

 [image: Third Edition]

 JavaScript Pocket Reference

David Flanagan

Editor
Sarah Milstein

Copyright © 2012 David Flanagan

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. JavaScript
 Pocket Reference, the image of a Javan rhinoceros, and related
 trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc., was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

[image:]

O'Reilly Media

Preface

JavaScript is the programming language of the Web. The overwhelming
 majority of modern websites use JavaScript, and all modern web browsers—on
 desktops, game consoles, tablets, and smartphones—include JavaScript
 interpreters, making JavaScript the most ubiquitous programming language in
 history. JavaScript is part of the triad of technologies that all Web
 developers must learn: HTML to specify the content of web pages, CSS to
 specify the presentation of those pages, and JavaScript to specify their
 behavior. Recently, with the advent of Node (http://nodejs.org), JavaScript has
 also become an important programming language for web servers.
This book is an excerpt from the more comprehensive JavaScript: The
 Definitive Guide. No material from the out-of-date second
 edition remains. I’m hopeful that some readers will find this shorter and
 denser book more useful than the larger and more intimidating volume from
 which it came. This pocket reference follows the same basic outline as the
 larger book: Chapters 1 through 9 cover the core JavaScript language,
 starting with fundamental matters of language syntax—types, values,
 variables, operators, statements—and moving on to coverage of JavaScript
 objects, arrays, functions and classes. These chapters cover the language
 itself, and are equally relevant to programmers who will use JavaScript in web
 browsers and programmers who will be using Node on the server-side.
To be useful, every language must have a platform or standard library
 of functions for performing things like basic input and output. The core
 JavaScript language defines a minimal API for working with text, arrays,
 dates, and regular expressions but does not include any input or output
 functionality. Input and output (as well as more sophisticated features,
 such as networking, storage, and graphics) are the responsibility of the
 “host environment” within which JavaScript is embedded. The most common host
 environment is a web browser. Chapters 1 through 9 cover the language’s minimal built-in
 API. Chapters 10
 through 14 cover the
 web browser host environment and explain how to use “client-side JavaScript”
 to create dynamic web pages and web applications.
The number of JavaScript APIs implemented by web browsers has grown
 explosively in recent years, and it is not possible to cover them all in a
 book of this size. Chapters 10 through 14 cover the most important and fundamental
 parts of client-side JavaScript: windows, documents, elements, styles,
 events, networking and storage. Once you master these, it is easy to pick up
 additional client-side APIs, which you can read about in JavaScript:
 The Definitive Guide. (Or in Canvas Pocket
 Reference and jQuery
 Pocket Reference, which are also excerpts from
 The Definitive Guide.)
Although the Node programming environment is becoming more and more
 important, there is simply not room in this pocket reference to include any
 information about server-side JavaScript. You can learn more at http://nodejs.org. Similarly, there is no room in the
 book for an API reference section. Again, I refer you to JavaScript: The
 Definitive Guide, or to online JavaScript references such
 as the excellent Mozilla Developer Network at http://developer.mozilla.org/.
The examples in this book can be downloaded from the book’s web page,
 which will also include errata if any errors are discovered after
 publication:
	http://shop.oreilly.com/product/0636920011460.do

In general, you may use the examples in this book in your programs and
 documentation. You do not need to contact us for permission unless you’re
 reproducing a significant portion of the code. We appreciate, but do not
 require, an attribution like this:
 “From JavaScript Pocket Reference, third edition, by
 David Flanagan (O’Reilly). Copyright 2012 David Flanagan,
 978-1-449-31685-3.” If you feel your use of code examples falls outside fair
 use or the permission given here, feel free to contact us at
 permissions@oreilly.com.
To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

This book is also available from the Safari Books Online service. For full digital access to this book
 and others on similar topics from O’Reilly and other publishers, visit
 http://www.safaribooksonline.com/.
I’d like to thank my editor, Simon St. Laurent, for challenging me to
 excerpt The Definitive Guide down to this more
 manageable size and also the O’Reilly production staff, who always manage to
 make my books look great.

Chapter 1. Lexical Structure

JavaScript programs are written using the Unicode character set.
 Unicode is a superset of ASCII and Latin-1 and supports virtually every
 written language currently used on the planet.
JavaScript is a case-sensitive language. This means that language keywords,
 variables, function names, and other identifiers must always be typed with a
 consistent capitalization of letters. The while keyword, for example, must be typed “while,”
 not “While” or “WHILE.” Similarly, online, Online,
 OnLine, and ONLINE are four distinct variable names.
Comments

JavaScript supports two styles of comments. Any text between
 a // and the end of a line
 is treated as a comment and is ignored by JavaScript. Any text between the
 characters /* and */ is also treated as a comment; these comments
 may span multiple lines but may not be nested. The following lines of code
 are all legal JavaScript comments:
// This is a single-line comment.
/* This is also a comment */ // And here is another.
/*
 * This is yet another comment.
 * It has multiple lines.
 */

Identifiers and Reserved Words

An identifier is simply a name. In
 JavaScript, identifiers are used to name variables and functions and to
 provide labels for certain loops in JavaScript code. A JavaScript
 identifier must begin with a letter, an underscore (_), or a dollar sign
 ($). Subsequent characters
 can be letters, digits, underscores, or dollar signs.
JavaScript reserves a number of identifiers as the keywords of the
 language itself. You cannot use these words as identifiers in your
 programs:
break delete function return typeof
case do if switch var
catch else in this void
continue false instanceof throw while
debugger finally new true with
default for null try
JavaScript also reserves certain keywords that are not currently
 used by the language but which might be used in future versions.
 ECMAScript 5 reserves the following words:
class const enum export extends import super
In addition, the following words, which are legal in ordinary
 JavaScript code, are reserved in strict mode:
implements let private public yield
interface package protected static
Strict mode also imposes restrictions on the use of the following
 identifiers. They are not fully reserved, but they are not allowed as
 variable, function, or parameter names:
arguments eval
ECMAScript 3 reserved all the keywords of the Java language,
 and although this has been relaxed in ECMAScript 5, you should still avoid all of these
 identifiers if you plan to run your code under an ECMAScript 3
 implementation of JavaScript:
abstract double goto native static
boolean enum implements package super
byte export import private synchronized
char extends int protected throws
class final interface public transient
const float long short volatile

Optional Semicolons

Like many programming languages, JavaScript uses the
 semicolon (;) to separate
 statements (see Chapter 4) from each other. This is
 important to make the meaning of your code clear: without a separator, the
 end of one statement might appear to be the beginning of the next, or vice
 versa. In JavaScript, you can usually omit the semicolon between two
 statements if those statements are written on separate lines. (You can
 also omit a semicolon at the end of a program or if the next token in the
 program is a closing curly brace }.)
 Many JavaScript programmers (and the code in this book) use semicolons to
 explicitly mark the ends of statements, even where they are not required.
 Another style is to omit semicolons
 whenever possible, using them only in the few situations that require
 them. Whichever style you choose, there are a few details you should
 understand about optional semicolons in JavaScript.
Consider the following code. Since the two statements appear on
 separate lines, the first semicolon could be omitted:
a = 3;
b = 4;
Written as follows, however, the first semicolon is required:
a = 3; b = 4;
Note that JavaScript does not treat every line break as a semicolon: it usually treats line breaks as
 semicolons only if it can’t parse the code without the semicolons. More
 formally, JavaScript interprets a line break as a semicolon if it appears
 after the return, break, or continue keywords, or
 before the ++ or -- operators, or if the next nonspace character
 cannot be interpreted as a continuation of the current statement.
These statement termination rules lead to some surprising cases.
 This code looks like two separate statements separated with a
 newline:
var y = x + f
(a+b).toString()
But the parentheses on the second line of code can be interpreted as
 a function invocation of f
 from the first line, and JavaScript interprets the code like this:
var y = x + f(a+b).toString();

Chapter 2. Types, Values, and Variables

Computer programs work by manipulating values, such as the number 3.14 or the
 text “Hello World.” The kinds of values that can be represented and
 manipulated in a programming language are known as types. When a program needs to retain a
 value for future use, it assigns the value to (or “stores” the value in) a
 variable. A variable defines a symbolic
 name for a value and allows the value to be referred to by name.
JavaScript types can be divided into two categories: primitive types and object types. JavaScript’s primitive
 types include numbers, strings of text (known as strings), and Boolean truth values
 (known as booleans). The first few sections of
 this chapter explain JavaScript’s primitive types. (Chapters 5, 6, and 7 describe three kinds of JavaScript object
 types.)
JavaScript converts values liberally from one type to another.
 If a program expects a string, for example, and you give it a number, it
 will automatically convert the number to a string for you. If you use a
 nonboolean value where a boolean is expected, JavaScript will convert
 accordingly. Type Conversions describes JavaScript’s type
 conversions.
JavaScript variables are untyped: you can assign a value of any
 type to a variable, and you can later assign a value of a different type to
 the same variable. Variables are declared with the
 var keyword. JavaScript
 uses lexical scoping. Variables declared
 outside of a function are global variables and are visible
 everywhere in a JavaScript program. Variables declared inside a function
 have function scope and are visible only to
 code that appears inside that
 function. Variable Declaration covers variables in more
 detail.
Numbers

Unlike many languages, JavaScript does not make a
 distinction between integer values and floating-point values. All numbers in JavaScript are
 represented as floating-point values. JavaScript represents numbers using
 the 64-bit floating-point format defined by the IEEE 754 standard, which means it can represent numbers as
 large as ±1.7976931348623157 × 10308 and as
 small as ±5 × 10−324.
The JavaScript number format allows you to exactly represent all the
 integers between −9007199254740992 (−253) and
 9007199254740992 (253), inclusive. If you use
 integer values larger than this, you may lose precision in the trailing
 digits. Note, however, that certain operations in JavaScript (such as
 array indexing and the bitwise operators described in Chapter 3) are performed with 32-bit integers.
When a number appears directly in a JavaScript program, it’s called
 a numeric literal. JavaScript supports
 numeric literals in several formats. Note that any numeric literal can be
 preceded by a minus sign (-) to make the number negative.
In a JavaScript program, a base-10 integer is written as a sequence of digits. For
 example:
0
1024
In addition to base-10 integer literals, JavaScript recognizes
 hexadecimal (base-16) values. A hexadecimal literal begins with “0x” or
 “0X”, followed by a string of hexadecimal digits. A hexadecimal digit is
 one of the digits 0 through 9 or the letters a (or A) through f (or F),
 which represent values 10 through 15. Here are examples of hexadecimal
 integer literals:
0xff // 15*16 + 15 = 255 (base 10)
0xCAFE911
Floating-point literals can have a decimal point; they use the
 traditional syntax for real numbers. A real value is represented as the integral part of the
 number, followed by a decimal point and the fractional part of the
 number.
Floating-point literals may also be represented using exponential notation: a real number followed by the letter e
 (or E), followed by an optional plus or minus sign, followed by an integer
 exponent. This notation represents the real number multiplied by 10 to the
 power of the exponent.
More succinctly, the syntax is:
[digits][.digits][(E|e)[(+|-)]digits]
For example:
3.14
6.02e23 // 6.02 × 1023
1.4738223E-32 // 1.4738223 × 10−32
JavaScript programs work with numbers using the arithmetic operators
 that the language provides. These include + for addition,
 - for subtraction,
 * for multiplication,
 / for division, and % for modulo (remainder
 after division). Full details on these and other operators can be found in
 Chapter 3.
In addition to these basic arithmetic operators, JavaScript supports
 more complex mathematical operations through a set of functions and
 constants defined as properties of the Math object:
Math.pow(2,53) // => 9007199254740992: 2 to the power 53
Math.round(.6) // => 1.0: round to the nearest integer
Math.ceil(.6) // => 1.0: round up to an integer
Math.floor(.6) // => 0.0: round down to an integer
Math.abs(-5) // => 5: absolute value
Math.max(x,y,z) // Return the largest argument
Math.min(x,y,z) // Return the smallest argument
Math.random() // Pseudo-random number 0 <= x < 1.0
Math.PI // π
Math.E // e: The base of the natural logarithm
Math.sqrt(3) // The square root of 3
Math.pow(3,1/3) // The cube root of 3
Math.sin(0) // Trig: also Math.cos, Math.atan, etc.
Math.log(10) // Natural logarithm of 10
Math.log(100)/Math.LN10 // Base 10 logarithm of 100
Math.log(512)/Math.LN2 // Base 2 logarithm of 512
Math.exp(3) // Math.E cubed
Arithmetic in JavaScript does not raise errors in cases of
 overflow, underflow, or division by zero. When the result of a numeric
 operation is larger than the largest representable number (overflow), the
 result is a special infinity value, which JavaScript prints as Infinity. Similarly, when
 a negative value becomes larger than the largest representable negative
 number, the result is negative infinity, printed as -Infinity. The infinite values behave as you
 would expect: adding, subtracting, multiplying, or dividing them by
 anything results in an infinite value (possibly with the sign
 reversed).
Division by zero is not an error in JavaScript: it simply
 returns infinity or negative infinity. There is one exception, however: zero
 divided by zero does not have a well-defined value, and the result of this
 operation is the special not-a-number value, printed as NaN. NaN also arises if you attempt to divide
 infinity by infinity, or take the square root of a negative number or use
 arithmetic operators with nonnumeric operands that cannot be converted to
 numbers.
JavaScript predefines global variables Infinity and NaN to hold the positive infinity and
 not-a-number value.
The not-a-number value has one unusual feature in JavaScript: it
 does not compare equal to any other value, including itself. This means
 that you can’t write x == NaN to
 determine whether the value of a variable x is NaN.
 Instead, you should write x != x. That
 expression will be true if, and only if, x is NaN. The function isNaN() is similar. It
 returns true if its argument is
 NaN, or if that argument is a
 nonnumeric value such as a string or an object. The related function
 isFinite() returns
 true if its argument is a number other
 than NaN, Infinity, or -Infinity.
There are infinitely many real numbers, but only a finite number of
 them (18437736874454810627, to be exact) can be represented exactly by the
 JavaScript floating-point format. This means that when you’re working with
 real numbers in JavaScript, the representation of the number will often be
 an approximation of the actual number and small rounding errors will occur.

Text

A string is an immutable ordered sequence of
 16-bit values, each of which typically represents a Unicode
 character—strings are JavaScript’s type for representing text. The
 length of a string is the number of
 16-bit values it contains. JavaScript’s strings (and its arrays) use
 zero-based indexing: the first 16-bit value is at position 0, the second
 at position 1 and so on. The empty string is the string of length 0.
 JavaScript does not have a special type that represents a single element
 of a string. To represent a single 16-bit value, simply use a string that
 has a length of 1.
String Literals

To include a string literally in a JavaScript program,
 simply enclose the characters of the string within a matched pair of
 single or double quotes (' or "). Double-quote
 characters may be contained within strings delimited by single-quote
 characters, and single-quote characters may be contained within strings
 delimited by double quotes. Here are examples of string literals:
"" // The empty string: it has zero characters
'name="myform"'
"Wouldn't you prefer O'Reilly's book?"
"This string\nhas two lines"
"π = 3.14"
The backslash character (\)
 has a special purpose in JavaScript strings. Combined with the character
 that follows it, it represents a
 character that is not otherwise representable within the string. For
 example, \n is an escape
 sequence that represents a newline character.
Another example is the \'
 escape, which represents the single quote (or apostrophe) character.
 This escape sequence is useful when you need to include an apostrophe in
 a string literal that is contained within single quotes. You can see why
 these are called escape sequences: the backslash allows you to escape
 from the usual interpretation of the single-quote character. Instead of
 using it to mark the end of the string, you use it as an
 apostrophe:
'You\'re right, it can\'t be a quote'
Table 2-1 lists the JavaScript
 escape sequences and the characters they represent. Two escape sequences
 are generic and can be used to represent any character by specifying its
 Latin-1 or Unicode character code as a hexadecimal number. For example,
 the sequence \xA9 represents the
 copyright symbol, which has the Latin-1 encoding given by the hexadecimal number A9.
 Similarly, the \u escape represents
 an arbitrary Unicode character specified by four hexadecimal digits;
 \u03c0 represents the character π,
 for example.
Table 2-1. JavaScript escape sequences
	Sequence
	 Character represented

	 \0

	 The NUL character (\u0000)

	 \b

	 Backspace (\u0008)

	 \t

	 Horizontal tab (\u0009)

	 \n

	 Newline (\u000A)

	 \v

	 Vertical tab (\u000B)

	 \f

	 Form feed (\u000C)

	 \r

	 Carriage return (\u000D)

	 \"

	 Double quote (\u0022)

	 \'

	 Apostrophe or single quote (\u0027)

	 \\

	 Backslash (\u005C)

	 \x
 XX
	 The Latin-1 character specified by
 the two hexadecimal digits
 XX

	 \u
 XXXX
	 The Unicode character specified by
 the four hexadecimal digits
 XXXX

If the \ character precedes any
 character other than those shown in Table 2-1,
 the backslash is simply ignored (although future versions of the
 language may, of course, define new escape sequences). For example,
 \# is the same as #. ECMAScript 5 allows a backslash before a line break to
 break a string literal across multiple lines.
One of the built-in features of JavaScript is the ability to
 concatenate strings. If you use the
 + operator with numbers, it adds
 them. But if you use this operator on strings, it joins them by
 appending the second to the first. For example:
msg = "Hello, " + "world"; // => "Hello, world"
To determine the length of a string—the number of 16-bit values it contains—use the length property of the
 string. Determine the length of a string s like this:
s.length
In addition to this length
 property, there are a number of methods you can invoke on strings (as
 always, see the reference section for complete details):
var s = "hello, world" // Start with some text.
s.charAt(0) // => "h": the first character.
s.charAt(s.length-1) // => "d": the last character.
s.substring(1,4) // => "ell": chars 2, 3, and 4
s.slice(1,4) // => "ell": same thing
s.slice(-3) // => "rld": last 3 characters
s.indexOf("l") // => 2: position of first l.
s.lastIndexOf("l") // => 10: position of last l.
s.indexOf("l", 3) // => 3: position at or after 3
s.split(", ") // => ["hello", "world"]
s.replace("h", "H") // => "Hello, world":
 // replaces all instances
s.toUpperCase() // => "HELLO, WORLD"
Remember that strings are immutable in JavaScript. Methods like
 replace() and
 toUpperCase() return new strings: they do not modify
 the string on which they are invoked.
In ECMAScript 5, strings can be treated like read-only arrays, and
 you can access individual characters (16-bit values) from a string using
 square brackets instead of the charAt()
 method:
s = "hello, world";
s[0] // => "h"
s[s.length-1] // => "d"

Boolean Values

A boolean value represents truth or falsehood, on or off,
 yes or no. There are only two possible values of this type. The reserved
 words true and false evaluate to these two values.
Boolean values are generally the result of comparisons you make in
 your JavaScript programs. For example:
a == 4
This code tests to see whether the value of the variable a is equal to the number 4. If it is, the result of this comparison is
 the boolean value true. If a is not equal to 4, the result of the comparison is false.
Boolean values are commonly used in JavaScript control structures.
 For example, the if/else statement in
 JavaScript performs one action if a boolean value is true and another action if the value is false. You usually combine a comparison that
 creates a boolean value directly with a statement that uses it. The result
 looks like this:
if (a == 4)
 b = b + 1;
else
 a = a + 1;
This code checks whether a equals
 4. If so, it adds 1 to b;
 otherwise, it adds 1 to a.
As we’ll discuss in Type Conversions, any JavaScript
 value can be converted to a boolean value. The following values convert
 to, and therefore work like, false:
undefined
null
0
-0
NaN
"" // the empty string
All other values, including all objects (and arrays) convert to, and
 work like, true. false, and the six values that convert to it,
 are sometimes called falsy values, and all other values are
 called truthy. Any time JavaScript expects a
 boolean value, a falsy value works like false and a truthy value works like true.
As an example, suppose that the variable o either holds an object or the value null. You can test explicitly to see if o is non-null with an if statement like this:
if (o !== null) ...
The not-equal operator !==
 compares o to null and evaluates to either true or false. But you can omit the comparison and
 instead rely on the fact that null is
 falsy and objects are truthy:
if (o) ...
In the first case, the body of the if will be executed only if o is not null. The second case is less strict: it will
 execute the body of the if only if
 o is not false or
 any falsy value (such as null or
 undefined). Which if statement is appropriate for your program
 really depends on what values you expect to be assigned to o. If you need to distinguish null from 0
 and "", then you should use an explicit
 comparison.

null and undefined

null is a language
 keyword that evaluates to a special value that is usually used to indicate
 the absence of a value. Using the typeof operator on null returns the string “object,” indicating
 that null can be thought of as a
 special object value that indicates
 “no object.” In practice, however, null
 is typically regarded as the sole member of its own type, and it can be
 used to indicate “no value” for numbers and strings as well as objects.
 Most programming languages have an equivalent to JavaScript’s null: you may be familiar with it as null or nil.
JavaScript also has a second value that indicates absence of value.
 The undefined value represents a deeper kind of absence. It is
 the value of variables that have not been initialized and the value you
 get when you query the value of an object property or array element that
 does not exist. The undefined value is also returned by functions that
 have no return value, and the value of function parameters for which no
 argument is supplied. undefined is a
 predefined global variable (not a language keyword like null) that is initialized to the undefined
 value. If you apply the typeof operator
 to the undefined value, it returns “undefined,” indicating that this value
 is the sole member of a special type.
Despite these differences, null
 and undefined both indicate an absence
 of value and can often be used interchangeably. The equality
 operator == considers them to be
 equal. (Use the strict equality operator === to distinguish them.) Both are falsy values—they behave like false when a boolean value is required. Neither
 null nor undefined have any properties or methods. In
 fact, using . or [] to access a property
 or method of these values causes a TypeError.

The Global Object

The sections above have explained JavaScript’s primitive
 types and values. Object types—objects, arrays, and functions—are
 covered in chapters of their own later in this book. But there is one very
 important object value that we must cover now. The global
 object is a regular JavaScript object that serves a very
 important purpose: the properties of this object are the globally defined
 symbols that are available to a JavaScript program. When the JavaScript
 interpreter starts (or whenever a web browser loads a new page), it
 creates a new global object and gives it an initial set of properties that
 define:
	Global properties like undefined, Infinity, and
 NaN

	Global functions like isNaN(), parseInt() (Type Conversions), and eval() (Evaluation Expressions).

