith
	The user microservice
	The user address microservice
	The gateway microservice

	How it works...
	The monolith
	The microservices

	There's more...
	See also

	Building decoupled services
	Getting ready
	How to do it...
	How it works...
	See also

	Building an automated pipeline for microservices
	Getting ready
	Preparing the application
	Preparing the environment

	How to do it...
	Continuous integration
	Git
	Maven
	JUnit

	Continuous delivery
	Continuous deployment

	There's more...
	See also

	Chapter 9: Using Multithreading on Enterprise Context
	Introduction
	Building asynchronous tasks with returning results
	Getting ready
	How to do it...
	How it works...
	See also

	Using transactions with asynchronous tasks
	Getting ready
	How to do it...
	How it works...
	See also

	Checking the status of asynchronous tasks
	Getting ready
	How to do it...
	How it works...
	See also

	Building managed threads with returning results
	Getting ready
	How to do it...
	How it works...
	See also

	Scheduling asynchronous tasks with returning results
	Getting ready
	How to do it...
	How it works...
	See also

	Using injected proxies for asynchronous tasks
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 10: Using Event-Driven Programming to Build Reactive Applications
	Introduction
	Building reactive applications using asynchronous servlets
	Getting ready
	How to do it...
	How it works...
	See also

	Building reactive applications using events and observers
	Getting ready
	How to do it...
	How it works...
	See also

	Building reactive applications using websockets
	Getting ready
	How to do it...
	How it works...
	See also

	Building reactive applications using message-driven beans
	Getting ready
	How to do it...
	How it works...
	See also

	Building reactive applications using JAX-RS
	Getting ready
	How to do it...
	How it works...
	See also

	Building reactive applications using asynchronous session beans
	Getting ready
	How to do it...
	How it works...
	See also

	Using lambdas and CompletableFuture to improve reactive applications
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 11: Rising to the Cloud – Java EE, Containers, and Cloud Computing
	Introduction
	Building Java EE containers using Docker
	Getting ready
	How to do it...
	How it works...
	See also

	Using Oracle Cloud for container orchestration in the cloud
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using Jelastic for container orchestration in the cloud
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using OpenShift for container orchestration in the cloud
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using AWS for container orchestration in the cloud
	Getting ready
	How to do it...
	How it works...
	There's more...

	Appendix: The Power of Sharing Knowledge
	Introduction
	Why contributing to the Adopt a JSR program can make you a better professional
	Understanding the Adopt a JSR program
	Collaborating on the future of Java EE
	Setting yourself up for collaboration
	Set aside a specific time for it
	Choose where you'll concentrate your effort
	Do it!

	The secret to unstucking your project, your career... even your life!

	Other Books You May Enjoy
	Index