	Constructor functions like Date(), RegExp(), String(), Object(), and
 Array()

	Global objects like Math and JSON (Serializing Properties and Objects)

The initial properties of the global object are not reserved words,
 but they deserve to be treated as if they are. This chapter has already
 described some of these global properties. Most of the others will be
 covered elsewhere in this book.
In top-level code—JavaScript code that is not part of a function—you can use the JavaScript
 keyword this to refer to
 the global object:
var global = this; // /refer to the global object
In client-side JavaScript, the Window object serves as the global
 object. This global Window object has a self-referential window property that can
 be used to refer to the global object. The Window object defines the core
 global properties, but it also defines quite a few other globals that are
 specific to web browsers and client-side JavaScript (see Chapter 10).
When first created, the global object defines all of JavaScript’s
 predefined global values. But this special object also holds
 program-defined globals as well. If your code declares a global variable,
 that variable is a property of the global object.

Type Conversions

JavaScript is very flexible about the types of values it
 requires. We’ve seen this for booleans: when JavaScript expects a boolean
 value, you may supply a value of any type, and JavaScript will convert it as needed. Some
 values (“truthy” values) convert to true and others (“falsy” values) convert to
 false. The same is true for other
 types: if JavaScript wants a string, it will convert whatever value you
 give it to a string. If JavaScript wants a number, it will try to convert
 the value you give it to a number (or to NaN if it cannot perform a meaningful
 conversion). Some examples:
10 + " objects" // => "10 objects". 10 -> string
"7" * "4" // => 28: both strings -> numbers
var n = 1 - "x"; // => NaN: "x" can't convert to a number
n + " objects" // => "NaN objects": NaN -> "NaN"
Table 2-2 summarizes how values convert
 from one type to another in JavaScript. Bold entries in the table
 highlight conversions that you may find surprising. Empty cells indicate
 that no conversion is necessary and none is performed.
Table 2-2. JavaScript type conversions
	Value
	Converted
 to:

	
	String
	Number
	Boolean
	Object

	 undefined
	 "undefined"
	 NaN

	 false

	 throws TypeError

	 null

	 "null"

	 0
	 false

	 throws TypeError

	 true

	 "true"

	 1
	
	 Boolean(true)

	 false

	 "false"

	 0
	
	Boolean(false)

	""
 (empty string)
	
	 0
	 false
	 String("")

	"1.2"
 (nonempty, numeric)
	
	 1.2

	 true

	 String("1.2")

	"one"
 (nonempty, nonnumeric)
	
	 NaN

	 true

	 String("one")

	 0

	 "0"

	
	 false
	 Number(0)

	 -0

	 "0"

	
	 false
	 Number(-0)

	 NaN

	 "NaN"

	
	 false
	 Number(NaN)

	 Infinity
	 "Infinity"

	
	 true

	Number(Infinity)

	 -Infinity
	 "-Infinity"

	
	 true

	Number(-Infinity)

	1
 (finite, nonzero)
	 "1"

	
	 true

	 Number(1)

	{} (any
 object)
	toString()
	toString() or
 valueOf()
	 true

	

	[]
 (empty array)
	 ""

	 0
	 true

	

	[9]
 (1 numeric elt)
	 "9"

	 9
	 true

	

	['a']
 (any other array)
	 use join() method

	 NaN

	 true

	

	function(){}
 (any function)
	function source
	 NaN

	 true

	

Because JavaScript can convert values flexibly, its == equality operator is
 also flexible with its notion of equality. All of the following
 comparisons are true, for example:
null == undefined // These two are treated as equal.
"0" == 0 // String -> a number before comparing.
0 == false // Boolean -> number before comparing.
"0" == false // Both operands -> 0 before comparing.
Although JavaScript performs many type conversions automatically,
 you may sometimes need to perform an explicit conversion, or you may
 prefer to make the conversions explicit to keep your code clearer.
The simplest way to perform an explicit type conversion is to use the Boolean(), Number(), String(), or Object()
 functions:
Number("3") // => 3
String(false) // => "false" Or false.toString()
Boolean([]) // => true
Object(3) // => new Number(3)
Note that any value other than null or undefined has a toString() method and the result of this method
 is usually the same as that returned by the String() function.
Certain JavaScript operators perform implicit type conversions, and
 are sometimes used for the purposes of type conversion. If one operand of
 the + operator is a string, it converts
 the other one to a string. The unary + operator converts
 its operand to a number. And the unary ! operator converts
 its operand to a boolean and negates it. These facts lead to the following
 type conversion idioms that you may see in some code:
x + "" // Same as String(x)
+x // Same as Number(x). Also x-0
!!x // Same as Boolean(x). Note double !
Formatting and parsing numbers are common tasks in computer programs
 and JavaScript has specialized functions and methods that provide more
 precise control over number-to-string and string-to-number
 conversions.
The toString() method defined by
 the Number class accepts an optional argument that specifies a radix, or
 base, for the conversion. If you do not specify the argument, the
 conversion is done in base 10. However, you can also convert numbers in
 other bases (between 2 and 36). For example:
var n = 17;
binary_string = n.toString(2); // Evaluates to "10001"
octal_string = "0" + n.toString(8); // Evaluates to "021"
hex_string = "0x" + n.toString(16); // Evaluates to "0x11"
When working with financial or scientific data, you may want to
 convert numbers to strings in ways that give you control over the number
 of decimal places or the number of significant digits in the output, or you may want to
 control whether exponential notation is used. The Number class defines
 three methods for these kinds of number-to-string conversions:
var n = 123456.789;
n.toFixed(2); // "123456.79"
n.toExponential(3); // "1.235e+5"
n.toPrecision(7); // "123456.8"
If you pass a string to the Number() conversion function, it attempts to
 parse that string as an integer or floating-point literal. That function
 only works for base-10 integers, and does not allow trailing characters
 that are not part of the literal. The parseInt() and parseFloat() functions
 (these are global functions, not methods of any class) are more flexible.
 parseInt() parses only integers, while
 parseFloat() parses both integers and
 floating-point numbers. If a string begins with “0x” or “0X,” parseInt() interprets it as a hexadecimal
 number. Both parseInt() and parseFloat() skip leading whitespace, parse as
 many numeric characters as they can, and ignore anything that follows. If
 the first nonspace character is not part of a valid numeric literal, they
 return NaN:
parseInt("3 blind mice") // => 3
parseFloat(" 3.14 meters") // => 3.14
parseInt("-12.34") // => -12
parseInt("0xFF") // => 255
parseFloat("$72.47"); // => NaN
parseInt() accepts an optional
 second argument specifying the radix (base) of the number to be parsed.
 Legal values are between 2 and 36. For example:
parseInt("11", 2); // => 3 (1*2 + 1)
parseInt("077", 8); // => 63 (7*8 + 7)
parseInt("ff", 16); // => 255 (15*16 + 15)

Variable Declaration

Before you use a variable in a JavaScript program, you
 should declare it. Variables are declared with the
 var keyword, like
 this:
var i;
var sum;
You can also declare multiple variables with the same var keyword:
var i, sum;
And you can combine variable declaration with variable initialization:
var message = "hello";
var i = 0, j = 0, k = 0;
If you don’t specify an initial value for a variable with the
 var statement, the variable is
 declared, but its value is undefined
 until your code stores a value into it.
Note that the var statement can
 also appear as part of the for and for/in loops (introduced
 in Chapter 4), allowing you to succinctly declare the
 loop variable as part of the loop syntax itself. For example:
for(var i = 0; i < 10; i++) console.log(i);
for(var i = 0, j=10; i < 10; i++,j--) console.log(i*j);
for(var p in o) console.log(p);
If you’re used to statically typed languages such as C or Java, you
 will have noticed that there is no type associated with JavaScript’s
 variable declarations. A JavaScript variable can hold a value of any type.
 For example, it is perfectly legal in JavaScript to assign a number to a
 variable and then later assign a string to that variable:
var i = 10;
i = "ten";
It is legal and harmless to declare a variable more than once with
 the var statement. If the repeated
 declaration has an initializer, it acts as if it were simply an assignment
 statement.
If you attempt to read the value of an undeclared variable,
 JavaScript generates an error. In ECMAScript 5 strict mode (see “use
 strict” in Chapter 4), it is also an error to
 assign a value to an undeclared variable. Historically, however, and in
 nonstrict mode, if you assign a value to an undeclared variable,
 JavaScript actually creates that variable as a property of the global
 object, and it works much like a properly declared global variable. This means that you can get away
 with leaving your global variables undeclared. This is a bad habit and a
 source of bugs, however, and you should always declare your variables with
 var.
The scope of a variable is the region of
 your program source code in which it is defined. A global variable has global scope; it is
 defined everywhere in your JavaScript code. On the other hand, variables
 declared within a function are defined only within the body of the
 function. They are local variables and have local scope.
 Function parameters also count as local variables and are defined only
 within the body of the function.
Within the body of a function, a local variable takes precedence
 over a global variable with the same name. Although you can get away with
 not using the var statement when you
 write code in the global scope, you must always use var to declare local variables. Function
 definitions can be nested. Each function has its own local scope, so it is
 possible to have several nested layers of local scope.
In some C-like programming languages, each block of code within
 curly braces has its own scope, and variables are not visible outside of
 the block in which they are declared. This is called block scope, and JavaScript does
 not have it. Instead, JavaScript uses function scope: variables are visible
 within the function in which they are defined and within any functions
 that are nested within that function.
JavaScript’s function scope means that all variables declared within
 a function are visible throughout the body of the
 function. Curiously, this means that variables are even visible before
 they are declared. This feature of JavaScript is informally known as
 hoisting: JavaScript code behaves as if
 all variable declarations in a function (but not any associated
 assignments) are “hoisted” to the top of the function.

Chapter 3. Expressions and Operators

An expression is a phrase of JavaScript
 that a JavaScript interpreter can evaluate to produce a value. A constant
 embedded literally in your program is a very simple kind of expression. A
 variable name is also a simple expression that evaluates to whatever value
 has been assigned to that variable. Complex expressions are built from
 simpler expressions. An array access expression, for example, consists of
 one expression that evaluates to an array followed by an open square
 bracket, an expression that evaluates to an integer, and a close square
 bracket. This new, more complex expression evaluates to the value stored at
 the specified index of the specified array. Similarly, a function invocation
 expression consists of one expression that evaluates to a function object
 and zero or more additional
 expressions that are used as the arguments to the function.
The most common way to build a complex expression out of simpler
 expressions is with an operator. An operator combines the
 values of its operands (usually two of them) in some
 way and evaluates to a new value. The multiplication operator * is a simple example. The expression x * y evaluates to the product of the values of
 the expressions x and y. For simplicity, we sometimes say that an
 operator returns a value rather than “evaluates
 to” a value.
Expressions

The simplest expressions, known as primary expressions, are those that
 stand alone—they do not include any
 simpler expressions. Primary expressions in JavaScript are constant or
 literal values, certain language keywords, and variable references.
Literals are constant values that are embedded directly in your
 program. They look like these:
1.23 // A number literal
"hello" // A string literal
/pattern/ // A regular expression literal
Reserved words like true,
 false, null, and this are primary expressions.
Finally, the third type of primary expression is the bare variable
 reference:
i // Evaluates to the value of the variable i.
sum // Evaluates to the value of the variable sum.
When any identifier appears by itself in a program, JavaScript
 assumes it is a variable and looks up its value. If no variable with that
 name exists, the expression evaluates to the undefined value. In the strict mode of
 ECMAScript 5, however, an attempt to evaluate a nonexistent variable
 throws a ReferenceError instead.
Initializers

Object and array initializers are
 expressions whose value is a newly created object or array. These
 initializer expressions are sometimes called “object literals” and “array literals.” Unlike true literals, however, they are
 not primary expressions, because they include a number of subexpressions
 that specify property and element values.
An array initializer is a comma-separated list of expressions
 contained within square brackets. The value of an array initializer is a newly created array. The
 elements of this new array are initialized to the values of the
 comma-separated expressions:
[] // An empty array
[1+2,3+4] // A 2-element array with elts 3 and 7.
The element expressions in an array initializer can themselves be
 array initializers, which means that these expressions can create nested
 arrays:
var matrix = [[1,2,3], [4,5,6], [7,8,9]];
A single trailing comma is allowed after the last expression in an
 array initializer.
Object initializer expressions are like array initializer
 expressions, but the square brackets are replaced by curly braces, and each subexpression is prefixed with a
 property name and a colon:
var p = { x:2, y:1 }; // An object with 2 properties
var q = {}; // Empty object; no properties
q.x = 2; q.y = 1; // Now q has the same props as p
Object literals can be nested. For example:
var rectangle = { upperLeft: { x: 2, y: 2 },
 lowerRight: { x: 4, y: 5 } };
The expressions in object and array initializers are evaluated
 each time the object initializer is evaluated, and they need not have
 constant values: they can be arbitrary JavaScript expressions. Also, the
 property names in object literals may be quoted strings rather than
 identifiers (this is useful to specify property names that are reserved
 words or are otherwise not legal identifiers):
var side = 1;
var square = { "ul": { x: p.x, y: p.y },
 'lr': { x: p.x + side, y: p.y + side}};

Property Access

A property access expression evaluates to the value of an
 object property or an array element. JavaScript defines two syntaxes for
 property access:
expression . identifier
expression [expression]
The first style of property access is an expression followed by a
 period and an identifier. The expression specifies the object, and the
 identifier specifies the name of the desired property. The second style
 of property access follows the first expression (the object or array)
 with another expression in square brackets. This second expression
 specifies the name of the desired property or the index of the desired
 array element. Here are some concrete examples:
var o = {x:1,y:{z:3}}; // Example object
var a = [o,4,[5,6]]; // An array that contains o
o.x // => 1: property x of expression o
o.y.z // => 3: property z of expression o.y
o["x"] // => 1: property x of object o
a[1] // => 4: element at index 1 of expression a
a[2]["1"] // => 6: element at index 1 of expression a[2]
a[0].x // => 1: property x of expression a[0]
The .identifier syntax is the simpler
 of the two property access options, but notice that it can only be used
 when the property you want to access has a name that is a legal
 identifier, and when you know the name when you write the program. If
 the property name is a reserved word or includes spaces or punctuation
 characters, or when it is a number (for arrays), you must use the square
 bracket notation. Square brackets are also used when the property name
 is not static but is itself the result of a computation.

Function Definition

A function definition expression defines a JavaScript
 function, and the value of such an expression is the newly defined
 function. In a sense, a function definition expression is a “function
 literal” in the same way that an object initializer is an “object
 literal.” A function definition expression typically consists of the
 keyword function followed by a
 comma-separated list of zero or more identifiers (the parameter names)
 in parentheses and a block of JavaScript code (the function body) in
 curly braces. For example:
// This function returns the square of its argument
var square = function(x) { return x * x; }
Functions can also be defined using a function statement rather
 than a function expression. Complete details on function definition are
 in Chapter 7.

Invocation

An invocation expression is JavaScript’s
 syntax for calling (or executing) a function or method. It starts with a
 function expression that identifies the function to be called. The
 function expression is followed by an open parenthesis, a comma-separated list of zero or more argument
 expressions, and a close parenthesis. Some examples:
f(0) // f is the function; 0 is the argument.
Math.max(x,y,z) // Function Math.max; arguments x, y & z.
a.sort() // Function a.sort; no arguments.
When an invocation expression is evaluated, the function
 expression is evaluated first, and then the argument expressions are
 evaluated to produce a list of argument values. If the value of the
 function expression is not a function, a TypeError is thrown. Next, the
 argument values are assigned, in order, to the parameter names specified
 when the function was defined, and then the body of the function is
 executed. If the function uses a return statement to
 return a value, then that value becomes the value of the invocation
 expression. Otherwise, the value of the invocation expression is
 undefined.
Every invocation expression includes a pair of parentheses and an
 expression before the open parenthesis. If that expression is a property
 access expression, then the invocation is known as a method invocation. In method
 invocations, the object or array that is the subject of the property
 access becomes the value of the this
 parameter while the body of the function is being executed. This enables
 an object-oriented programming paradigm in which functions (known by
 their OO name, “methods”) operate on the object of which they are part.
 See Chapter 8 for details.

Object Creation

An object creation expression creates
 a new object and invokes a function (called a constructor) to initialize
 the properties of that object. Object creation expressions are like
 invocation expressions except that they are prefixed with the keyword
 new:
new Object()
new Point(2,3)
If no arguments are passed to the constructor function in an
 object creation expression, the empty pair of parentheses can be
 omitted:
new Object
new Date
When an object creation expression is evaluated, JavaScript first
 creates a new empty object, just like the one created by the object initializer {}.
 Next, it invokes the specified function with the specified arguments,
 passing the new object as the value of the this keyword. The
 function can then use this to
 initialize the properties of the newly created object. Functions written
 for use as constructors do not return a value, and the value of the
 object creation expression is the newly created and initialized object.
 If a constructor does return an object value, that value becomes the
 value of the object creation expression and the newly created object is
 discarded.

Operators

Operators are used for JavaScript’s arithmetic expressions,
 comparison expressions, logical expressions, assignment expressions, and more. Table 3-1 summarizes JavaScript’s operators.
Table 3-1. JavaScript operators
	Operator	Operation	Types
	++	Pre- or post-increment	lval→num
	--	Pre- or post-decrement	lval→num
	-	Negate number	num→num
	+	Convert to number	num→num
	~	Invert bits	int→int
	!	Invert boolean value	bool→bool
	delete	Remove a property	lval→bool
	typeof	Determine type of operand	any→str
	void	Return undefined value	any→undef
	*, /, %	Multiply, divide, remainder	num,num→num
	+, -	Add, subtract	num,num→num
	+	Concatenate strings	str,str→str
	<<	Shift left	int,int→int
	>>	Shift right with sign extension	int,int→int
	>>>	Shift right with zero extension	int,int→int
	<, <=,>, >=	Compare in numeric order	num,num→bool
	<, <=,>, >=	Compare in alphabetic order	str,str→bool
	instanceof	Test object class	obj,func→bool
	in	Test whether property exists	str,obj→bool
	==	Test for equality	any,any→bool
	!=	Test for inequality	any,any→bool
	===	Test for strict equality	any,any→bool
	!==	Test for strict inequality	any,any→bool
	&	Compute bitwise AND	int,int→int
	^	Compute bitwise XOR	int,int→int
	|	Compute bitwise OR	int,int→int
	&&	Compute logical AND	any,any→any
	||	Compute logical OR	any,any→any
	?:	Choose 2nd or 3rd operand	bool,any,any→any
	=	Assign to a variable or property	lval,any→any
	*=, /=, %=, +=,	Operate and assign	lval,any→any
	-=, &=, ^=, |=,	 	
	<<=, >>=, >>>=	 	
	,	Discard 1st operand, return 2nd	any,any→any

The operators listed in Table 3-1 are arranged in
 order from high precedence to low precedence, with horizontal lines
 separating groups of operators at the same precedence level. Operator
 precedence controls the order in which operations are performed. Operators
 with higher precedence (nearer the top of the table) are performed before
 those with lower precedence (nearer to the bottom).
Consider the following expression:
w = x + y*z;
The multiplication operator * has
 a higher precedence than the addition operator +, so the multiplication is performed before the
 addition. Furthermore, the assignment operator = has the lowest precedence, so the assignment
 is performed after all the operations on the right side are
 completed.
Operator precedence can be overridden with the explicit use of
 parentheses. To force the addition in the previous example to be performed
 first, write:
w = (x + y)*z;
Note that property access and invocation expressions have higher
 precedence than any of the operators listed in Table 3-1. Consider this expression:
typeof my.functions[x](y)
Although typeof is one of the
 highest-priority operators, the typeof
 operation is performed on the result of the two property accesses and the
 function invocation.
In practice, if you are at all unsure about the precedence of your
 operators, the simplest thing to do is to use parentheses to make the
 evaluation order explicit. The rules that are important to know are these:
 multiplication and division are performed before addition and subtraction,
 and assignment has very low precedence and is almost always performed
 last.
Some operators work on values of any type, but most expect their
 operands to be of a specific type, and most operators return (or evaluate
 to) a value of a specific type. The Types column in Table 3-1 specifies operand types (before the arrow) and
 result type (after the arrow) for the operators. The number of types
 before the arrow indicates the arity of the operator: unary operators have one operand,
 binary operators have two, and the
 ternary ?: operator has three.
Some operators behave differently depending on the type of the
 operands used with them. Most notably, the + operator adds numeric operands but
 concatenates string operands. Similarly, the comparison operators such as
 < perform comparison in numerical or
 alphabetical order depending on the type of the operands.
Notice that the assignment operators and a few of the other
 operators listed in Table 3-1 expect an operand of type
 lval. This is an abbreviation for
 lvalue: a historical term that means
 “an expression that can legally appear on the left side of an assignment
 expression.” In JavaScript, variables, properties of objects, and elements
 of arrays are lvalues.
Evaluating a simple expression like 2 *
 3 never affects the state of your program, and any future
 computation your program performs will be unaffected by that evaluation.
 Some expressions, however, have side effects, and their evaluation may
 affect the result of future evaluations. The assignment operators are the
 most obvious example: if you assign a value to a variable or property,
 that changes the value of any expression that uses that variable or
 property. The ++ and -- increment and decrement operators are
 similar, since they perform an implicit assignment. The delete operator also has
 side effects: deleting a property is like (but not the same as) assigning
 undefined to the property.

Arithmetic Operators

This section covers the operators that perform arithmetic or
 other numerical manipulations on their operands.
	Multiplication (*)
	Computes the product of its two operands.

	Division (/)
	The / operator divides its
 first operand by its second. If you are used to programming
 languages that distinguish between integer and floating-point
 numbers, you might expect to get an integer result when you divide
 one integer by another. In JavaScript, however, all numbers are
 floating-point, so all division operations have
 floating-point results: 5/2 evaluates to 2.5, not 2. Division by zero yields positive or
 negative infinity, and 0/0
 evaluates to NaN: neither of
 these cases raises an error.

	Modulo (%)
	The % operator computes the
 first operand modulo the second operand. In other words, it returns
 the remainder after whole-number division of the first operand by
 the second operand. The sign of the result is the same as the sign
 of the first operand. For example, 5 %
 2 evaluates to 1 and
 -5 % 2 evaluates to -1. This operator is typically used with
 integer operands, but it also works for floating-point values. For
 example, 6.5 % 2.1 evaluates to
 0.2.

	Addition (+)
	The binary + operator adds
 numeric operands or concatenates string operands:
1 + 2 // => 3
"hello" + " " + "there" // => "hello there"
"1" + "2" // => "12"
1 + 2 + " blind mice"; // => "3 blind mice"
1 + (2 + " blind mice"); // => "12 blind mice"
When the values of both operands are numbers, or are both
 strings, then it is obvious what the + operator does. In any other case,
 however, type conversion is necessary, and the operation to be
 performed depends on the conversion performed. The conversion rules
 for + give priority to string
 concatenation: if either of the operands is a string or an object
 that converts to a string, the other operand is converted to a
 string and concatenation is performed. Addition is performed only if
 neither operand is string-like.

	Subtraction (-)
	Subtracts the value of the right-hand operand from the
 value of the left-hand operand.

In addition to the binary operators listed above, JavaScript also
 defines some unary operators for arithmetic. Unary operators modify the
 value of a single operand to produce a new value:
	Unary plus (+)
	The unary plus operator converts its operand to a number (or
 to NaN) and returns that
 converted value. When used with an operand that is already a number,
 it doesn’t do anything.

	Unary minus (-)
	When - is used as a unary
 operator, it converts its operand to a number, if necessary, and
 then changes the sign of the result.

	Increment (++)
	The ++ operator increments
 (i.e., adds 1 to) its single operand, which must be an lvalue (a
 variable, an element of an array, or a property of an object). The
 operator converts its operand to a number, adds 1 to that number,
 and assigns the incremented value back into the variable, element,
 or property.
The return value of the ++
 operator depends on its position relative to the operand. When used
 before the operand, where it is known as the pre-increment operator,
 it increments the operand and evaluates to the incremented value of
 that operand. When used after
 the operand, where it is known as the post-increment operator, it
 increments its operand but evaluates to the unincremented value of that
 operand. Consider the difference between these two lines of
 code:
var i = 1, j = ++i; // i and j are both 2
var i = 1, j = i++; // i is 2, j is 1
This operator, in both its pre- and post-increment forms, is
 most commonly used to increment a counter that controls a for loop (for).

	Decrement (--)
	The -- operator expects an
 lvalue operand. It converts the value of the operand to a number,
 subtracts 1, and assigns the decremented value back to the operand.
 Like the ++ operator, the return
 value of -- depends on its
 position relative to the operand. When used before the operand, it
 decrements and returns the decremented value. When used after the
 operand, it decrements the operand but returns the undecremented value.

The bitwise operators perform low-level manipulation of the bits in
 the binary representation of numbers. These operators are not commonly
 used in JavaScript programming, and if you are not familiar with the
 binary representation of decimal integers, you can probably skip this
 section. The bitwise operators expect integer operands and behave as if
 those values were represented as 32-bit integers rather than 64-bit
 floating-point values. These operators convert their operands to numbers,
 if necessary, and then coerce the numeric values to 32-bit integers by
 dropping any fractional part and any bits beyond the 32nd. The shift
 operators require a right-side operand between 0 and 31.
	Bitwise AND (&)
	The & operator performs
 a Boolean AND operation on each bit of its integer arguments. A bit
 is set in the result only if the corresponding bit is set in both
 operands. For example, 0x1234 &
 0x00FF evaluates to 0x0034.

	Bitwise OR (|)
	The | operator performs a
 Boolean OR operation on each bit of its integer arguments. A bit is
 set in the result if the corresponding bit is set in one or both of
 the operands. For example, 0x1234 |
 0x00FF evaluates to 0x12FF.

	Bitwise XOR (^)
	The ^ operator performs a
 Boolean exclusive OR operation on each bit of its integer arguments.
 Exclusive OR means that either operand one is true or operand two is true, but not both. A bit is set in this
 operation’s result if a corresponding bit is set in one (but not
 both) of the two operands. For example, 0xFF00 ^ 0xF0F0 evaluates to 0x0FF0.

	Bitwise NOT (~)
	The ~ operator is a unary
 operator that appears before its single integer operand. It operates
 by reversing all bits in the operand. Because of the way signed
 integers are represented in JavaScript, applying the ~ operator to a value is equivalent to
 changing its sign and subtracting 1. For example, ~0x0F evaluates to 0xFFFFFFF0, or −16.

	Shift left (<<)
	The << operator moves
 all bits in its first operand to the left by the number of places
 specified in the second operand. For example, in the operation
 a << 1, the first bit (the
 ones bit) of a becomes the second
 bit (the twos bit), the second bit of a becomes the third, etc. A zero is used
 for the new first bit, and the value of the 32nd bit is lost.
 Shifting a value left by one position is equivalent to multiplying
 by 2, shifting two positions is equivalent to multiplying by 4, and
 so on. For example, 7 << 2
 evaluates to 28.

	Shift right with sign (>>)
	The >> operator moves
 all bits in its first operand to the right by the number of places
 specified in the second operand (an integer between 0 and 31). Bits
 that are shifted off the right are lost. The bits filled in on the
 left depend on the sign bit of the original operand, in order to
 preserve the sign of the result. If the first operand is positive,
 the result has zeros placed in the high bits; if the first operand
 is negative, the result has ones placed in the high bits. Shifting a
 value right one place is equivalent to dividing by 2 (discarding the
 remainder), shifting right two places is equivalent to integer
 division by 4, and so on. For example, 7
 >> 1 evaluates to 3, and −7
 >> 1 evaluates to −4.

	Shift right with zero fill
 (>>>)
	The >>> operator
 is just like the >>
 operator, except that the bits shifted in on the left are always
 zero, regardless of the sign of the first operand. For example,
 −1 >> 4 evaluates to −1,
 but −1 >>> 4 evaluates
 to 0x0FFFFFFF.

Relational Operators

JavaScript’s relational operators test for a relationship
 (such as “equals,” “less than,” or “property of”) between two values and
 return true or false depending on whether that relationship
 exists. Relational expressions always evaluate to a boolean value, and
 that value is often used to control the flow of program execution in
 if, while, and for statements (see Chapter 4).
JavaScript supports =, ==, and ===
 operators. Be sure you understand the differences between these
 assignment, equality, and strict equality operators, and be careful to use
 the correct one when coding! Although it is tempting to read all three
 operators “equals,” it may help to reduce confusion if you read “gets or
 is assigned” for =, “is equal to” for
 ==, and “is strictly equal to” for
 ===.
	Strict equality (===)
	The === operator is known
 as the strict equality operator (or sometimes the identity
 operator), and it checks whether its two operands are “identical”
 using a strict definition of sameness that does not include any type
 conversion of the operands. If the operands have different types,
 they are not equal. If both operands are primitive types and their
 values are the same, they are equal. If both operands refer to the
 same object, array, or function, they are equal. If they refer to
 different objects they are not equal, even if both objects have
 identical properties. Similarly, two arrays that have the same
 elements in the same order are not equal to each other. The only
 quirk in the behavior of this operator is that it considers the
 not-a-number value NaN to be not
 equal to any other value, including itself!

	Strict inequality (!==)
	The !== operator is the
 exact opposite of the ===
 operator: it returns false if two
 values are strictly equal to each other and returns true otherwise.

	Loose equality (==)
	The == operator (with two
 equals signs instead of three) is like the strict equality operator,
 but it is less strict. If the values of the two operands are not the
 same type, it attempts some type conversions and tries the
 comparison again. This operator considers null and undefined to be equal, and this is often a
 helpful type conversion. But other conversions performed by == are more surprising. The following
 comparisons all evaluate to true:
1 == "1"
true == 1
"1" == true
false == 0
[] == 0

	Loose inequality (!=)
	The != operator is the
 exact opposite of the ==
 operator: it returns false if two
 values are loosely equal to each other and returns true otherwise.

The comparison operators test the relative order (numerical or
 alphabetical) of their two operands. Operands that are not numbers or
 strings are converted to numbers or strings. These operators treat strings
 as sequences of 16-bit integer values, and that string comparison is just
 a numerical comparison of the values in the two strings. Note in
 particular that string comparison is case-sensitive, and all capital ASCII
 letters are “less than” all lowercase ASCII letters. This rule can cause
 confusing results if you do not expect it. For example, according to the
 < operator, the string “Zoo” comes
 before the string “aardvark”:
	Less than (<)
	The < operator evaluates
 to true if its first operand is
 less than its second operand; otherwise it evaluates to false.

	Greater than (>)
	The > operator evaluates
 to true if its first operand is
 greater than its second operand; otherwise it evaluates to false.

	Less than or equal (<=)
	The <= operator
 evaluates to true if its first
 operand is less than or equal to its second operand; otherwise it
 evaluates to false.

	Greater than or equal (>=)
	The >= operator
 evaluates to true if its first
 operand is greater than or equal to its second operand; otherwise it
 evaluates to false.

The final two relational operators are in and instanceof:
	Property existence (in)
	The in operator expects
 a left-side operand that is or can be converted to a string. It
 expects a right-side operand that is an object. It evaluates to
 true if the left-side value is
 the name of a property of the right-side object. For example:
var p = { x:1, y:1 };
"x" in p // => true: p has a property named "x".
"z" in p // => false: p has no "z" property.
"toString" in p // => true: p inherits toString.

var a = [7,8,9];
"0" in a // => true: a has an element "0"
1 in a // => true: numbers are converted

	Object type (instanceof)
	The instanceof operator
 expects a left-side operand that is an object and a right-side
 operand that identifies a class of objects. The operator evaluates
 to true if the left-side object
 is an instance of the right-side class and evaluates to false otherwise. Chapter 8 explains that, in JavaScript, classes of
 objects are defined by the constructor function that initializes them. Thus,
 the right-side operand of instanceof should be a function. Here are
 examples:
var d = new Date();
d instanceof Date; // => true
d instanceof Object; // => true
d instanceof Number; // => false
var a = [1, 2, 3];
a instanceof Array; // => true
a instanceof Object; // => true

Logical Expressions

The logical operators &&, ||, and !
 perform Boolean algebra and are often used in conjunction with the
 relational operators to combine two relational expressions into one more
 complex expression. In order to fully understand them, remember that
 null, undefined, 0,
 "", and NaN are all “falsy” values that work like the
 boolean value false. All other values,
 including all objects and arrays, are “truthy” and work like true.
The && operator can
 be understood at three different levels. At the simplest level, when used
 with boolean operands, &&
 performs the Boolean AND operation
 on the two values: it returns true if
 and only if both its first operand and its second
 operand are true. If one or both of
 these operands is false, it returns
 false.
&& is often used as a
 conjunction to join two relational expressions:
// true if (and only if) x and y are both 0
x == 0 && y == 0
Relational expressions always evaluate to true or false, so when used like this, the && operator itself returns true or false. Relational operators have higher
 precedence than && (and
 ||), so expressions like these can
 safely be written without parentheses.
But && does not require
 that its operands be boolean values. The second level at which && can be understood is as a Boolean AND
 operator for truthy and falsy values. If both operands are truthy, the
 operator returns a truthy value. Otherwise, one or both operands must be
 falsy, and the operator returns a falsy value. In JavaScript, any
 expression or statement that expects a boolean value will work with a
 truthy or falsy value, so the fact that && does not always evaluate to true or false
 does not cause practical problems.
Notice that the description above says that the operator returns “a
 truthy value” or “a falsy value,” but does not specify what that value is.
 For that, we need to describe && at the third and final level. This
 operator starts by evaluating its first operand, the expression on its
 left. If the value on the left is falsy, the value of the entire
 expression must also be falsy, so && simply returns the value on the left
 and does not even evaluate the expression on the right.
On the other hand, if the value on the left is truthy, then the
 overall value of the expression depends on the value on the right-hand
 side. If the value on the right is truthy, then the overall value must be
 truthy, and if the value on the right is falsy, then the overall value
 must be falsy. So when the value on the left is truthy, the && operator evaluates and returns the
 value on the right:
var o = { x : 1 };
var p = null;
o && o.x // => 1: o is truthy, so return o.x
p && p.x // => null: p is falsy, so don't eval p.x
It is important to understand that && may or may not evaluate its
 right-side operand. In the code above, the variable p is set to null, and the expression p.x would, if evaluated, cause a TypeError. But the code
 uses && in an idiomatic way so
 that p.x is evaluated only if p is truthy—not null or undefined.
The || operator performs the
 Boolean OR operation on its two operands. If one or both operands is
 truthy, it returns a truthy value. If both operands are falsy, it returns
 a falsy value.
Although the || operator is most
 often used simply as a Boolean OR operator, it, like the && operator, has more complex behavior.
 It starts by evaluating its first operand, the expression on its left. If
 the value of this first operand is truthy, it returns that truthy value.
 Otherwise, it evaluates its second operand, the expression on its right,
 and returns the value of that expression.
An idiomatic usage of this operator is to select the first truthy
 value in a set of alternatives:
// If max_width is defined, use that. Otherwise look
// for a value in the preferences object. If that is
// not defined use a hard-coded constant.
var max = max_width || preferences.max_width || 500;
This idiom is often used in function bodies to supply default values
 for parameters:
// Copy the properties of o to p, and return p
function copy(o, p) {
 // If no object passed for p, use a new one
 p = p || {};
 // function body goes here
}
The ! operator is a unary
 operator; it is placed before a single operand. Its purpose is to invert
 the boolean value of its operand. For example, if x is truthy, !x evaluates to false. If x
 is falsy, then !x is true. Since !
 always evaluates to true or false, you can convert any value x to its equivalent boolean value by applying
 this operator twice: !!x.
As a unary operator, ! has high
 precedence and binds tightly. If you want to invert the value of an
 expression like p && q, you
 need to use parentheses: !(p &&
 q).

Assignment Expressions

JavaScript uses the = operator to assign a
 value to a variable, object property, or array element. For
 example:
i = 0 // Set the variable i to 0.
o.x = 1 // Set the property x of object o to 1.
The = operator expects its
 left-side operand to be an lvalue: a variable or object property or array
 element. It expects its right-side operand to be an arbitrary value of any
 type. The value of an assignment expression is the value of the right-side
 operand. As a side effect, the =
 operator assigns the value on the right to the variable or property on the
 left so that future references to the variable or property evaluate to the
 value.
The assignment operator has right-to-left associativity, which means
 that when multiple assignment
 operators appear in an expression, they are evaluated from right to left.
 Thus, you can write code like this to assign a single value to multiple
 variables:
i = j = k = 0; // Initialize 3 variables to 0
Besides the normal = assignment
 operator, JavaScript supports a number of other assignment operators that
 provide shortcuts by combining assignment with some other operation. For
 example, the += operator performs
 addition and assignment. The following expression:
total += sales_tax
is equivalent to this one:
total = total + sales_tax
As you might expect, the +=
 operator works for numbers or strings. For numeric operands, it performs
 addition and assignment; for string operands, it performs concatenation
 and assignment.
Similar operators include -=,
 *=, &=, and so on.

Evaluation Expressions

Like many interpreted languages, JavaScript has the ability
 to interpret strings of JavaScript source code, evaluating them to produce
 a value. JavaScript does this with the global function eval():
eval("3+2") // => 5
Dynamic evaluation of strings of source code is a powerful language
 feature that is almost never necessary in practice. If you find yourself
 using eval(), you should think
 carefully about whether you really need to use it. Technically, eval() is a function, but it is covered here
 because in many ways it behaves more like an operator.
eval() expects one argument. If
 you pass any value other than a string, it simply returns that value. If
 you pass a string, it attempts to parse the string as JavaScript code,
 throwing a SyntaxError if it fails. If it successfully parses the string,
 then it evaluates the code and returns the value of the last expression or
 statement in the string, or undefined
 if the last expression or statement had no value. If the evaluated string
 throws an exception, that exception propagates from the call to eval().
The key thing about eval() (when
 invoked like this) is that it uses the variable environment of the code
 that calls it. That is, it looks up the values of variables and defines
 new variables and functions in the same way that local code does. If a
 function defines a local variable x and
 then calls eval("x"), it will obtain
 the value of the local variable. If it calls eval("x=1"), it changes the value of the local
 variable. And if the function calls eval("var y =
 3;"), it has declared a new local variable y. Similarly, a function can declare a local
 function with code like this:
eval("function f() { return x+1; }");
eval() has a very unusual
 restriction (which is required to enable JavaScript interpreters to run
 efficiently): it only behaves the way described above when called with its
 original name “eval.” Since it is technically a function, we can assign it
 to another variable. And if we invoke it using that other variable, it
 behaves differently: when invoked by any other name, eval() evaluates the string as if it were
 top-level global code. The evaluated code can define new global variables
 or global functions, and it can set global variables, but it cannot use or
 modify any variables local to the calling function.
Before IE9, IE differs from other browsers: it does not do a global
 eval when eval() is invoked by a
 different name. IE does define a global function named execScript() that
 executes its string argument as if it were a top-level script. Unlike
 eval(), however, execScript() always returns null.
ECMAScript 5 strict mode imposes further restrictions on the
 behavior of eval(). When eval() is called from strict mode code, or when
 the string of code to be evaluated itself begins with a “use strict”
 directive, then eval() does a local
 eval with a private variable environment. This means that in strict mode,
 evaluated code can query and set local variables, but it cannot define new
 variables or functions in the local scope. Furthermore, strict mode makes
 eval() even more operator-like by
 effectively making “eval” into a reserved word.

Miscellaneous Operators

JavaScript supports a number of other miscellaneous
 operators, described in the following sections.
The Conditional Operator (?:)

The conditional operator is the only ternary operator
 (three operands) in JavaScript. This operator is sometimes written
 ?:, although it does not appear quite
 that way in code. Because this operator has three operands, the first
 goes before the ?, the second goes
 between the ? and the :, and the third goes after the :. It is used like this:
x > 0 ? x : -x // The absolute value of x
The operands of the conditional operator may be of any type. The
 first operand is evaluated and interpreted as a boolean. If the value of
 the first operand is truthy, then the second operand is evaluated, and
 its value is returned. Otherwise, if the first operand is falsy, then
 the third operand is evaluated and its value is returned. Only one of
 the second and third operands is evaluated, never both.
While you can achieve similar results using the if statement (if),
 the ?: operator often provides a
 handy shortcut. Here is a typical usage, which checks to be sure that a
 property is defined (and has a meaningful, truthy value) and uses it if
 so, or provides a default value if not:
greeting = "hello " + (user.name ? user.name : "there");

The typeof Operator

typeof is a unary
 operator that is placed before its single operand, which can be of any
 type. Its value is a string that specifies the type of the operand. The
 following table specifies the value of the typeof operator for any JavaScript
 value:
	x	typeof x
	undefined	"undefined"
	null	"object"
	true or false	"boolean"
	any number or NaN	"number"
	any string	"string"
	any function	"function"
	any nonfunction object	"object"

You might use the typeof
 operator in an expression like this:
(typeof value == "string") ? "'" + value + "'" : value

The delete Operator

delete is a unary
 operator that attempts to delete the object property or array element
 specified as its operand. (If you are a C++ programmer, note that the
 delete keyword in JavaScript is
 nothing like the delete keyword in
 C++.) Like the assignment, increment, and decrement operators, delete is typically used for its property
 deletion side effect, and not for the value it returns. Some
 examples:
var o = {x:1, y:2}, a = [1,2,3];
delete o.x; // Delete a property of o
"x" in o // => false: the property does not exist
delete a[2]; // Delete the last element of the array
2 in a // => false: array element 2 doesn't exist

The void Operator

void is a unary
 operator that appears before its single operand, which may be of any
 type. This operator is unusual and very infrequently used: it evaluates
 its operand, then discards the value and returns undefined. Since the operand value is
 discarded, using the void operator
 makes sense only if the operand has side effects.

The Comma Operator (,)

The comma operator is a binary operator whose operands may
 be of any type. It evaluates its left operand, evaluates its right
 operand, and then returns the value of the right operand. The left-hand
 expression is always evaluated, but its value is discarded, which means
 that it only makes sense to use the comma operator when the left-hand
 expression has side effects. The only situation in which the comma
 operator is commonly used is with a for loop (for) that has
 multiple loop variables:
// The first comma below is part of the syntax of the
// var statement. The second comma is the comma operator:
// it lets us squeeze 2 expressions (i++ and j--) into a
// statement (the for loop) that expects 1.
for(var i=0,j=10; i < j; i++,j--)
 console.log(i+j);

Chapter 4. Statements

Chapter 3 described expressions as JavaScript
 phrases. By that analogy, statements are JavaScript sentences or
 commands. Just as English sentences are terminated and separated from each other with periods,
 JavaScript statements are terminated with semicolons (Optional Semicolons). Expressions are
 evaluated to produce a value, but statements are
 executed to make something happen.
One way to “make something happen” is to evaluate an expression that
 has side effects. Expressions with side effects, such as assignments and
 function invocations, can stand alone as statements, and when used this way
 they are known as expression statements. A similar
 category of statements are the declaration statements
 that declare new variables and define new functions.
JavaScript programs are nothing more than a sequence of statements to
 execute. By default, the JavaScript interpreter executes these statements
 one after another in the order they are written. Another way to “make
 something happen” is to alter this default order of execution, and
 JavaScript has a number of statements or control structures that do just
 this:
	Conditionals are statements like
 if and switch that make the
 JavaScript interpreter execute or skip other statements depending on the
 value of an expression.

	Loops are statements like while and for that execute other
 statements repetitively.

	Jumps are statements like break, return, and throw that cause the
 interpreter to jump to another part of the program.

Table 4-1 summarizes JavaScript statement syntax, and the sections that follow it describe
 each statement in more detail.
Table 4-1. JavaScript statement syntax
	Statement	Syntax	Purpose
	break	break
 [label];	 Exit from the innermost loop or switch or from named enclosing statement

	case	case
 expression:	 Label a statement within a switch

	continue	continue
 [label];	 Begin next iteration of the innermost loop or the
 named loop

	debugger	debugger;	 Debugger breakpoint

	default	default:	 Label the default statement within a switch

	do/while	do
 statement while (expression);	 An alternative to the while loop

	empty	;	 Do nothing

	for	for(init;
 test; incr)
 statement	 An easy-to-use loop

	for/in	for (var
 in object) statement	 Enumerate the properties of
 object

	function	function
 name([param[,...]])
 { body }	 Declare a function named
 name

	if/else	if (expr)
 statement1 [else
 statement2]	 Execute statement1 or
 statement2

	label	label:
 statement	 Give statement the name
 label

	return	return
 [expression];	 Return a value from a function

	switch	switch
 (expression) {
 statements }	 Multiway branch to case or default: labels

	throw	throw
 expression;	 Throw an exception

	try	 try
 {statements}

 [catch {
 statements }]

 [finally { statements }]

	 Handle exceptions

	use strict	"use strict";	 Apply strict mode restrictions to script or function

	var	var name
 [= expr] [,...];	 Declare and initialize one or more variables

	while	while
 (expression) statement	 A basic loop construct

	with	 with
 (object)
 statement	 Extend the scope chain (forbidden in strict mode)

Expression Statements

The simplest kinds of statements in JavaScript are
 expressions that have side effects. This sort of statement was shown in
 Chapter 3. Assignment statements are one major
 category of expression statements. For example:
greeting = "Hello " + name;
i *= 3;
The increment and decrement operators, ++ and --, are related to
 assignment statements. These have the side effect of changing a variable
 value, just as if an assignment had been performed:
counter++;
The delete operator has the
 important side effect of deleting an object property. Thus, it is almost
 always used as a statement, rather than as part of a larger
 expression:
delete o.x;
Function calls are another major category of expression
 statements. For example:
alert(greeting);
window.close();
These client-side function calls are expressions, but they have side
 effects that affect the web browser and are used here as
 statements.

Compound and Empty Statements

A statement block combines multiple
 statements into a single compound
 statement. A statement block is simply a sequence of statements
 enclosed within curly braces. Thus, the following lines act as a single
 statement and can be used anywhere that JavaScript expects a single
 statement:
{
 x = Math.PI;
 cx = Math.cos(x);
 console.log("cos(π) = " + cx);
}
Combining statements into larger statement blocks is extremely
 common in JavaScript programming. Just as expressions often contain
 subexpressions, many JavaScript statements contain substatements. Formally,
 JavaScript syntax usually allows a
 single substatement. For example, the while loop syntax
 includes a single statement that serves as the body of the loop. Using a
 statement block, you can place any number of statements within this single
 allowed substatement.
A compound statement allows you to use multiple statements where
 JavaScript syntax expects a single statement. The empty statement is the opposite: it
 allows you to include no statements where one is expected.
The empty statement looks like this:
;
The JavaScript interpreter takes no action when it executes an empty
 statement. The empty statement is occasionally useful when you want to
 create a loop that has an empty body:
// Initialize the elements of a to 0
for(i = 0; i < a.length; a[i++] = 0) /* empty */;

Declaration Statements

The var and function are declaration
 statements—they declare or define variables and functions.
 These statements define identifiers (variable and function names) that can
 be used elsewhere in your program and assign values to those identifiers.
 Declaration statements don’t do much themselves, but by creating variables
 and functions they, in an important sense, define the meaning of the other statements
 in your program.
var

The var statement
 declares a variable or variables. Here’s the syntax:
var name_1 [= value_1] [,..., name_n [= value_n]]
The var keyword is followed by
 a comma-separated list of variables to declare; each variable in the
 list may optionally have an initializer expression that specifies its
 initial value. For example:
var i; // One simple variable
var j = 0; // One var, one value
var p, q; // Two variables
var greeting = "hello" + name; // A complex initializer
var x = 2, y = x*x; // Second var uses first
var x = 2, // Multiple variables...
 f = function(x) { return x*x }, // each on its
 y = f(x); // own line
If a var statement appears
 within the body of a function, it defines local variables, scoped to
 that function. When var is used in
 top-level code, it declares global variables, visible throughout the
 JavaScript program.
If no initializer is specified for a variable with the var statement, the variable’s initial value is
 undefined.
Note that the var statement can
 also appear as part of the for and
 for/in loops:
for(var i = 0; i < 10; i++) console.log(i);
for(var i = 0, j=10; i < 10; i++,j--) console.log(i*j);
for(var i in o) console.log(i);

function

The function keyword is
 used to define functions. We saw it in function definition expressions
 in Function Definition. It can also be used in statement
 form. Consider the following two functions:
// Expression assigned to a variable
var f = function(x) { return x+1; }
// The statement form includes the variable name
function f(x) { return x+1; }
A function declaration statement has the following
 syntax:
function funcname([arg1 [, arg2 [..., argn]]]) {
 statements
}
funcname is an identifier that names
 the function being declared. The function name is followed by a
 comma-separated list of parameter names in parentheses. These
 identifiers can be used within the body of the function to refer to the
 argument values passed when the function is invoked.
The body of the function is composed of any number of JavaScript
 statements, contained within curly braces. These statements are not executed when the
 function is defined. Instead, they are associated with the new function
 object for execution when the function is invoked.
Here are some more examples of function declarations:
function hypotenuse(x, y) {
 return Math.sqrt(x*x + y*y);
}

function factorial(n) { // A recursive function
 if (n <= 1) return 1;
 return n * factorial(n - 1);
}
Function declaration statements may appear in top-level JavaScript
 code, or they may be nested within other functions. When nested,
 however, function declarations may only appear at the top level of the
 function they are nested within. That is, function definitions may not
 appear within if statements, while loops, or any other
 statements.
Function declaration statements differ from function definition
 expressions in that they include a function name. Both forms create a
 new function object, but the function declaration statement also
 declares the function name as a variable and assigns the function object
 to it. Like variables declared with var, functions defined with function
 definition statements are implicitly “hoisted” to the top of the
 containing script or function, so that all functions in a script or all
 nested functions in a function are declared before any other code is
 run. This means that you can invoke a JavaScript function before you
 declare it.

Conditionals

Conditional statements execute or skip other statements
 depending on the value of a specified expression. These statements are the
 decision points of your code, and they are also sometimes known as
 “branches.” If you imagine a JavaScript interpreter
 following a path through your code, the conditional statements are the
 places where the code branches into two or more paths and the interpreter
 must choose which path to follow.
if

The if statement is the
 fundamental control statement that allows JavaScript to execute
 statements conditionally. This statement has two forms. The first
 is:
if (expression)
 statement
In this form, expression is evaluated.
 If the resulting value is truthy, statement
 is executed. If expression is falsy,
 statement is not executed:
if (username == null) // If username is null or undefined,
 username = "John Doe"; // define it
Note that the parentheses around the
 expression are a required part of the syntax
 for the if statement.
The second form of the if
 statement introduces an else clause
 that is executed when expression is false. Its syntax is:
if (expression)
 statement1
else
 statement2
This form of the statement executes
 statement1 if
 expression is truthy and executes statement2 if
 expression is falsy. For example:
if (n == 1) {
 console.log("You have 1 new message.");
}
else {
 console.log("You have " + n + " new messages.");
}

else if

The if/else statement
 evaluates an expression and executes one of two pieces of code,
 depending on the outcome. But what about when you need to execute one of
 many pieces of code? One way to do this is with an else if statement. else if is not really a JavaScript statement,
 but simply a frequently used programming idiom that results when
 repeated if/else statements are
 used:
if (n == 1) {
 // Execute code block #1
}
else if (n == 2) {
 // Execute code block #2
}
else if (n == 3) {
 // Execute code block #3
}
else {
 // If all else fails, execute block #4
}
There is nothing special about this code. It is just a series of
 if statements, where each following
 if is part of the else clause of the previous statement. Using
 the else if idiom is preferable to,
 and more legible than, writing these statements out in their
 syntactically equivalent, fully nested form:
if (n == 1) {
 // Execute code block #1
}
else {
 if (n == 2) {
 // Execute code block #2
 }
 else {
 if (n == 3) {
 // Execute code block #3
 }
 else {
 // If all else fails, execute block #4
 }
 }
}

switch

An if statement causes
 a branch in the flow of a program’s execution, and you can use the
 else if idiom to perform a multiway
 branch. This is not the best solution, however, when all of the branches
 depend on the value of the same expression. In this case, it is wasteful
 to repeatedly evaluate that expression in multiple if statements.
The switch statement handles
 exactly this situation. The switch
 keyword is followed by an expression in parentheses and a block of code
 in curly braces:
switch(expression) {
 statements
}
However, the full syntax of a switch statement is more complex than this.
 Various locations in the block of code are labeled with the case keyword followed by an expression and a
 colon. case is like a labeled
 statement, except that instead of giving the labeled statement a name,
 it associates an expression with the statement. When a switch executes, it computes the value of
 expression and then looks for a case label whose expression evaluates to the
 same value (where sameness is determined by the === operator). If it finds one, it starts
 executing the block of code at the statement labeled by the case. If it does not find a case with a matching value, it looks for a
 statement labeled default:. If there
 is no default: label, the switch statement skips the block of code
 altogether.
The following switch statement
 is equivalent to the repeated if/else
 statements shown in the previous section:
switch(n) {
 case 1: // Start here if n === 1
 // Execute code block #1.
 break; // Stop here
 case 2: // Start here if n === 2
 // Execute code block #2.
 break; // Stop here
 case 3: // Start here if n === 3
 // Execute code block #3.
 break; // Stop here
 default: // If all else fails...
 // Execute code block #4.
 break; // stop here
}
Note the break keyword used at
 the end of each case in the code
 above. The break statement, described
 later in this chapter, causes the interpreter to break out of the
 switch statement and continue with
 the statement that follows it. The case clauses in a switch statement specify only the
 starting point of the desired code; they do not
 specify any ending point. In the absence of break statements, a switch statement begins executing its block of
 code at the case label that matches
 the value of its expression and continues
 executing statements until it reaches the end of the block. Usually you
 will want to end every case with a
 break or return statement.
Here is a more realistic example of the switch statement; it converts a value to a
 string in a way that depends on the type of the value:
function convert(x) {
 switch(typeof x) {
 case 'number': // Convert to a hexadecimal integer
 return x.toString(16);
 case 'string': // Enclose it in quotes
 return '"' + x + '"';
 default: // Any other type
 return String(x);
 }
}
Note that in the two previous examples, the case keywords are followed by number and
 string literals, respectively. This is how the switch statement is most often used in
 practice, but note that the ECMAScript standard allows each case to be followed by an arbitrary
 expression.

Loops

To understand conditional statements, we imagined the
 JavaScript interpreter following a branching path through your source
 code. The looping statements are those that bend that
 path back upon itself to repeat portions of your code. JavaScript has four
 looping statements: while, do/while, for, and for/in.
while

The while statement is
 JavaScript’s basic loop. It has the following syntax:
while (expression)
 statement
To execute a while statement,
 the interpreter first evaluates expression.
 If the value of the expression is falsy, then the interpreter skips over
 the statement that serves as the loop body
 and moves on to the next statement in the program. If, on the other
 hand, the expression is truthy, the
 interpreter executes the statement and
 repeats, jumping back to the top of the loop and evaluating
 expression again. Another way to say this is
 that the interpreter executes statement
 repeatedly while the
 expression is truthy. Note that you can
 create an infinite loop with the syntax while(true).
Here is an example of a while
 loop that prints the numbers from 0 to 9:
var count = 0;
while (count < 10) {
 console.log(count);
 count++;
}
As you can see, the variable count starts off at 0 and is incremented each
 time the body of the loop runs. Once the loop has executed 10 times, the
 expression becomes false (i.e., the
 variable count is no longer less than
 10), the while statement finishes,
 and the interpreter can move on to the next statement in the
 program.

do/while

The do/while loop is
 like a while loop, except that the
 loop expression is tested at the bottom of the loop rather than at the
 top. This means that the body of the loop is always executed at least
 once. The syntax of this relatively uncommon loop is:
do
 statement
 while (expression);
Here’s an example of a do/while
 loop:
function printArray(a) {
 var len = a.length, i = 0;
 if (len == 0)
 console.log("Empty Array");
 else {
 do {
 console.log(a[i]);
 } while (++i < len);
 }
}

for

The for statement
 simplifies loops that follow a common pattern. Most loops have a counter
 variable of some kind. This variable is initialized before the loop
 starts and is tested before each iteration of the loop. Finally, the
 counter variable is incremented or otherwise updated at the end of the
 loop body, just before the variable is tested again. In this kind of
 loop, the initialization, the test, and the update are the three crucial
 manipulations of a loop variable. The for statement encodes each of these three
 manipulations as an expression and makes those expressions an explicit
 part of the loop syntax:
for(initialize ; test ; increment)
 statement
initialize, test, and increment are three expressions
 (separated by semicolons) that are responsible for initializing,
 testing, and incrementing the loop variable. Putting them all in the
 first line of the loop makes it easy to understand what a for loop is doing and prevents mistakes such
 as forgetting to initialize or increment the loop variable.
The simplest way to explain how a for loop works is to show the equivalent
 while loop:
initialize;
 while(test) {
 statement
 increment;
 }
In other words, the initialize
 expression is evaluated once, before the loop begins. To be useful, this
 expression must have side effects (usually an assignment). JavaScript
 also allows initialize to be a var variable declaration statement so that you
 can declare and initialize a loop counter at the same time. The
 test expression is evaluated before each
 iteration and controls whether the body of the loop is executed. If
 test evaluates to a truthy value, the
 statement that is the body of the loop is
 executed. Finally, the increment expression
 is evaluated. Again, this must be an expression with side effects in
 order to be useful. Generally, either it is an assignment expression, or
 it uses the ++ or -- operators.
We can print the numbers from 0 to 9 with a for loop like the following. Contrast it with
 the equivalent while loop shown
 above:
for(var count = 0; count < 10; count++)
 console.log(count);

for/in

The for/in statement
 uses the for keyword, but it is
 a completely different kind of loop than the regular for loop. A for/in loop looks like this:
for (variable in object)
 statement
variable typically names a variable,
 but it may also be a var statement
 that declares a single variable. object is an
 expression that evaluates to an object. As usual,
 statement is the statement or statement block
 that serves as the body of the loop.
It is easy to use a regular for
 loop to iterate through the elements of an array:
// Assign array indexes to variable i
for(var i = 0; i < a.length; i++)
 console.log(a[i]); // Print each array element
The for/in loop makes it easy
 to do the same for the properties of an object:
// Assign property names of o to variable p
for(var p in o)
 console.log(o[p]); // Print each property
To execute a for/in statement,
 the JavaScript interpreter first evaluates the
 object expression and then executes the body
 of the loop once for each enumerable property of the resulting object.
 Before each iteration, however, the interpreter assigns the name of the
 property to the variable.
The for/in loop does not
 actually enumerate all properties of an object, only the
 enumerable properties (see Property Attributes). The various built-in methods defined
 by core JavaScript are not enumerable. All objects have a toString() method, for example, but the
 for/in loop does
 not enumerate this toString property.
 In addition to built-in methods, many other properties of the built-in
 objects are nonenumerable. All properties and methods defined by your
 code are enumerable, however. (But in ECMAScript 5, you can make them
 nonenumerable using techniques explained in Property Attributes.)
The ECMAScript specification does not describe the order
 in which the for/in loop enumerates
 the properties of an object. In practice, however, JavaScript
 implementations from all major browser vendors enumerate the properties
 of simple objects in the order in which they were defined, with older
 properties enumerated first. If an object was created as an object
 literal, its enumeration order is the same order that the properties
 appear in the literal. Note that this enumeration order does not apply
 to all objects. In particular, if an object includes array index
 properties, those properties may be enumerated in numeric order rather
 than in creation order.

Jumps

Another category of JavaScript statements are jump
 statements. As the name implies, these cause the JavaScript
 interpreter to jump to a new location in the source code. The break statement makes the interpreter jump to
 the end of a loop or other statement. continue makes the interpreter skip the rest of
 the body of a loop and jump back to the top of a loop to begin a new
 iteration. JavaScript allows statements to be named, or
 labeled, and the break and continue can identify the target loop or other
 statement label. The return statement
 makes the interpreter jump from a function invocation back to the code
 that invoked it and also supplies the value for the invocation. The
 throw statement raises, or “throws,” an
 exception and is designed to work with the try/catch/finally statement, which establishes a
 block of exception handling code.
Labeled Statements

Any statement may be labeled by
 preceding it with an identifier and a colon:
identifier: statement
By labeling a statement, you give it a name that you can use to
 refer to it elsewhere in your program. You can label any statement,
 although it is only useful to label statements that have bodies, such as
 loops and conditionals. By giving a loop a name, you can use break and continue statements inside the body of the
 loop to exit the loop or to jump directly to the top of the loop to
 begin the next iteration. break and
 continue are the only JavaScript
 statements that use statement labels; they are covered later in this
 chapter. Here is an example of a labeled while loop and a continue statement that uses the label.
mainloop: while(token != null) {
 // Code omitted...
 continue mainloop; // Jump to top of the named loop
 // More code omitted...
}

break

The break statement,
 used alone, causes the innermost enclosing loop or switch statement to exit immediately. Its
 syntax is simple:
break;
Because it causes a loop or switch to exit, this form of the break statement is legal only if it appears
 inside one of these statements.
You’ve already seen examples of the break statement within a switch statement. In loops, it is typically
 used to exit prematurely when, for whatever reason, there is no longer
 any need to complete the loop. When a loop has complex termination
 conditions, it is often easier to implement some of these conditions
 with break statements rather than
 trying to express them all in a single loop expression. The following
 code searches the elements of an array for a particular value. The loop
 terminates in the normal way when it reaches the end of the array; it
 terminates with a break statement if
 it finds what it is looking for in the array:
for(var i = 0; i < a.length; i++) {
 if (a[i] == target) break;
}
Although it is rarely used in practice, JavaScript allows the
 break keyword to be followed by a
 statement label (just the identifier, with no colon):
break labelname;
When break is used with a
 label, it jumps to the end of, or terminates, the enclosing statement
 that has the specified label. It is a syntax error to use break in this form if there is no enclosing
 statement with the specified label. With this form of the break statement, the named statement need not
 be a loop or switch: break can “break out of” any enclosing
 statement.

continue

The continue statement
 is similar to the break statement.
 Instead of exiting a loop, however, continue restarts a loop at the next
 iteration. The continue statement’s
 syntax is just as simple as the break
 statement’s:
continue;
The continue statement can also
 be used with a label:
continue labelname;
The continue statement, in both
 its labeled and unlabeled forms, can be used only within the body of a
 loop. Using it anywhere else causes a syntax error.
The following example shows an unlabeled continue statement being used to skip the rest
 of the current iteration of a loop when an error occurs:
for(i = 0; i < data.length; i++) {
 if (isNaN(data[i])) continue; // Skip non-numbers.
 total += data[i];
}
Like the break statement, the
 continue statement can be used in its
 labeled form within nested loops, when the loop to be restarted is not
 the immediately enclosing loop.

return

Recall that function invocations are expressions and that
 all expressions have values. A return
 statement within a function specifies the value of invocations of that
 function. Here’s the syntax of the return statement:
return expression;
A return statement may appear
 only within the body of a function. It is a syntax error for it to
 appear anywhere else. When the return
 statement is executed, the function that contains it returns the value
 of expression to its caller. For
 example:
function square(x) { return x*x; } // Returns x squared
square(2) // This invocation evaluates to 4
With no return statement, a
 function invocation simply executes each of the statements in the
 function body in turn until it reaches the end of the function, and then
 returns to its caller. In this case, the invocation expression evaluates
 to undefined. The return statement can also be used without an
 expression to make the function return
 undefined before it reaches the end
 of its body. For example:
function display_object(o) {
 // Return immediately if o is null or undefined.
 if (!o) return;
 // Rest of function goes here...
}

throw

An exception is a signal that indicates
 that some sort of exceptional condition or error has occurred. To
 throw an exception is to signal such an error or
 exceptional condition. To catch an exception is to
 handle it—to take whatever actions are necessary or appropriate to recover from the exception.
 In JavaScript, exceptions are thrown whenever a runtime error occurs and
 whenever the program explicitly throws one using the throw statement. Exceptions are caught with
 the try/catch/finally statement,
 which is described next.
The throw statement has the
 following syntax:
throw expression;
expression may evaluate to a value of
 any type. You might throw a number that represents an error code or a
 string that contains a human-readable error message. The Error class and
 its subclasses are used when the JavaScript interpreter itself throws an
 error, and you can use them as well. An Error object has a name property that
 specifies the type of error and a message property that
 holds the string passed to the constructor function (see the Error class
 in the reference section). Here is an example function that throws an
 Error object when invoked with an invalid argument:
function factorial(x) {
 // If x is invalid, throw an exception!
 if (x < 0) throw new Error("x must not be negative");
 // Otherwise, compute a value and return normally
 for(var f = 1; x > 1; f *= x, x--) /* empty */ ;
 return f;
}
When an exception is thrown, the JavaScript interpreter
 immediately stops normal program execution and jumps to the nearest
 exception handler. Exception handlers are written using the catch clause of the
 try/catch/finally statement, which is
 described in the next section. If the block of code in which the
 exception was thrown does not have an associated catch clause, the interpreter checks the next
 highest enclosing block of code to see if it has an exception handler
 associated with it. This continues until a handler is found. If an
 exception is thrown in a function that does not contain a try/catch/finally statement to handle it, the
 exception propagates up to the code that invoked the function. In this
 way, exceptions propagate up through the lexical structure of JavaScript
 methods and up the call stack. If no exception handler is ever found,
 the exception is treated as an error and is reported to the user.

try/catch/finally

The try/catch/finally
 statement is JavaScript’s exception handling mechanism. The try clause of this statement simply defines
 the block of code whose exceptions are to be handled. The try block is followed by a catch clause, which is a block of statements
 that are invoked when an exception occurs anywhere within the try block. The catch clause is followed by a finally block
 containing cleanup code that is guaranteed to be executed, regardless of
 what happens in the try block. Both
 the catch and finally blocks are optional, but a try block must be accompanied by at least one
 of these blocks. The try, catch, and finally blocks all begin and end with
 curly braces. These braces are a required part of the
 syntax and cannot be omitted, even if a clause contains only a single
 statement.
The following code illustrates the syntax and purpose of the
 try/catch/finally statement:
try {
 // Normally, this code runs from the top of the block
 // to the bottom without problems. But it can
 // sometimes throw an exception, either directly, with
 // a throw statement, or indirectly, by calling a
 // method that throws an exception.
}
catch (e) {
 // The statements in this block are executed if, and
 // only if, the try block throws an exception. These
 // statements can use the local variable e to refer
 // to the Error object or other value that was thrown.
 // This block may handle the exception somehow, may
 // ignore the exception by doing nothing, or may
 // rethrow the exception with throw.
}
finally {
 // This block contains statements that are always
 // executed, regardless of what happens in the try
 // block. They are executed when the try block
 // terminates:
 // 1) normally, after reaching the bottom
 // 2) because of a break, continue, or return
 // 3) with an exception handled by a catch above
 // 4) with an uncaught exception that is propagating
}
Note that the catch keyword is
 followed by an identifier in parentheses. This identifier is like a
 function parameter. When an exception is caught, the value associated
 with the exception (an Error object, for example) is assigned to this
 parameter. Unlike regular variables, the identifier associated with a
 catch clause has block scope—it is
 only defined within the catch
 block.
Here is a realistic example of the try/catch statement. It uses the factorial() method
 defined in the previous section and the client-side JavaScript methods
 prompt() and alert() for input and
 output:
try {
 // Ask the user to enter a number
 var n = Number(prompt("Enter an number", ""));
 // Compute the factorial of the number,
 // assuming the input is valid.
 var f = factorial(n);
 // Display the result
 alert(n + "! = " + f);
}
catch (ex) { // We end up here on invalid input.
 alert(ex); // Tell the user what the error is.
}

Miscellaneous Statements

This section describes the remaining three JavaScript
 statements—with, debugger, and use
 strict.
with

When JavaScript looks up the value of a variable, it first looks
 at the variables defined within the current function, then (if the
 function is nested) at variables defined in enclosing functions and
 finally at global variables. The with statement
 temporarily alters the way variables are looked up by specifying an
 object whose properties should be treated as if they were variables. It
 has the following syntax:
with (object)
 statement
This statement executes statement
 somewhat as if it was the body of a nested function and the properties
 of object were parameters passed to that
 function.
The with statement is forbidden
 in strict mode (see “use strict”) and
 should be considered deprecated in nonstrict mode: avoid using it
 whenever possible. JavaScript code that uses with is difficult to optimize and is likely to
 run much more slowly than the equivalent code written without the
 with statement.

debugger

The debugger statement
 normally does nothing. If, however, a debugger program is available and
 is running, then an implementation may (but is not required to) perform
 some kind of debugging action. In practice, this statement acts like a
 breakpoint: execution of JavaScript code stops and you can use the
 debugger to print variables’ values, examine the call stack, and so on.
 Suppose, for example, that you are getting an exception in your function
 f() because it is being called with
 an undefined argument, and you can’t figure out where this call is
 coming from. To help you in debugging this problem, you might alter
 f() so that it begins like
 this:
function f(o) {
 if (o === undefined) debugger; // Debug hook
 // The rest of the function goes here.
}
Now, when f() is called with no
 argument, execution will stop, and you can use the debugger to inspect
 the call stack and find out where this incorrect call is coming
 from.
The debugger statement was
 formally added to the language by ECMAScript
 5, but it has been implemented by major browser vendors for
 quite some time.

“use strict”

"use strict" is a
 directive introduced in ECMAScript 5.
 Directives are not statements (but are close enough that "use strict" is documented here). "use strict" does not involve any JavaScript
 keywords: it is simply a JavaScript string literal expression, and is
 ignored by ECMAScript 3 interpreters. When placed at the beginning of a
 script or of a function body, however, it has special meaning to an
 ECMAScript 5 interpreter.
The purpose of a "use strict"
 directive is to indicate that the
 code that follows (in the script or function) is strict code. Strict code is executed
 in strict mode. The strict mode of
 ECMAScript 5 is a restricted
 subset of the language that fixes a few important language deficiencies
 and provides stronger error checking and increased security. The most
 important differences between strict mode and non-strict mode are the
 following:
	The with statement is not
 allowed in strict mode.

	In strict mode, all variables must be declared: a
 ReferenceError is thrown if you assign a value to an identifier that
 is not a declared variable, parameter, or property of the global
 object. (In nonstrict mode, this implicitly declares a global
 variable by adding a new property to the global object.)

	In strict mode, functions invoked as functions (rather than as
 methods) have a this value of
 undefined. (In nonstrict mode,
 functions invoked as functions are always passed the global object
 as their this value.) This
 difference can be used to determine whether an implementation
 supports strict mode:
var hasStrictMode = (function() {
 "use strict";
 return this === undefined;
}());

	In strict mode, assignments to nonwritable properties and
 attempts to create new properties on nonextensible objects throw a
 TypeError. (In nonstrict mode, these attempts fail silently.)
 Similarly, in strict mode, an attempt to delete a nonconfigurable
 property or a nonproperty value throws a TypeError or SyntaxError.
 (In nonstrict mode, the attempt fails and the delete expression evaluates to false.)

	In strict mode, code passed to eval() cannot
 declare variables or define functions in the caller’s scope as it
 can in nonstrict mode. Instead, variable and function definitions
 live in a new scope created for the eval(). This scope is discarded when the
 eval() returns.

	In strict mode, octal integer literals (beginning with a 0
 that is not followed by an x) are not allowed. (In nonstrict mode,
 some implementations allow octal literals.)

	In strict mode, the identifiers eval and arguments are treated like keywords, and
 you are not allowed to change their value.

Chapter 5. Objects

JavaScript’s fundamental datatype is the object. An object is a composite value:
 it aggregates multiple values (primitive values or other objects) and allows
 you to store and retrieve those values by name. An object is an unordered
 collection of properties, each of which has a name and
 a value. Property names are strings, so we can say that objects map strings
 to values. This string-to-value mapping goes by various names: you are
 probably already familiar with the fundamental data structure under the name
 “hash,” “hashtable,” “dictionary,” or “associative array.” An object is more
 than a simple string-to-value map, however. In addition to maintaining its
 own set of properties, a JavaScript object also inherits the properties of
 another object, known as its “prototype.” The methods of an object are
 typically inherited properties, and this “prototypal inheritance” is a key
 feature of JavaScript.
JavaScript objects are dynamic—properties can usually be added and
 deleted—but they can be used to simulate the static objects and “structs” of
 statically typed languages. They can also be used (by ignoring the value
 part of the string-to-value mapping) to represent sets of strings.
Any value in JavaScript that is not a string, a number, true, false,
 null, or undefined is an object.
Objects are mutable and are manipulated by
 reference rather than by value: if the variable x refers to an object, and the code var y = x; is executed, the variable y holds a reference to the same object, not a copy
 of that object. Any modifications made to the object through the variable
 y are also visible through the variable
 x.
Creating Objects

Objects can be created with object literals, with the new keyword, and (in ECMAScript 5) with the
 Object.create() function.
Object Literals

The easiest way to create an object is to include an object
 literal in your JavaScript code. An object literal is a comma-separated
 list of colon-separated name:value pairs, enclosed within curly braces. A property name is a JavaScript identifier
 or a string literal (the empty string is allowed). A property value is
 any JavaScript expression; the value of the expression (it may be a
 primitive value or an object value) becomes the value of the property.
 Here are some examples:
var empty = {}; // An object with no properties
var point = { x:0, y:0 }; // Two properties
var point2 = { // Another object literal
 x:point.x, // With more complex properties
 y:point.y+1
};
var book = { // Nonidentifier property names are quoted
 "main title": "JavaScript", // space in property name
 'sub-title': "Pocket Ref", // punctuation in name
 "for": "all audiences", // reserved word name
};

Creating Objects with new

The new operator creates and
 initializes a new object. The new keyword must be
 followed by a function invocation. A function used in this way is called
 a constructor and serves to initialize a newly
 created object. Core JavaScript includes built-in constructors for native types. For
 example:
var o = new Object(); // An empty object: same as {}.
var a = new Array(); // An empty array: same as [].
var d = new Date(); // A Date for the current time.
var r = new RegExp("js"); // A pattern matching object.
In addition to these built-in constructors, it is common to define
 your own constructor functions to initialize newly created objects.
 Doing so is covered in Chapter 8.

Prototypes

Before we can cover the third object creation technique,
 we must pause for a moment to explain prototypes. Every JavaScript
 object has a second JavaScript object (or null, but this is rare) associated with it.
 This second object is known as a prototype, and the first object
 inherits properties from the prototype.
All objects created by object literals have the same prototype
 object, and we can refer to this prototype object in JavaScript code as
 Object.prototype.
 Objects created using the new keyword
 and a constructor invocation use the value of the prototype property of
 the constructor function as their prototype. So the object created by
 new Object() inherits from Object.prototype just as the object created by
 {} does. Similarly, the object
 created by new Array() uses Array.prototype as its prototype, and the
 object created by new Date() uses
 Date.prototype as its
 prototype.
Object.prototype is one of the
 rare objects that has no prototype: it does not inherit any properties.
 Other prototype objects are normal objects that do have a prototype. All
 of the built-in constructors (and most user-defined constructors) have a
 prototype that inherits from Object.prototype. For example, Date.prototype inherits properties from
 Object.prototype, so a Date object
 created by new Date() inherits
 properties from both Date.prototype
 and Object.prototype. This linked
 series of prototype objects is known as a prototype chain.
An explanation of how property inheritance works is in Property Inheritance. We’ll learn how to query the prototype of an object in The prototype Attribute. And Chapter 8 explains the
 connection between prototypes and constructors in more detail: it shows
 how to define new “classes” of objects by writing a constructor function
 and setting its prototype property to
 the prototype object to be used by the “instances” created with that
 constructor.

Object.create()

ECMAScript 5 defines a method, Object.create(), that creates a new object,
 using its first argument as the prototype of that object. Object.create() also takes an optional second
 argument that describes the properties of the new object. This second argument is covered in Property Attributes.
Object.create() is a static
 function, not a method invoked on individual objects. To use it, simply
 pass the desired prototype object:
// o1 inherits properties x and y.
var o1 = Object.create({x:1, y:2});
You can pass null to create a
 new object that does not have a prototype, but if you do this, the newly
 created object will not inherit anything, not even basic methods like
 toString() (which means it won’t work
 with the + operator either):
// o2 inherits no properties or methods.
var o2 = Object.create(null);
If you want to create an ordinary empty object (like the object
 returned by {} or new Object()), pass Object.prototype:
// o3 is like {} or new Object().
var o3 = Object.create(Object.prototype);
The ability to create a new object with an arbitrary prototype
 (put another way: the ability to create an “heir” for any object) is a
 powerful one, and we can simulate it in ECMAScript 3 with a function
 like the one in Example 5-1.
Example 5-1. Creating a new object that inherits from a prototype
// inherit() returns a newly created object that inherits
// properties from the prototype object p. It uses the
// ECMAScript 5 function Object.create() if it is defined,
// and otherwise falls back to an older technique.
function inherit(p) {
 if (p == null) // p must be a non-null
 throw TypeError();
 if (Object.create) // Use Object.create()
 return Object.create(p); // if it is defined.
 var t = typeof p; // Make sure p is an object
 if (t !== "object" && t !== "function")
 throw TypeError();
 function f() {}; // Define a dummy constructor.
 f.prototype = p; // Set its prototype property
 return new f(); // Use it to create an "heir" of p.
}

The code in the inherit() function will
 make more sense after we’ve covered constructors in Chapter 8.

Properties

The most important part of an object are its properties. The
 sections that follow explain them in detail.
Querying and Setting Properties

To obtain the value of a property, you can use the dot
 (.) or square bracket ([]) operators described
 in Property Access. The left-hand side should be an
 expression whose value is an object. If using the dot operator, the right-hand must be a simple identifier
 that names the property. If using square brackets, the value within the
 brackets must be an expression that evaluates to a string (or number)
 that contains the desired property name:
// Get the "author" property of the book.
var author = book.author;
// Get the "surname" property of the author.
var name = author.surname
// Get the "main title" property of the book.
var title = book["main title"]
To create or set a property, use a dot or square brackets as you
 would to query the property, but put them on the left-hand side of an
 assignment expression:
// Create an "edition" property of book.
book.edition = 6;
// Set the "main title" property.
book["main title"] = "ECMAScript";

Property Inheritance

JavaScript objects have a set of “own properties,” and
 they also inherit a set of properties from their prototype object. To
 understand this, we must consider property access in more detail. The
 examples in this section use the inherit() function from
 Example 5-1 in order to create objects with specified
 prototypes.
Suppose you query the property x in the object o. If o
 does not have an own property with that name, the prototype object of
 o is queried for the property
 x. If the prototype object does not
 have an own property by that name, but has a prototype itself, the query
 is performed on the prototype of the prototype. This continues until the
 property x is found or until an
 object with a null prototype is
 searched. As you can see, the prototype attribute
 of an object creates a chain or linked list from which properties are
 inherited:
// o inherits object methods from Object.prototype
var o = {}
o.x = 1; // and has an own property x.
// p inherits properties from o and Object.prototype
var p = inherit(o);
p.y = 2; // and has an own property y.
// q inherits properties from p, o, and Object.prototype
var q = inherit(p);
q.z = 3; // and has an own property z.
// toString is inherited from Object.prototype
var s = q.toString();
// x and y are inherited from o and p
q.x + q.y // => 3
Now suppose you assign to the property x of the object o. If o
 already has an own (noninherited) property named x, then the assignment simply changes the
 value of this existing property. Otherwise, the assignment creates a new
 property named x on the object
 o. If o previously inherited the property x, that inherited property is now hidden by
 the newly created own property with the same name.

Deleting Properties

The delete operator
 (The delete Operator) removes a property from an object.
 Its single operand should be a property access expression. Surprisingly,
 delete does not operate on the value
 of the property but on the property itself:
delete book.author; // book now has no author.
delete book["main title"]; // or a "main title", either.
The delete operator only
 deletes own properties, not inherited ones. (To delete an inherited
 property, you must delete it from the prototype object in which it is
 defined. Doing this affects every object that inherits from that
 prototype.)

Testing Properties

JavaScript objects can be thought of as sets of
 properties, and it is often useful to be able to test for membership in
 the set—to check whether an object has a property with a given name. You
 can do this with the in operator,
 with the hasOwnProperty() and
 propertyIsEnumerable() methods, or simply by querying
 the property.
The in operator expects a
 property name (as a string) on its left side and an object on its right.
 It returns true if the object has an
 own property or an inherited property by that name:
var o = { x: 1 }
"x" in o; // true: o has an own property "x"
"y" in o; // false: o doesn't have a property "y"
"toString" in o; // true: o inherits a toString property
The hasOwnProperty() method of
 an object tests whether that object has an own property with the given
 name. It returns false for inherited
 properties:
var o = { x: 1 }
o.hasOwnProperty("x"); // true: o has an own property x
o.hasOwnProperty("y"); // false: o has no property y
// toString is an inherited property
o.hasOwnProperty("toString"); // false
The propertyIsEnumerable()
 method refines the hasOwnProperty()
 test. It returns true only if the
 named property is an own property and its enumerable attribute is
 true. Certain built-in properties are
 not enumerable. Properties created by normal JavaScript code are
 enumerable unless you’ve used one of the ECMAScript 5 methods shown
 later to make them nonenumerable:
var o = inherit({ y: 2 });
o.x = 1;
// o has an own enumerable property x
o.propertyIsEnumerable("x"); // true
// y is inherited, not own
o.propertyIsEnumerable("y"); // false
// false: the toString method is not enumerable
Object.prototype.propertyIsEnumerable("toString");
Instead of using the in operator, it is
 often sufficient to simply query the property and use !== to make sure it is
 not undefined:
var o = { x: 1 }
o.x !== undefined; // true: o has a property x
o.y !== undefined; // false: o has no property y
o.toString !== undefined; // true: o inherits it
There is one thing the in
 operator can do that the simple property access technique shown above
 cannot do. in can distinguish between properties that do not
 exist and properties that exist but have been set to undefined. Consider this code:
var o = { x: undefined }
o.x !== undefined // false: property is undefined
o.y !== undefined // false: property doesn't exist
"x" in o // true: property exists
"y" in o // false: property doesn't exist
delete o.x; // Delete the property x
"x" in o // false: it doesn't exist anymore

Enumerating Properties

Instead of testing for the existence of individual
 properties, we sometimes want to iterate through or obtain a list of all
 the properties of an object. This is usually done with the for/in loop, although
 ECMAScript 5 provides two handy alternatives.
The for/in loop was covered in
 for/in. It runs the body of the loop once for each
 enumerable property (own or inherited) of the specified object,
 assigning the name of the property to the loop variable. Built-in
 methods that objects inherit are not enumerable, but the properties that your
 code adds to objects are enumerable (unless you use one of the functions
 described later to make them nonenumerable). For example:
// This object has three enumerable own properties
var o = {x:1, y:2, z:3};
// Its inherited methods are not enumerable:
o.propertyIsEnumerable("toString") // => false
// This loop prints x, y and z but not toString
for(p in o) console.log(p);
Some utility libraries add new methods (or other properties) to
 Object.prototype so
 that they are inherited by, and available to, all objects. Prior to
 ECMAScript 5, however, there is no way to make these added methods
 nonenumerable, so they are enumerated by for/in loops. To guard against this, you might
 want to filter the properties returned by for/in. Here are two ways you might do
 so:
for(p in o) {
 if (!o.hasOwnProperty(p)) // Skip inherited props
 continue;
}

for(p in o) {
 if (typeof o[p] === "function") // Skip methods
 continue;
}
Here is a utility function that uses a for/in
 loop to copy the properties of one object to another:
/*
 * Copy the enumerable properties of p to o,
 * and return o. If o and p have a property with the
 * same name, o's property is overwritten.
 */
function extend(o, p) {
 for(prop in p) { // For all props in p.
 o[prop] = p[prop]; // Add the property to o.
 }
 return o;
}
In addition to the for/in loop,
 ECMAScript 5 defines two functions that enumerate property names. The
 first is Object.keys(), which returns an array of the names of the enumerable
 own properties of an object. The second ECMAScript 5 property
 enumeration function is Object.getOwnPropertyNames(). It works like
 Object.keys() but returns the names
 of all the own properties of the specified object, not just the
 enumerable properties.

Serializing Properties and Objects

Object serialization is the process of
 converting an object’s state to a string from which it can later be
 restored. ECMAScript 5 provides the native functions JSON.stringify() and
 JSON.parse() to
 serialize and restore JavaScript objects. These functions use the JSON
 data interchange format (see http://json.org).
 JSON stands for “JavaScript Object Notation,” and its syntax is very
 similar to that of JavaScript object and array literals:
o = {x:1, y:[false,null,""]}; // A test object
s = JSON.stringify(o); // '{"x":1,"y":[false,null,""]}'
p = JSON.parse(s); // p is a deep copy of o
The native implementation of these functions in ECMAScript 5 was
 modeled very closely after the public-domain ECMAScript 3 implementation
 available at http://json.org/json2.js. For
 practical purposes, the implementations are the same, and you can use
 these ECMAScript 5 functions in ECMAScript 3 with this json2.js module.
Note that JSON syntax is a subset of
 JavaScript syntax, and it cannot represent all JavaScript values.
 Objects, arrays, strings, finite numbers, true, false, and null are supported and can be serialized and
 restored.

Property Getters and Setters

We’ve said that a property has a name and a value. In ECMAScript 5
 (and in recent ECMAScript 3 versions of major browsers other than IE)
 the value may be replaced by one or two methods, known as a getter and a setter. Properties defined by getters
 and setters are sometimes known as accessor properties to distinguish
 them from data properties that have a simple
 value.
When a program queries the value of an accessor property,
 JavaScript invokes the getter method (passing no arguments). The return
 value of this method becomes the value of the property access
 expression. When a program sets the value of an accessor property,
 JavaScript invokes the setter method, passing the value of the
 right-hand side of the assignment. This method is responsible for
 “setting,” in some sense, the property value. The return value of the
 setter method is ignored.
The easiest way to define accessor properties is with an extension
 to the object literal syntax:
var o = {
 // An ordinary data property
 data_prop: value,

 // An accessor property as a pair of functions
 get accessor_prop() { /* return value */ },
 set accessor_prop(value) { /* set value */ }
};
Accessor properties are defined as one or two functions whose name
 is the same as the property name, and with the function keyword
 replaced with get and/or set. Note that no colon is used to separate
 the name of the property from the functions that access that property,
 but that a comma is still required after the function body to separate
 the method from the next method or data property. As an example,
 consider the following object that represents a 2-D Cartesian point. It
 has ordinary data properties to represent the x and
 y coordinates of the point, and it has accessor
 properties for the equivalent polar coordinates of the point:
var p = {
 // x and y are regular read-write data properties.
 x: 1.0,
 y: 1.0,

 // r is a read-write property with getter and setter.
 // Don't forget to put a comma after accessor methods.
 get r() {
 return Math.sqrt(this.x*this.x + this.y*this.y);
 },
 set r(newvalue) {
 var oldvalue = Math.sqrt(this.x*this.x + this.y*this.y);
 var ratio = newvalue/oldvalue;
 this.x *= ratio;
 this.y *= ratio;
 },

 // theta is a read-only accessor property.
 get theta() { return Math.atan2(this.y, this.x); }
};
Here is another example of a useful object with an accessor
 property:
// Generate strictly increasing serial numbers
var serialnum = {
 // This data property holds the next serial number.
 // The $ hints that this is a private property.
 $n: 0,

 // Return the current value and increment it
 get next() { return this.$n++; },

 // Set a new n, but only if it is >= current n.
 set next(n) {
 if (n >= this.$n) this.$n = n;
 else throw "serial number can only be increased";
 }
};

Property Attributes

In addition to a name and value, properties have
 attributes that specify whether they can be written, enumerated, and
 configured. In ECMAScript 3, there is no way to set these attributes:
 all properties created by ECMAScript 3 programs are writable,
 enumerable, and configurable, and there is no way to change this. This
 section explains the ECMAScript 5 API for querying and setting property
 attributes.
For the purposes of this section, we are going to consider getter
 and setter methods of an accessor property to be property attributes.
 Following this logic, we’ll even say that the value of a data property
 is an attribute as well. Thus, we can say that a property has a name and
 four attributes. The four attributes of a data property are value, writable, enumerable, and configurable. Accessor properties
 don’t have a value attribute or a
 writable attribute: their writability is determined
 by the presence or absence of a setter. So the four attributes of an
 accessor property are get, set, enumerable,
 and configurable.
The ECMAScript 5 methods for querying and setting the attributes
 of a property use an object called a property descriptor to represent the
 set of four attributes. A property descriptor object has properties with
 the same names as the attributes of the property it describes. Thus, the
 property descriptor object of a data property has properties named
 value, writable, enumerable, and configurable. And the descriptor for an
 accessor property has get and
 set properties instead of value and writable. The writable, enumerable, and configurable properties are boolean values,
 and the get and set properties are function values, of
 course.
To obtain the property descriptor for a named property of a
 specified object, call Object.getOwnPropertyDescriptor():
// Returns {value: 1, writable:true,
// enumerable:true, configurable:true}
Object.getOwnPropertyDescriptor({x:1}, "x");

// Query the theta property of the p object from above.
// Returns { get: /*func*/, set:undefined,
 enumerable:true, configurable:true}
Object.getOwnPropertyDescriptor(p, "theta");
As implied by its name, Object.getOwnPropertyDescriptor() works only
 for own properties. To query the attributes of inherited properties, you
 must explicitly traverse the prototype chain (see Object.getPrototypeOf() in The prototype Attribute).
To set the attributes of a property, or to create a new property
 with the specified attributes, call Object.defineProperty(), passing the object to
 be modified, the name of the property to be created or altered, and the
 property descriptor object:
var o = {}; // Start with no properties at all
// Add a nonenumerable data property x with value 1.
Object.defineProperty(o, "x", { value : 1,
 writable: true,
 enumerable: false,
 configurable: true});

// Check that the property is there but is nonenumerable
o.x; // => 1
Object.keys(o) // => []

// Now modify the property x so that it is read-only
Object.defineProperty(o, "x", { writable: false });

// Try to change the value of the property
o.x = 2; // Fails silently or TypeError in strict mode
o.x // => 1

// The property is still configurable,
// so we can change its value like this:
Object.defineProperty(o, "x", { value: 2 });
o.x // => 2

// Now change x to an accessor property
Object.defineProperty(o, "x", {
 get: function() { return 0; }
});
o.x // => 0
The property descriptor you pass to Object.defineProperty()
 does not have to include all four attributes. If you’re creating a new
 property, then omitted attributes are taken to be false or undefined. If you’re modifying an existing
 property, then the attributes you omit are simply left unchanged. Note
 that this method alters an existing own property or creates a new own
 property, but it will not alter an inherited property.
If you want to create or modify more than one property at a time,
 use Object.defineProperties(). The first argument
 is the object that is to be modified. The second argument is an object
 that maps the names of the properties to be created or modified to the
 property descriptors for those properties. For example:
var p = Object.defineProperties({}, {
 x: { value: 1, writable: true,
 enumerable:true, configurable:true },
 y: { value: 1, writable: true,
 enumerable:true, configurable:true },
 r: {
 get: function() {
 return Math.sqrt(this.x*this.x+this.y*this.y)
 },
 enumerable:true,
 configurable:true
 }
});
We saw the ECMAScript 5 method Object.create() in
 Creating Objects. We learned there that the first
 argument to that method is the prototype object for the newly created
 object. This method also accepts a second optional argument, which is the same as the second
 argument to Object.defineProperties(). If you pass a set
 of property descriptors to
 Object.create(), then they are used
 to add properties to the newly created object.

Object Attributes

Every object has associated prototype,
 class, and extensible attributes.
The prototype Attribute

An object’s prototype attribute specifies the
 object from which it inherits properties. The prototype attribute is set
 when an object is created. Recall from Prototypes
 that objects created from object literals use Object.prototype as their prototype. Objects
 created with new use the value of the
 prototype property of their
 constructor function as their prototype. And objects created with
 Object.create() use the first
 argument to that function (which may be null) as their prototype.
In ECMAScript 5, you can query the prototype of any object by
 passing that object to Object.getPrototypeOf(). There is no
 equivalent function in ECMAScript 3, but it is sometimes possible to
 determine the prototype of an object o using the expression o.constructor.prototype.
To determine whether one object is the prototype of (or is part of
 the prototype chain of) another object, use the isPrototypeOf() method.
 To find out if p is the prototype of
 o write p.isPrototypeOf(o). For example:
var p = {x:1}; // Define a prototype object.
var o = Object.create(p); // Inherit from that prototype.
p.isPrototypeOf(o) // => true: o inherits from p.
Object.prototype.isPrototypeOf(p) // True for any object.
Note that isPrototypeOf()
 performs a function similar to the instanceof operator.

The class Attribute

An object’s class attribute is a
 string that provides information about the type of the object. Neither
 ECMAScript 3 nor ECMAScript 5
 provide any way to set this attribute, and there is only an indirect
 technique for querying it. The default toString() method (inherited from Object.prototype) returns a string of the
 form:
[object class]
So to obtain the class of an object, you can invoke this toString() method on it, and extract the
 eighth through the second-to-last characters of the returned string. The
 tricky part is that many objects inherit other, more useful toString() methods, and to invoke the correct
 version of toString(), we must do so
 indirectly, using the Function.call() method (see Indirect Invocation). Example 5-2 defines a
 function that returns the class of any object you pass it.
Example 5-2. A classof() function
function classof(o) {
 if (o === null) return "Null";
 if (o === undefined) return "Undefined";
 return Object.prototype.toString.call(o).slice(8,-1);
}

The extensible Attribute

The extensible attribute of an object
 specifies whether new properties can be added to the object or not.
 ECMAScript 5 defines functions for querying and setting the
 extensibility of an object. To determine whether an object is
 extensible, pass it to Object.isExtensible().
 To make an object nonextensible, pass it to Object.preventExtensions().
Object.seal() works
 like Object.preventExtensions(), but
 in addition to making the object nonextensible, it also makes all of the
 own properties of that object nonconfigurable. This means that new
 properties cannot be added to the object, and existing properties cannot
 be deleted or configured. You can use Object.isSealed() to
 determine whether an object is sealed.
Object.freeze() locks
 objects down even more tightly. In addition to making the object
 nonextensible and its properties nonconfigurable, it also makes all of
 the object’s own data properties read-only. Use Object.isFrozen() to
 determine if an object is frozen.
It is important to understand that there is no way to undo the effects of Object.preventExtensions(), Object.seal(), and Object.freeze(). Also, these functions affect
 only the object they are passed: they have no effect on the prototype of
 that object. Finally, note that these three functions all return the
 object that they are passed, which means that you can use them in nested
 function invocations:
// Create a sealed object with a frozen prototype
// and a nonenumerable property
o = Object.seal(Object.create(Object.freeze({x:1}),
 {y: { value: 2,
 writable: true}}));

Chapter 6. Arrays

An array is an ordered collection of values.
 Each value is called an element, and each element has a numeric
 position in the array, known as its index. JavaScript arrays are untyped: an array element may be of any
 type, and different elements of the same array may be of different types.
 Array elements may even be objects or other arrays, which allows you to
 create complex data structures, such as arrays of objects and arrays of
 arrays. JavaScript arrays are zero-based and use 32-bit indexes: the
 index of the first element is 0, and the highest possible index is 4294967294
 (232−2), for a maximum array size of
 4,294,967,295 elements. JavaScript arrays are dynamic: they grow or shrink
 as needed and there is no need to declare a fixed size for the array when
 you create it or to reallocate it when the size changes. Every JavaScript
 array has a length property that
 specifies the number of elements in the array.
JavaScript arrays are a specialized form of JavaScript object, and
 array indexes are really little more than property names that happen to be
 integers. Implementations typically optimize arrays so that access to
 numerically indexed array elements is faster than access to regular object
 properties.
Arrays inherit properties from Array.prototype, which defines a rich set of array
 manipulation methods. Most of these methods are generic, which means that they work
 correctly not only for true arrays, but for any “array-like object.” In
 ECMAScript 5, strings behave like
 arrays of characters.
Creating Arrays

The easiest way to create an array is with an array literal,
 which is simply a comma-separated list of array elements within square
 brackets:
var empty = []; // An array with no elements
var primes = [2, 3, 5, 7]; // An array of 5 numbers
var misc = [{}, true, "a"]; // Elements of various types
The values in an array literal need not be constants; they may be
 arbitrary expressions:
var base = 1024;
var table = [base, base+1, base+2, base+3];
Array literals can contain object literals or other array
 literals:
var b = [[1,{x:1, y:2}], [2, {x:3, y:4}]];
If an array literal contains two commas in a row, with no value
 between, then an element is missing and the array is
 sparse. Missing elements are undefined:
var count = [1,,3]; // Elements at indexes 0 and 2.
count[1] // => undefined
var undefs = [,,]; // No elements but length of 2
Array literal syntax allows an optional trailing comma, so [1,2,] has a length of 2, not 3.
Another way to create an array is with the Array() constructor. You
 can invoke this constructor in three distinct ways:
	Call it with no arguments:
var a = new Array();
This method creates an empty array with no elements and is
 equivalent to the array literal [].

	Call it with a single numeric argument, which specifies a
 length:
var a = new Array(10);
This technique creates an array with the specified length. This
 form of the Array() constructor can
 be used to preallocate an array when you know in advance how many
 elements will be required. Note that no values are stored in the
 array, and the array index properties “0,” “1,” and so on are not even
 defined for the array.

	Explicitly specify two or more array elements or a single
 nonnumeric element for the array:
var a = new Array(5, 4, 3, 2, 1, "testing");
In this form, the constructor arguments become the elements of the new array. Using an
 array literal is almost always simpler than this usage of the Array() constructor.

Array Elements and Length

You access an element of an array using the [] operator. A reference to the array should
 appear to the left of the brackets. An arbitrary expression that has (or
 can be converted to) a nonnegative integer value should be inside the
 brackets. You can use this syntax to both read and write the value of an
 element of an array. Thus, the following are all legal:
var a = ["world"]; // Start with a one-element array
var value = a[0]; // Read element 0
a[1] = 3.14; // Write element 1
i = 2;
a[i] = 3; // Write element 2
a[i + 1] = "hello"; // Write element 3
a[a[i]] = a[0]; // Read 0 and 2, write 3
Remember that arrays are a specialized kind of object. The square
 brackets used to access array elements work just like the square brackets
 used to access object properties. JavaScript converts the numeric array
 index you specify to a string—the index 1 becomes the string "1"—then uses that string as a property
 name.
Every array has a length property, and it
 is this property that makes arrays different from regular JavaScript
 objects. The length property specifies
 the number of elements in the array (assuming no missing elements). Its
 value is one more than the highest index in the array:
[].length // => 0: the array has no elements
['a','b','c'].length // => 3: highest index is 2
All arrays are objects, and you can create properties of any name on
 them. What is special about arrays is that when you use property names
 that are (or convert to) nonnegative integers less than
 232–1, the array automatically maintains the
 value of the length property for
 you.
The length property is writable
 and if you set the length property to a
 nonnegative integer n smaller than its
 current value, any array elements whose index is greater than or equal to
 n are deleted from the array:
a=[1,2,3,4,5]; // Start with a 5-element array.
a.length = 3; // a is now [1,2,3].
a.length = 0; // Delete all elements. a is [].
a.length = 5; // Length 5, but no elts, like new Array(5)
You can also set the length
 property of an array to a value larger than its current value. Doing this
 does not actually add any new elements to the array, it simply creates a
 sparse area at the end of the array.

Iterating Arrays

The most common way to loop through the elements of an array
 is with a for loop (for):
var keys = Object.keys(o); // An array of property names
var values = [] // Store property values here
for(var i = 0; i < keys.length; i++) { // For each index
 var key = keys[i]; // Get the key
 values[i] = o[key]; // Store the value
}
In nested loops, or other contexts where performance is critical,
 you may sometimes see this basic array iteration loop optimized so that
 the array length is only looked up once rather than on each
 iteration:
for(var i = 0, len = keys.length; i < len; i++) {
 // loop body remains the same
}
ECMAScript 5 defines a number of new methods for iterating array
 elements by passing each one, in index order, to a function that you
 define. The forEach() method is the
 most general of these methods:
var data = [1,2,3,4,5]; // An array to iterate
var sumOfSquares = 0; // Update this on each iteration
data.forEach(function(x) { // Pass each elt to this func
 sumOfSquares += x*x; // add up squares
 });
sumOfSquares // =>55: 1+4+9+16+25

Multidimensional Arrays

JavaScript does not support true multidimensional arrays,
 but you can approximate them with arrays of arrays. To access a value in
 an array of arrays, simply use the []
 operator twice. For example, suppose the variable matrix is an array of arrays of numbers. Every
 element in matrix[x] is an array of
 numbers. To access a particular number within this array, you would write
 matrix[x][y]. Here is a concrete
 example that uses a two-dimensional array as a multiplication
 table:
// Create a multidimensional array
var table = new Array(10); // 10 rows of the table
for(var i = 0; i < table.length; i++)
 table[i] = new Array(10); // Each row has 10 columns

// Initialize the array
for(var row = 0; row < table.length; row++) {
 for(col = 0; col < table[row].length; col++) {
 table[row][col] = row*col;
 }
}

// Use the multidimensional array to compute 5*7
var product = table[5][7]; // 35

Array Methods

Arrays have a number of useful methods, demonstrated in the
 sections below.
join()

The Array.join() method
 converts all the elements of an array to strings and concatenates them,
 returning the resulting string. You can specify an optional string that
 separates the elements in the resulting string. If no separator string
 is specified, a comma is used:
var a = [1, 2, 3];
a.join(); // => "1,2,3"
a.join(" "); // => "1 2 3"
a.join(""); // => "123"
var b = new Array(5); // Length 5 but no elements
b.join('-') // => '----': a string of 4 hyphens
The Array.join() method is the
 inverse of the method String.split(), which creates an array by breaking a string into
 pieces.

reverse()

The Array.reverse()
 method reverses the order of the elements of an array and returns the
 reversed array. It does this in place; in other words, it doesn’t create
 a new array with the elements rearranged but instead rearranges them in
 the already existing array:
var a = [1,2,3];
a.reverse().join() // => "3,2,1"
a[0] // => 3: a is now [3,2,1]

sort()

Array.sort() sorts the
 elements of an array in place and returns the sorted array. When
 sort() is called with no arguments,
 it sorts the array elements in alphabetical order:
var a = new Array("banana", "cherry", "apple");
a.sort();
var s = a.join(", "); // s == "apple, banana, cherry"
If an array contains undefined elements, they are sorted to the
 end of the array.
To sort an array into some order other than alphabetical, you must
 pass a comparison function as an argument to sort(). This function decides which of its two
 arguments should appear first in the sorted array. If the first argument
 should appear before the second, the comparison function should return a
 number less than zero. If the first argument should appear after the
 second in the sorted array, the function should return a number greater
 than zero. And if the two values are equivalent (i.e., if their order is
 irrelevant), the comparison function should return 0. So, for example,
 to sort array elements into numerical rather than alphabetical order,
 you might do this:
var a = [33, 4, 1111, 222];
a.sort(); // Alphabetical: 1111, 222, 33, 4
a.sort(function(a,b) { // Numerical: 4, 33, 222, 1111
 return a-b; // Returns < 0, 0, or > 0
 });
a.sort(function(a,b) {return b-a}); // Reverse numerical
You can perform a case-insensitive alphabetical sort as
 follows:
a = ['ant', 'Bug', 'cat']
a.sort(); // case-sensitive sort: ['Bug','ant',cat']
a.sort(function(s,t) { // Case-insensitive sort
 var a = s.toLowerCase();
 var b = t.toLowerCase();
 if (a < b) return -1;
 if (a > b) return 1;
 return 0;
 }); // => ['ant','Bug','cat']

concat()

The Array.concat()
 method creates and returns a new array that contains the elements of the
 original array on which concat() was
 invoked, followed by each of the arguments to concat(). If any of these arguments is
 itself an array, then it is the array elements that are concatenated,
 not the array itself. concat() does not modify the array on
 which it is invoked. Here are some examples:
var a = [1,2,3];
a.concat(4, 5) // Returns [1,2,3,4,5]
a.concat([4,5]); // Returns [1,2,3,4,5]
a.concat([4,5],[6,7]) // Returns [1,2,3,4,5,6,7]
a.concat(4, [5,[6,7]]) // Returns [1,2,3,4,5,[6,7]]

slice()

The Array.slice()
 method returns a slice, or subarray, of the
 specified array. Its two arguments specify the start and end of the
 slice to be returned. The returned array contains the element specified
 by the first argument and all subsequent elements up to, but not
 including, the element specified by the second argument. If only one
 argument is specified, the returned array contains all elements from the
 start position to the end of the array. If either argument is negative,
 it specifies an array element relative to the last element in the array.
 Note that slice() does not modify the
 array on which it is invoked:
var a = [1,2,3,4,5];
a.slice(0,3); // Returns [1,2,3]
a.slice(3); // Returns [4,5]
a.slice(1,-1); // Returns [2,3,4]
a.slice(-3,-2); // Returns [3]

splice()

The Array.splice()
 method is a general-purpose method for inserting or removing elements
 from an array. Unlike slice() and
 concat(), splice() modifies the array on which it is
 invoked.
The first argument to splice()
 specifies the array position at which the insertion and/or deletion is
 to begin. The second argument specifies the number of elements that
 should be deleted from (spliced out of) the array. If this second
 argument is omitted, all array elements from the start element to the
 end of the array are removed. splice() returns an array of the deleted
 elements, or an empty array if no elements were deleted. For
 example:
var a = [1,2,3,4,5,6,7,8];
a.splice(4); // Returns [5,6,7,8]; a is [1,2,3,4]
a.splice(1,2); // Returns [2,3]; a is [1,4]
a.splice(1,1); // Returns [4]; a is [1]
The first two arguments to splice() specify which array elements are to
 be deleted. These arguments may be followed by any number of additional
 arguments that specify elements to be inserted into the array, starting
 at the position specified by the first argument. For example:
var a = [1,2,3,4,5];
a.splice(2,0,'a','b'); // =>[]; a is [1,2,'a','b',3,4,5]
a.splice(2,2,3); // =>['a','b']; a is [1,2,3,3,4,5]
Note that, unlike concat(),
 splice() inserts arrays themselves,
 not the elements of those arrays.

push() and pop()

The push() and pop() methods allow you
 to work with arrays as if they were stacks. The push() method appends one or more new elements
 to the end of an array and returns the new length of the array. The
 pop() method does the reverse: it
 deletes the last element of an array, decrements the array length, and
 returns the value that it removed. Note that both methods modify the
 array in place rather than produce a modified copy of the
 array:
var stack = []; // stack: []
stack.push(1,2); // stack: [1,2] Returns 2
stack.pop(); // stack: [1] Returns 2
stack.push(3); // stack: [1,3] Returns 2
stack.pop(); // stack: [1] Returns 3
stack.push([4,5]); // stack: [1,[4,5]] Returns 2
stack.pop() // stack: [1] Returns [4,5]
stack.pop(); // stack: [] Returns 1

unshift() and shift()

The unshift() and
 shift() methods behave
 much like push() and pop(), except that they insert and remove
 elements from the beginning of an array rather than from the end.
 unshift() adds an element or elements
 to the beginning of the array, shifts the existing array elements up to
 higher indexes to make room, and returns the new length of the array.
 shift() removes and returns the first
 element of the array, shifting all subsequent elements down one place to
 occupy the newly vacant space at the start of the array:
var a = []; // a:[]
a.unshift(1); // a:[1] Returns: 1
a.unshift(22); // a:[22,1] Returns: 2
a.shift(); // a:[1] Returns: 22
a.unshift(3,[4,5]); // a:[3,[4,5],1] Returns: 3
a.shift(); // a:[[4,5],1] Returns: 3
a.shift(); // a:[1] Returns: [4,5]
a.shift(); // a:[] Returns: 1

toString()

An array, like any JavaScript object, has a toString() method. For
 an array, this method converts each of its elements to a string (calling
 the toString() methods of its
 elements, if necessary) and outputs a comma-separated list of those
 strings. Note that the output does not include square brackets or any
 other sort of delimiter around the array value. For example:
[1,2,3].toString() // => '1,2,3'
["a", "b", "c"].toString() // => 'a,b,c'
[1, [2,'c']].toString() // => '1,2,c'

ECMAScript 5 Array Methods

ECMAScript 5 defines nine new array methods for iterating,
 mapping, filtering, testing, reducing, and searching arrays. Most of the
 methods accept a function as their first argument and invoke that function
 once for each element (or at least some elements) of the array. In most
 cases, the function you supply is invoked with three arguments: the value
 of the array element, the index of the array element, and the array
 itself. Often, you only need the first of these argument values and can
 ignore the second and third values. Most of the ECMAScript 5 array methods
 that accept a function as their first argument accept an optional second
 argument. If specified, the function is invoked as if it is a method of
 this second argument. That is, the second argument you pass becomes the
 value of the this keyword inside of
 the function you pass. The return value of the function you pass is
 important, but different methods handle the return value in different
 ways. None of the ECMAScript 5 array
 methods modify the array on which they are invoked, but the function you
 pass to the array methods may modify the array, of course.
forEach()

The forEach() method
 iterates through an array, invoking a function you specify for each
 element:
var data = [1,2,3,4,5]; // Compute the sum of elements
var sum = 0; // Start at 0
data.forEach(function(value) { sum += value; });
sum // => 15

// Now increment each array element
data.forEach(function(v, i, a) { a[i] = v + 1; });
data // => [2,3,4,5,6]

map()

The map() method passes
 each element of the array on which it is invoked to the function you
 specify, and returns a new array containing the values returned by that
 function:
a = [1, 2, 3];
b = a.map(function(x) { return x*x; }); // b is [1, 4, 9]

filter()

The filter() method returns
 an array containing a subset of the elements of the array on which it is
 invoked. The function you pass to it should be predicate: a function
 that returns true or false. The predicate is invoked just as for
 forEach() and map(). If the return value is true, or a value that converts to true, then the element passed to the predicate
 is a member of the subset and is added to the array that will become the
 return value:
a = [5, 4, 3, 2, 1];
a.filter(function(x) { return x < 3 }); // => [2,1]
a.filter(function(x,i) { return i%2==0 }); // => [5,3,1]

every() and some()

The every() and some() methods are
 array predicates: they apply a predicate function you specify to the
 elements of the array, and then return true or false.
The every() method is like the
 mathematical “for all” quantifier ∀: it returns true if and only if your predicate function
 returns true for all elements in the
 array:
a = [1,2,3,4,5];
// Are all values less than 10?
a.every(function(x) { return x < 10; }) // => true
// Are all valeus even?
a.every(function(x) { return x%2 === 0; }) // => false
The some() method is like the
 mathematical “there exists” quantifier ∃: it returns true if there exists at least one element in
 the array for which the predicate returns true, and returns false if and only if the predicate returns
 false for all elements of the array:
a = [1,2,3,4,5];
// Does a have any even numbers?
a.some(function(x) { return x%2===0; }) // => true
// Does a have any elements that are not numbers?
a.some(isNaN) // => false
Note that both every() and
 some() stop iterating array elements
 as soon as they know what value to return. Note also that every() returns true and some returns false when invoked on an empty array.

reduce(), reduceRight()

The reduce() and reduceRight() methods
 combine the elements of an array, using the function you specify, to
 produce a single value. This is a common operation in functional
 programming and also goes by the names “inject” and “fold.” Examples
 help illustrate how it works:
var a = [1,2,3,4,5]
// Compute the sume of the elements
a.reduce(function(x,y) { return x+y }, 0); // => 15
// Compute the product of the elements
a.reduce(function(x,y) { return x*y }, 1); // => 120
// Compute the largest element
a.reduce(function(x,y) { return (x>y)?x:y; }); // => 5
reduce() takes two arguments.
 The first is the function that performs the reduction operation. The
 task of this reduction function is to somehow combine or reduce two
 values into a single value, and to return that reduced value. In the
 examples above, the functions combine two values by adding them,
 multiplying them, and choosing the largest. The second (optional)
 argument is an initial value to pass to the function.
Functions used with reduce()
 are different than the functions used with forEach() and map(). The familiar value, index, and array
 values are passed as the second, third, and fourth arguments. The first
 argument is the accumulated result of the reduction so far. On the first
 call to the function, this first argument is the initial value you passed
 as the second argument to reduce().
 On subsequent calls, it is the value returned by the previous invocation
 of the function. In the first example above, the reduction function is
 first called with arguments 0 and 1. It adds these and returns 1. It is
 then called again with arguments 1 and 2 and it returns 3. Next it
 computes 3+3=6, then 6+4=10, and finally 10+5=15. This final value, 15,
 becomes the return value of reduce().
You may have noticed that the third call to reduce() above has only a single argument:
 there is no initial value specified. When you invoke reduce() like this with no initial value, it
 uses the first element of the array as the initial value. This means
 that the first call to the
 reduction function will have the first and second array elements as its
 first and second arguments. In the sum and product examples above, we
 could have omitted the initial value argument.
reduceRight() works just like
 reduce(), except that it processes
 the array from highest index to lowest (right-to-left), rather than from
 lowest to highest.

indexOf() and lastIndexOf()

indexOf() and
 lastIndexOf() search an
 array for an element with a specified value, and return the index of the
 first such element found, or –1 if none is found. indexOf() searches the array from beginning to
 end, and lastIndexOf() searches from
 end to beginning:
a = [0,1,2,1,0];
a.indexOf(1) // => 1: a[1] is 1
a.lastIndexOf(1) // => 3: a[3] is 1
a.indexOf(3) // => -1: no element has value 3
Unlike the other methods described in this section, indexOf() and lastIndexOf() do not take a function argument.
 The first argument is the value to search for. The second argument is
 optional: it specifies the array index at which to begin the search. If
 this argument is omitted, indexOf()
 starts at the beginning and lastIndexOf() starts at the end. Negative
 values are allowed for the second argument and are treated as an offset
 from the end of the array.

Array Type

We’ve seen throughout this chapter that arrays are objects
 with some special behavior. Given an unknown object, it is often useful to
 be able to determine whether it is an array or not. In ECMAScript 5, you
 can do this with the Array.isArray() function:
Array.isArray([]) // => true
Array.isArray({}) // => false
We can write an isArray()
 function that works in any version of JavaScript like this:
var isArray = Array.isArray || function(o) {
 var ts = Object.prototype.toString;
 return typeof o === "object" &&
 	 ts.call(o) === "[object Array]";
};

Array-Like Objects

As we’ve seen, arrays are objects that have a length property with
 special behavior. An “array-like” object is an ordinary JavaScript object
 that has numeric properties names and a length property. These “array-like” objects
 actually do occasionally appear in practice, and although you cannot
 directly invoke array methods on them or expect special behavior from the
 length property, you can still iterate
 through them with the same code you’d use for a true array:
// An array-like object
var a = {"0":"a", "1":"b", "2":"c", length:3};
// Iterate through it as if it were a real array
var total = 0;
for(var i = 0; i < a.length; i++)
 total += a[i];
Many array algorithms work just as well with array-like objects as
 they do with real arrays and the JavaScript array methods are purposely
 defined to be generic, so that they work correctly when applied to
 array-like objects. Since array-like objects do not inherit from Array.prototype, you cannot
 invoke array methods on them directly. You can invoke them indirectly
 using the Function.call method (see Indirect Invocation), however:
// An array-like object
var a = {"0":"a", "1":"b", "2":"c", length:3};
Array.prototype.join.call(a, "+") // => "a+b+c"
Array.prototype.map.call(a, function(x) {
 return x.toUpperCase();
}) // => ["A","B","C"]
// Make a true array copy of a n array-like object
Array.prototype.slice.call(a, 0) // => ["a","b","c"]
Some browsers define generic array functions directly on the
 Array constructor. In browsers that
 support them, the examples above can be rewritten like this:
var a = {"0":"a", "1":"b", "2":"c", length:3};
Array.join(a, "+")
Array.slice(a, 0)
Array.map(a, function(x) { return x.toUpperCase(); })

Strings as Arrays

In ECMAScript 5 (and in many recent browser
 implementations—including IE8—prior to ECMAScript 5), strings behave like
 read-only arrays. Instead of accessing individual characters with the
 charAt() method, you can
 use square brackets:
var s = test;
s.charAt(0) // => "t"
s[1] // => "e"
The typeof operator still returns
 “string” for strings, of course, and the Array.isArray() method returns false if you pass it a string.
The primary benefit of indexable strings is simply that we can
 replace calls to charAt() with square
 brackets, which are more concise and readable. The fact that strings
 behave like arrays also means, however, that we can apply generic array
 methods to them. For example:
s = "Java"
Array.prototype.join.call(s, " ") // => "J a v a"
Array.prototype.filter.call(s, function(x) {
 return x.match(/[^aeiou]/); // Match nonvowels
 }).join("") // => "Jv"

Chapter 7. Functions

A function is a block of JavaScript code
 that is defined once but may be executed, or invoked,
 any number of times. You may already be familiar with the concept of a
 function under a name such as subroutine or procedure. JavaScript functions are
 parameterized: a function definition may
 include a list of identifiers, known as parameters,
 that work as local variables for the body of the function. Function
 invocations provide values, or arguments, for the function’s parameters.
 Functions often use their argument values to compute a return value that becomes the value of
 the function-invocation expression. In addition to the arguments, each
 invocation has another value—the invocation context—that is the value of
 the this keyword.
If a function is assigned to the property of an object, it is known as
 a method of that object. When a function is invoked
 on or through an object, that
 object is the invocation context or this
 value for the function. Functions designed to initialize a newly created
 object are called constructors. Constructors were
 described in Creating Objects and will be covered again in
 Chapter 8.
In JavaScript, functions are objects, and they can be manipulated by
 programs. JavaScript can assign functions to variables and pass them to
 other functions, for example. Since functions are objects, you can set
 properties on them, and even invoke methods on them.
JavaScript function definitions can be nested within other functions,
 and they have access to any variables that are in scope where they are
 defined. This means that JavaScript functions are closures, and it enables important and
 powerful programming techniques.
Defining Functions

Functions are defined with the function keyword, which can be used in a
 function definition expression (Function Definition) or in a
 function declaration statement (function). In
 either form, function definitions begin with the keyword function followed by these components:
	An identifier that names the function. The name is a required
 part of function declaration statements: it is used as the name of a
 variable, and the newly defined function object is assigned to the
 variable. For function definition expressions, the name is optional:
 if present, the name refers to the function object only within the
 body of the function itself.

	A pair of parentheses around a comma-separated list of zero or more identifiers. These
 identifiers are the parameter names for the function, and they behave
 like local variables within the body of the function.

	A pair of curly braces with zero or more JavaScript statements
 inside. These statements are the body of the function: they are
 executed whenever the function is invoked.

Example 7-1 shows some function definitions
 using both statement and expression forms. Notice that a function defined
 as an expression is only useful if it is part of a larger expression, such
 as an assignment or invocation, that does something with the newly defined
 function.
Example 7-1. Defining JavaScript functions
// Print the name and value of each property of o.
// Return undefined.
function printprops(o) {
 for(var p in o)
 console.log(p + ": " + o[p] + "\n");
}

// Compute distance between points (x1,y1) and (x2,y2).
function distance(x1, y1, x2, y2) {
 var dx = x2 - x1;
 var dy = y2 - y1;
 return Math.sqrt(dx*dx + dy*dy);
}

// A recursive function (one that calls itself) that
// computes factorials. Recall that x! is the product of
// x and all positive integers less than it.
function factorial(x) {
 if (x <= 1) return 1;
 return x * factorial(x-1);
}

// This expression defines a function that sqares its
// argument. Note that we assign it to a variable
var square = function(x) { return x*x; }

// Function expressions can include names,
// which is useful for recursion.
var f = function fact(x) {
 if (x <= 1) return 1;
 else return x*fact(x-1);
};

// Function expressions can also be used
// as arguments to other functions:
data.sort(function(a,b) { return a-b; });

// Function expressions are sometimes
// defined and then immediately invoked:
var tensquared = (function(x) {return x*x;}(10));

Note that the function name is optional for functions defined as
 expressions. A function declaration statement actually
 declares a variable and assigns a function object to
 it. A function definition expression, on the other hand, does not declare
 a variable. A name is allowed for functions, like the factorial function
 above, that need to refer to themselves. If a function definition
 expression includes a name, the local function scope for that function
 will include a binding of that name to the function object. In effect, the
 function name becomes a local variable within the function. Most functions
 defined as expressions do not need names, which makes their definition
 more compact. Function definition expressions are particularly well suited
 for functions that are used only once, as in the last two examples
 above.
As described in function, function
 declaration statements are “hoisted” to the top of the enclosing script or
 the enclosing function, so that functions declared in this way may be
 invoked from code that appears before they are defined. This is not true
 for functions defined as expressions, however: in order to invoke a
 function, you must be able to refer to it, and you can’t refer to a
 function defined as an expression until it is assigned to a variable. So
 functions defined with expressions cannot be invoked before they are
 defined.
Notice that most, but not all, of the functions in Example 7-1 contain a return statement (return).
 The return statement causes the
 function to stop executing and to return
 the value of its expression (if any) to the caller. If the
 return statement does not have an
 associated expression, it returns the undefined value. If a function does not contain
 a return statement, it simply executes
 each statement in the function body and returns the undefined value to the caller.
Nested Functions

In JavaScript, functions may be nested within other
 functions. For example:
function hypotenuse(a, b) {
 function square(x) { return x*x; }
 return Math.sqrt(square(a) + square(b));
}
The interesting thing about nested functions is their variable
 scoping rules: they can access the parameters and variables of the
 function (or functions) they are nested within. In the code above, for
 example, the inner function square() can read and
 write the parameters a and b defined by the outer function hypotenuse(). These scope rules for nested functions are very important, and we’ll consider them
 again in Closures.
As noted in function, function declaration
 statements are not true statements, and the ECMAScript specification
 only allows them as top-level statements. They can appear in global
 code, or within other functions, but they cannot appear inside of loops,
 conditionals, or try/catch/finally or
 with statements. Note that this
 restriction applies only to functions declared as statements. Function
 definition expressions may appear anywhere in your JavaScript
 code.

Invoking Functions

The JavaScript code that makes up the body of a function is not
 executed when the function is defined but when it is invoked. JavaScript
 functions can be invoked in four ways:
	as functions,

	as methods,

	as constructors, and

	indirectly through their call() and apply()
 methods.

Function Invocation

Functions are invoked as functions or as methods with an
 invocation expression (Invocation). An
 invocation expression consists of a function expression that evaluates
 to a function object followed by an open parenthesis, a comma-separated
 list of zero or more argument expressions, and a close parenthesis. If
 the function expression is a property-access expression—if the function is the property
 of an object or an element of an
 array—then it is a method invocation expression. That case will be
 explained below. The following code includes a number of regular
 function invocation expressions:
printprops({x:1});
var total = distance(0,0,2,1) + distance(2,1,3,5);
var probability = factorial(5)/factorial(13);
In an invocation, each argument expression (the ones between the
 parentheses) is evaluated, and the resulting values become the arguments
 to the function. These values are assigned to the parameters named in
 the function definition. In the body of the function, a reference to a
 parameter evaluates to the corresponding argument value.
For regular function invocation, the return value of the function
 becomes the value of the invocation expression. If the function returns
 because the interpreter reaches the
 end, the return value is undefined. If the function returns because the
 interpreter executes a return, the
 return value is the value of the expression that follows the return or undefined if the return statement has no value.
For function invocation in ECMAScript 3 and nonstrict ECMAScript 5, the invocation context (the
 this value) is the global object. In
 strict mode, however, the invocation context is undefined.
Functions written to be invoked as functions do not typically use
 the this keyword at all. It
 can be used, however, to determine whether strict mode is in
 effect:
// Define and invoke a function to determine
// if we're in strict mode.
var strict = (function() { return !this; }());

Method Invocation

A method is nothing more than a
 JavaScript function that is stored in a property of an object. If you
 have a function f and an object
 o, you can define a method named
 m of o with the following line:
o.m = f;
Having defined the method m()
 of the object o, invoke it like
 this:
o.m();
Or, if m() expects two
 arguments, you might invoke it like this:
o.m(x, y);
The code above is an invocation expression: it includes a function
 expression o.m and two argument
 expressions, x and y. The function expression is itself a
 property access expression (Property Access), and this
 means that the function is invoked as a method rather than as a regular
 function.
The arguments and return value of a method invocation are handled
 exactly as described above for regular function invocation. Method
 invocations differ from function invocations in one important way,
 however: the invocation context. Property access expressions consist of
 two parts: an object (in this case o)
 and a property name (m). In a method
 invocation expression like this, the object o becomes the invocation context, and the
 function body can refer to that object by using the keyword this. Here is a concrete example:
var calculator = { // An object literal
 operand1: 1,
 operand2: 1,
 add: function() {
 // The this keyword refers to this object.
 this.result = this.operand1 + this.operand2;
 }
};
calculator.add(); // A method invocation to compute 1+1.
calculator.result // => 2
Most method invocations use the dot notation for property access,
 but property access expressions that use square brackets also cause
 method invocation. The following are both method invocations, for
 example:
o["m"](x,y); // Another way to write o.m(x,y).
a = [function(x) { return x+1 }];
a[0](z) // Also a method invocation
Method invocations may also involve more complex property access
 expressions:
// Invoke toUpperCase() method on customer.surname
customer.surname.toUpperCase();
// Invoke method m() on return value of f()
f().m();
Note that this is a keyword,
 not a variable or property name. JavaScript syntax does not allow you to
 assign a value to this.
Unlike variables, the this
 keyword does not have a scope, and nested functions do not inherit the
 this value of the containing
 function. If a nested function is invoked as a method, its this value is the object it was invoked on. If
 a nested function is invoked as a function, its this value will be either the global object
 (nonstrict mode) or undefined (strict
 mode). It is a common mistake to assume that a nested function invoked
 as a function can use this to obtain
 the invocation context of the outer function. If you want to access the
 this value of the outer function, you
 need to store that value into a variable that is in scope for the inner
 function. It is common to use the variable self for this purpose. For example:
var o = { // An object o.
 m: function() { // Method m of the object.
 var self = this; // Save the this value
 console.log(this === o); // Prints "true"
 f(); // Now call nested function

 function f() {
 console.log(this === o); // prints "false"
 console.log(self === o); // prints "true"
 }
 }
};
o.m(); // Invoke the method m on the object o.

Constructor Invocation

If a function or method invocation is preceded by the
 keyword new, then it is
 a constructor invocation.
 (Constructor invocations were introduced in Initializers
 and Creating Objects with new, and constructors will be
 covered in more detail in Chapter 8.) Constructor
 invocations differ from regular
 function and method invocations in their handling of arguments,
 invocation context, and return value.
If a constructor invocation includes an argument list in
 parentheses, those argument expressions are evaluated and passed to the
 function in the same way they would be for function and method
 invocations. But if a constructor has no parameters, then JavaScript
 constructor invocation syntax allows the argument list and parentheses
 to be omitted entirely. You can always omit a pair of empty parentheses
 in a constructor invocation and the following two lines, for example,
 are equivalent:
var o = new Object();
var o = new Object;
A constructor invocation creates a new, empty object that inherits
 from the prototype property of the constructor.
 Constructor functions are intended to initialize objects and this newly
 created object is used as the invocation context, so the constructor
 function can refer to it with the this keyword. Note that the new object is used
 as the invocation context even if the constructor invocation looks like
 a method invocation. That is, in the expression new o.m(), o is not used as the invocation
 context.
Constructor functions do not normally use the return keyword. They
 typically initialize the new object and then return implicitly when they
 reach the end of their body. In this case, the new object is the value
 of the constructor invocation expression. If, however, a constructor
 explicitly used the return statement
 to return an object, then that object becomes the value of the
 invocation expression. If the constructor uses return with no value, or if it returns a
 primitive value, that return value is ignored and the new object is used
 as the value of the invocation.

Indirect Invocation

JavaScript functions are objects and like all JavaScript
 objects, they have methods. Two of these methods, call() and apply(), invoke the function indirectly. The first argument to
 both call() and apply() is the object on which the function is
 to be invoked; this argument is the invocation context and becomes the
 value of the this keyword within the
 body of the function. To invoke the function f() as a method of the object o (passing no arguments), you could use either
 call() or apply():
f.call(o);
f.apply(o);
Either of the lines of code above are similar to the following
 (which assume that o does not already
 have a property named m):
o.m = f; // Make f a temporary method of o.
o.m(); // Invoke it, passing no arguments.
delete o.m; // Remove the temporary method.
In ECMAScript 5 strict mode, the first argument to call() or apply() becomes the value of this, even if it is a primitive value or
 null or undefined. In ECMAScript 3 and nonstrict mode, a value of null or undefined is replaced with the global object
 and a primitive value is replaced with the corresponding wrapper
 object.
Any arguments to call() after
 the first invocation context argument are the values that are passed to
 the function that is invoked. For example, to pass two numbers to the
 function f() and invoke it as if it
 were a method of the object o, you
 could use code like this:
f.call(o, 1, 2);
The apply() method is like the
 call() method, except that the
 arguments to be passed to the function are specified as an array:
f.apply(o, [1,2]);
If a function is defined to accept an arbitrary number of
 arguments, the apply() method allows
 you to invoke that function on the contents of an array of arbitrary
 length. For example, to find the largest number in an array of numbers,
 you could use the apply() method to
 pass the elements of the array to the Math.max() function:
var biggest = Math.max.apply(Math, array_of_numbers);
Note that apply() works with
 array-like objects as well as true arrays. In particular, you can invoke
 a function with the same arguments as the current function by passing
 the arguments array (see Variable-Length Argument Lists: The Arguments Object) directly to apply(). The following code
 demonstrates:
// Replace the method named m of the object o with a
// version that logs messages before and after invoking
// the original method.
function trace(o, m) {
 var original = o[m]; // Remember original method.
 o[m] = function() { // Now define the new method.
 console.log(new Date(), "Entering:", m); // Log
 // Invoke the original method
 var result = original.apply(this, arguments);
 console.log(new Date(), "Exiting:", m); // Log
 // Return the result of the original method
 return result;
 };
}
This trace() function is
 passed an object and a method name. It replaces the specified method
 with a new method that “wraps” additional functionality around the
 original method. This kind of dynamic alteration of existing methods is
 sometimes called “monkey-patching.”

Function Arguments and Parameters

JavaScript function definitions do not specify an expected
 type for the function parameters, and function invocations do not do any
 type checking on the argument values you pass. In fact, JavaScript
 function invocations do not even check the number of arguments being
 passed. The subsections that follow describe what happens when a function
 is invoked with fewer arguments than declared parameters or with more
 arguments than declared parameters.
Optional Parameters

When a function is invoked with fewer arguments than
 declared parameters, the additional parameters are set to the undefined value. It is often useful to write
 functions so that some arguments are optional and may be omitted when
 the function is invoked. To do this, you must be able to assign a
 reasonable default value to parameters that are omitted. Here is an
 example:
// Append the names of the enumerable properties of
// object o to the array a, and return a. If a is
// omitted, create and return a new array.
function names(o, /* optional */ a) {
 if (a === undefined) // If a was not specified
 a = []; // use a new array.
 for(var property in o) a.push(property);
 return a;
}

// This function can be invoked with 1 or 2 arguments:
var a = names(o); // Get o's properties in a new array
names(p,a); // Append p's properties to that array.
Instead of using an if
 statement in the first line of this function, you could use the
 || operator (Logical Expressions) in this idiomatic way:
a = a || [];

Variable-Length Argument Lists: The Arguments Object

When a function is invoked with more argument values than
 there are parameter names, there is no way to directly refer to the
 unnamed values. The Arguments object provides a solution to this problem.
 Within the body of a function, the identifier arguments refers to the Arguments object
 for that invocation. The Arguments object is an array-like object (see Array-Like Objects) that
 allows the argument values passed to the function to be retrieved by
 number, rather than by name.
Suppose you define a function f
 that expects to be passed one argument, x. If you invoke this function with two
 arguments, the first argument is accessible within the function by the
 parameter name x or as arguments[0]. The second argument is
 accessible only as arguments[1].
 Furthermore, arguments has a length property that specifies the number of
 elements it contains. Thus, within the body of the function f, invoked with two arguments, arguments.length has the value 2.
One important use of the Arguments object is to write functions
 that operate on any number of arguments. The following function accepts
 any number of numeric arguments and returns the value of the largest
 argument it is passed (see also the built-in function Math.max(), which
 behaves the same way):
function max(/* ... */) {
 var max = Number.NEGATIVE_INFINITY;
 // Look for and remember the largest argument
 for(var i = 0; i < arguments.length; i++)
 if (arguments[i] > max) max = arguments[i];
 // Return the biggest
 return max;
}
var largest = max(10, 100, 2, 4, 10000, 6); // => 10000
Functions like this one that can accept any number of arguments
 are called variadic functions, variable arity functions, or
 varargs functions. This book uses the
 most colloquial term, varargs, which dates to the
 early days of the C programming language.
Note that varargs functions need not allow invocations with zero
 arguments. It is perfectly reasonable to use the arguments[] object to write functions that
 expect some fixed number of named and required arguments followed by an
 arbitrary number of unnamed optional arguments.

Functions as Namespaces

Recall from Variable Declaration that
 JavaScript has function scope: variables declared within a function are
 visible throughout the function (including within nested functions) but do
 not exist outside of the function. Variables declared outside of a
 function are global variables and are visible throughout your JavaScript
 program. JavaScript does not define any way to declare variables that are
 hidden within a single block of code, and for this reason, it is sometimes
 useful to define a function simply to act as a temporary namespace in
 which you can define variables without polluting the global
 namespace.
Suppose, for example, you have a module of JavaScript code that you
 want to use in a number of different JavaScript programs (or, for
 client-side JavaScript, on a number of different web pages). Assume that
 this code, like most code, defines variables to store the intermediate
 results of its computation. The problem is that since this module will be
 used in many different programs, you don’t know whether the variables it
 creates will conflict with variables used by the programs that import it.
 The solution, of course, is to put the code into a function and then
 invoke the function. This way, variables that would have been global
 become local to the function:
function mymodule() {
 // Module code goes here.
 // Any variables used by the module are local to this
 // function and do not clutter the global namespace.
}
mymodule(); // But don't forget to invoke the function!
This code defines only a single global variable: the function name
 “mymodule.” If defining even a single property is too much, you can define
 and invoke an anonymous function in a single expression:
(function() { // mymodule as an unnamed expression
 // Module code goes here.
}()); // end the function and invoke it.
This technique of defining and invoking a function in a single
 expression is used frequently enough that it has become idiomatic. Note
 the use of parentheses in the code above. The open parenthesis before
 function is required because without
 it, the JavaScript interpreter tries to parse the function keyword as a
 function declaration statement. With the parenthesis, the interpreter
 correctly recognizes this as a function definition expression. It is
 idiomatic to use the parentheses, even when they are not required, around
 a function that is to be invoked immediately after being defined.

Closures

Like most modern programming languages, JavaScript uses
 lexical scoping. This means that functions are executed using the variable
 scope that was in effect when they were defined, not the variable scope
 that is in effect when they are invoked. This combination of a function
 object and the scope (a set of variable bindings) in which it was defined
 is known as a closure, and closures become
 interesting in JavaScript when nested functions are involved. There are a
 number of powerful programming techniques that involve this kind of nested
 function closures, and their use has become common in modern JavaScript
 programming. Closures can be confusing when you first encounter them, but
 it is important that you understand them well enough to use them
 comfortably.
The first step to understanding closures is to review the lexical
 scoping rules for nested functions. Consider the following code:
var scope = "global scope"; // A global variable
function checkscope() {
 var scope = "local scope"; // A local variable
 function f() { return scope; }
 return f();
}
checkscope() // => "local scope"
The checkscope() function
 declares a local variable and then defines and invokes a function that
 returns the value of that variable. It should be clear to you why the call
 to checkscope() returns “local scope.” Now let’s change the code just slightly. Can
 you tell what this code will return?
var scope = "global scope"; // A global variable
function checkscope() {
 var scope = "local scope"; // A local variable
 function f() { return scope; }
 return f;
}
checkscope()() // What does this return?
In this code, a pair of parentheses has moved from inside checkscope() to outside of it. Instead of
 invoking the nested function and returning its result, checkscope() now just returns the nested
 function object itself. What happens when we invoke that nested function
 (with the second pair of parentheses in the last line of code) outside of
 the function in which it was defined?
Remember the fundamental rule of lexical scoping: JavaScript
 functions are executed using the scope chain that was in effect when they
 were defined. The nested function f()
 was defined under a scope chain in which the variable scope was bound to the value “local scope.” That
 binding is still in effect when f is
 executed, wherever it is executed from. So the last line of code above
 returns “local scope,” not “global scope.” This, in a nutshell, is the surprising and
 powerful nature of closures: they capture the local variable (and
 parameter) bindings of the outer function within which they are
 defined.
Closures capture the local variables of a single function invocation
 and can use those variables as private state. The following code uses a
 closure in this way:
var uniqueInteger = (function() { // Define and invoke
 var counter = 0; // Private state of function below
 return function() { return counter++; };
}());
In order to understand this code, you have to read it carefully. At
 first glance, the first line of code looks like it is assigning a function
 to the variable uniqueInteger. In fact,
 the code is defining and invoking (as hinted by the open parenthesis on
 the first line) a function, so it is the return value of the function that
 is being assigned to uniqueInteger.
 Now, if we study the body of the function, we see that its return value is
 another function. It is this nested function object that gets assigned to
 uniqueInteger. The nested function has
 access to the variables in scope, and can use the counter variable defined in the outer
 function. Once that outer function returns, no other code can see the
 counter variable: the inner function
 has exclusive access to it. Each invocation of uniqueInteger() will
 return a new integer, and there is no way for JavaScript code to alter the
 internal counter.
Private variables like counter
 need not be exclusive to a single function: it is perfectly possible for
 two or more nested functions to be defined within the same outer function
 and share access to the same private variables. Consider the following
 code:
function counter() {
 var n = 0;
 return {
 count: function() { return n++; },
 reset: function() { n = 0; }
 };
}

var c = counter(), // Create two counters
 d = counter();
c.count() // => 0
d.count() // => 0: they count independently
c.reset() // reset() and count() methods share state
c.count() // => 0: because we reset c
d.count() // => 1: d was not reset
The counter() function
 returns a “counter” object. This object has two methods: count() returns the next
 integer, and reset() resets the internal state. The first thing to understand is that
 the two methods share access to the private variable n. The second thing to understand is that each
 invocation of counter() creates a new
 scope chain and a new private variable. So if you call counter() twice, you get two counter objects
 with different private variables. Calling count() or reset() on one counter object has no effect on
 the other.
In the example above, two functions are defined in the same scope
 chain and share access to the same private variable or variables. This is
 an important technique, but it is just as important to recognize when
 closures inadvertently share access to a variable that they should not
 share. Consider the following code:
// This function returns a function that always returns v
function constant(v) { return function() { return v; }; }

// Create an array of constant functions:
var funcs = [];
for(var i = 0; i < 10; i++) funcs[i] = constant(i);

// The function at array element 5 returns the value 5.
funcs[5]() // => 5
When working with code like this that creates multiple closures
 using a loop, it is a common error to try to move the loop within the
 function that defines the closures. Think about the following code, for
 example:
// Return an array of functions that return 0-9
function constfuncs() {
 var funcs = [];
 for(var i = 0; i < 10; i++)
 funcs[i] = function() { return i; };
 return funcs;
}

var funcs = constfuncs();
funcs[5]() // What does this return?
The code above creates 10 closures, and stores them in an array. The
 closures are all defined within the same invocation of the function, so
 they share access to the variable i.
 When constfuncs() returns, the
 value of the variable i is 10, and all
 10 closures share this value. Therefore, all the functions in the returned
 array of functions return the same value, which is not what we wanted at
 all. It is important to remember that the scope chain associated with a
 closure is “live.” Nested functions do not make private copies of the
 scope or make static snapshots of the variable bindings.
Another thing to remember when writing closures is that this is a JavaScript keyword, not a variable. As discussed
 earlier, every function invocation has a this value, and a closure cannot access the
 this value of its outer function unless
 the outer function has saved that value into a variable:
var self = this; // for use by nested funcs.
The arguments binding is similar.
 This is not a language keyword, but it is automatically declared for every
 function invocation. Since a closure has its own binding for arguments, it cannot access
 the outer function’s arguments array unless the outer function has saved
 that array into a variable by a different name:
var outerArguments = arguments; // For nested funcs

Function Properties, Methods, and Constructor

We’ve seen that functions are values in JavaScript programs.
 The typeof operator returns the string
 “function” when applied to a function, but functions are really a
 specialized kind of JavaScript object. Since functions are objects, they
 can have properties and methods, just like any other object. There is even
 a Function() constructor to
 create new function objects. The call() and apply() methods of
 function objects were covered in Indirect Invocation,
 and the subsections that follow document the remaining function properties
 and methods and the Function()
 constructor.
The length Property

Within the body of a function, arguments.length specifies the number of
 arguments that were passed to the function. The length property of a function itself, however, has a different meaning.
 This read-only property returns the arity of the
 function—the number of parameters it declares in its parameter list,
 which is usually the number of arguments that the function
 expects.

The prototype Property

Every function has a prototype property that
 refers to an object known as the prototype object. Every function has
 a different prototype object. When a function is used as a constructor,
 the newly created object inherits properties from the prototype object.
 Prototypes and the prototype property
 were discussed in Prototypes and will be covered
 again in Chapter 8.

The bind() Method

The bind() method was added
 in ECMAScript 5, but it is easy to simulate in ECMAScript 3. As its name implies, the primary
 purpose of bind() is to bind a
 function to an object. When you invoke the bind() method on a function f and pass an object o, the method returns a new function. Invoking
 the new function (as a function) invokes the original function f as a method of o. Any arguments you pass to the new function
 are passed to the original function. For example:
// This function needs to be bound
function f(y) { return this.x + y; }
var o = { x : 1 }; // An object we'll bind to
var g = f.bind(o); // Calling g(x) invokes o.f(x)
g(2) // => 3
It is easy to accomplish this kind of binding with code like the
 following:
// Return a function that invokes f as a method of o,
// passing all its arguments.
function bind(f, o) {
 // Use the bind method, if there is one
 if (f.bind) return f.bind(o);
 else return function() {
 // Otherwise, bind it like this
 return f.apply(o, arguments);
 };
}
The ECMAScript 5 bind() method
 does more than just bind a function to an object. It also performs
 partial application: any arguments you pass to bind() after the first are bound along with
 the this value. Partial application
 is a common technique in functional programming and is sometimes called
 currying. Here is an example of the bind() method used for partial application:
var sum = function(x,y) { return x + y };
// Create a new function like sum, but with the this
// value bound to null and the 1st argument bound to 1.
// This new function expects just one arg.
var succ = sum.bind(null, 1);
succ(2) // => 3: x is bound to 1, and we pass 2 for y.

The toString() Method

Like all JavaScript objects, functions have a toString() method. The
 ECMAScript spec requires this method to return a string that follows the
 syntax of the function declaration statement. In practice, most (but not
 all) implementations of this toString() method return the complete source
 code for the function. Built-in functions typically return a string that
 includes something like “[native code]” as the function body.

The Function() Constructor

Functions are usually defined using the function keyword,
 either in the form of a function definition statement or a function
 literal expression. But functions can also be defined with the Function() constructor. For example:
var f = new Function("x", "y", "return x*y;");
This line of code creates a new function that is more or less
 equivalent to a function defined with the familiar syntax:
var f = function(x, y) { return x*y; }
The Function() constructor
 expects any number of string arguments. The last argument is the text of
 the function body; it can contain arbitrary JavaScript statements,
 separated from each other by semicolons. All other arguments to the
 constructor are strings that specify the parameter names for the
 function. If you are defining a function that takes no arguments, you
 simply pass a single string—the function body—to the constructor.
A very important point about the Function() constructor is that the functions
 it creates do not use lexical scoping; instead, they are always compiled
 as if they were top-level functions: they can access global variables,
 but not any local variables.

Chapter 8. Classes

JavaScript objects were covered in Chapter 5.
 That chapter treated each object as a unique set of properties, different
 from every other object. It is often useful, however, to define a
 class of objects that share certain properties.
 Members, or instances, of the class have their own
 properties to hold or define their state, but they also have properties
 (typically methods) that define their behavior. This behavior is defined by
 the class and is shared by all instances. Imagine a class named Complex to
 represent and perform arithmetic on complex numbers, for example. A Complex
 instance would have properties to hold the real and imaginary parts (state)
 of the complex number. And the Complex class would define methods to perform
 addition and multiplication (behavior) of those numbers.
In JavaScript, classes are based on JavaScript’s prototype-based
 inheritance mechanism. If two objects inherit properties from the same
 prototype object, then we say that they are instances of the same class.
 JavaScript prototypes and inheritance were covered in Prototypes and Property Inheritance, and you must be
 familiar with the material in those sections to understand this chapter.
 This chapter covers prototypes in
 Classes and Prototypes.
If two objects inherit from the same prototype, this typically (but
 not necessarily) means that they were created and initialized by the same constructor function.
 Constructors have been covered in Initializers, Creating Objects with new, and Constructor Invocation, and this chapter has more in Classes and Constructors.
If you’re familiar with strongly-typed object-oriented programming
 languages like Java or C++, you’ll notice that JavaScript classes are quite
 different from classes in those languages. There are some syntactic
 similarities, and you can emulate many features of “classical” classes in
 JavaScript, but it is best to understand up front that JavaScript’s classes
 and prototype-based inheritance mechanism are substantially different from
 the classes and class-based inheritance mechanism of Java and similar languages. Java-Style Classes in JavaScript demonstrates classical classes in JavaScript.
 One of the important features of JavaScript classes is that they are dynamically extendable. Augmenting Classes explains how to do this.
Classes and Prototypes

In JavaScript, a class is a set of objects that inherit
 properties from the same prototype object. The prototype object,
 therefore, is the central feature of a class. In Example 5-1 we defined an inherit() function that
 returns a newly created object that inherits from a specified prototype
 object. In this chapter we’ll use the built-in ES5 function Object.create() instead
 of the more portable inherit() utility
 function. If we define a prototype object, and then use Object.create() to create objects that inherit
 from it, we have defined a JavaScript class. Usually, the instances of a
 class require further initialization, and it is common to define a
 function that creates and initializes the new object. Example 8-1 demonstrates this: it defines a prototype object for
 a class that represents a range of values and also defines a “factory” function that creates and initializes a new
 instance of the class.
Example 8-1. A simple JavaScript class
// range.js: A class representing a range of values.

// This is a factory function that returns a new range object.
function range(from, to) {
 // Use Object.create() to create an object that inherits
 // from the prototype object defined below. The prototype
 // is stored as a property of this function, and defines
 // the shared methods (behavior) for all range objects.
 var r = Object.create(range.methods);

 // Save the start and end points (state) of the object.
 // They are noninherited properties unique to this object.
 r.from = from;
 r.to = to;

 // Finally return the new object
 return r;
}

// This prototype object defines methods inherited by all
// range objects.
range.methods = {
 // Return true if x is in the range, false otherwise
 includes: function(x) {
 return this.from <= x && x <= this.to;
 },
 // Invoke f once for each integer in the range.
 // This method works only for numeric ranges.
 foreach: function(f) {
 for(var x=Math.ceil(this.from); x <= this.to; x++)
 f(x);
 },
 // Return a string representation of the range
 toString: function() {
 return "(" + this.from + "..." + this.to + ")";
 }
};

// Here are example uses of a range object.
var r = range(1,3); // Create a range object
r.includes(2); // => true: 2 is in the range
r.foreach(console.log); // Prints 1 2 3
console.log(r); // Prints (1...3)

There are a few things worth noting in the code of Example 8-1. This code defines a factory function range() for creating new
 range objects. Notice that we use a property of this range() function, range.methods, as a convenient place to store
 the prototype object that defines the class. There is nothing special or
 idiomatic about putting the prototype object here. Second, notice that the
 range() function defines from and to
 properties on each range object. These are the unshared, noninherited
 properties that define the unique state of each individual range object.
 Finally, notice that the shared, inherited methods defined in range.methods all use these from and to
 properties, and in order to refer to them, they use the this keyword to refer to the object through
 which they were invoked. This use of this is a fundamental characteristic of the
 methods of any class.

Classes and Constructors

Example 8-1 demonstrates one way to define a
 JavaScript class. It is not the idiomatic way to do so, however, because
 it did not define a constructor. A constructor is a
 function designed for the initialization of newly created objects.
 Constructors are invoked using the new keyword as described
 in Constructor Invocation. Constructor invocations using
 new automatically create the new
 object, so the constructor itself only needs to initialize the state of
 that new object. The critical feature of constructor invocations is that
 the prototype property of the
 constructor function is used as the prototype of the new object. This
 means that all objects created with the same constructor inherit from the
 same object and are therefore members of the same class. Example 8-2 shows how we could alter the Range class of Example 8-1 to use a
 constructor function instead of a factory function:
Example 8-2. A Range class using a constructor
// range2.js: Another class representing a range of values.

// This is a constructor function that initializes new
// Range objects. Note that it does not create or return
// the object. It just initializes this.
function Range(from, to) {
 // Store the start and end points (state) of this new
 // range object. These are noninherited properties that
 // are unique to this object.
 this.from = from;
 this.to = to;
}

// All Range objects inherit from this object.
// Note that the property name must be "prototype".
Range.prototype = {
 // Return true if x is in the range, false otherwise
 includes: function(x) {
 return this.from <= x && x <= this.to;
 },
 // Invoke f once for each integer in the range.
 foreach: function(f) {
 for(var x=Math.ceil(this.from); x <= this.to; x++)
 f(x);
 },
 // Return a string representation of the range
 toString: function() {
 return "(" + this.from + "..." + this.to + ")";
 }
};

// Here are example uses of a range object
var r = new Range(1,3); // Create a range object
r.includes(2); // => true: 2 is in the range
r.foreach(console.log); // Prints 1 2 3
console.log(r); // Prints (1...3)

It is worth comparing Example 8-1 and Example 8-2 carefully and noting the differences between these
 two techniques for defining classes. First, notice that we renamed the
 range() factory function to Range() when we converted it to a constructor.
 This is a very common coding convention: constructor functions define, in
 a sense, classes, and classes have names that begin with capital letters.
 Regular functions and methods have names that begin with lowercase
 letters.
Next, notice that the Range()
 constructor is invoked (at the end of the example) with the new keyword while the range() factory function was invoked without it.
 Example 8-1 uses regular function invocation (Function Invocation) to create the new object and Example 8-2 uses constructor invocation (Constructor Invocation). Because the Range() constructor is invoked with new, it does not have to call Object.create() or take any action to create a
 new object. The new object is automatically created before the constructor
 is called, and it is accessible as the this value. The Range() constructor merely has to initialize
 this. Constructors do not even have to
 return the newly created object. Constructor invocation automatically
 creates a new object, invokes the constructor as a method of that object,
 and returns the new object.
Another critical difference between Example 8-1 and
 Example 8-2 is the way the prototype object is named. In
 the first example, the prototype was range.methods. This was a convenient and
 descriptive name, but arbitrary. In the second example, the prototype is
 Range.prototype, and this name is
 mandatory. An invocation of the Range()
 constructor automatically uses Range.prototype as the prototype of the new
 Range object.
Finally, also note the things that do not change between Example 8-1 and Example 8-2: the range methods
 are defined and invoked in the same way for both classes.
Constructors and Class Identity

As we’ve seen, the prototype object is fundamental to the identity
 of a class: two objects are instances of the same class if and only if
 they inherit from the same prototype object. The constructor function
 that initializes the state of a new object is not fundamental: two
 constructor functions may have prototype properties
 that point to the same prototype object. Then both constructors can be
 used to create instances of the same class.
Even through constructors are not as fundamental as prototypes,
 the constructor serves as the public face of a class. Most obviously,
 the name of the constructor function is usually adopted as the name of
 the class. We say, for example, that the Range() constructor creates Range objects.
 More fundamentally, however, constructors are used with the instanceof operator when testing objects for
 membership in a class. If we have an object r and want to know if it is a Range object, we
 can write:
// true if r inherits from Range.prototype
r instanceof Range
The instanceof operator does
 not actually check whether r was
 initialized by the Range constructor.
 It checks whether it inherits from Range.prototype. Nevertheless, the instanceof syntax reinforces the use of
 constructors as the public identity of a class. We’ll see the instanceof operator again later in this
 chapter.

The constructor Property

In Example 8-2 we set Range.prototype to a new object that contained
 the methods for our class. Although it was convenient to express those
 methods as properties of a single object literal, it was not actually
 necessary to create a new object. Any JavaScript function can be used as a constructor, and
 constructor invocations need a prototype property. Therefore, every
 JavaScript function automatically has a prototype property. The value of this property
 is an object that has a single nonenumerable constructor property. The value of the
 constructor property is the function
 object:
// F.prototype.constructor === F for any function F.
var F = function() {}; // A function object.
var p = F.prototype; // Its prototype object.
var c = p.constructor; // The prototype's function
c === F // => true:
The existence of this predefined prototype object with its
 constructor
 property means that objects typically inherit a constructor property that refers to their
 constructor. Since constructors serve as the public identity of a class,
 this constructor property gives the class of an object:
var o = new F(); // Create an object o of class F
o.constructor === F // => true
Figure 8-1 illustrates this relationship
 between the constructor function, its prototype object, the back
 reference from the prototype to the constructor, and the instances
 created with the constructor.
[image: A constructor function, its prototype, and instances]

Figure 8-1. A constructor function, its prototype, and instances

Notice that Figure 8-1 uses our Range() constructor as an example. In fact,
 however, the Range class defined in Example 8-2
 overwrites the predefined Range.prototype object with an object of its
 own. And the new prototype object it defines does not have a constructor property. So instances of the Range class, as defined, do not have a
 constructor property. We can remedy
 this problem by explicitly adding a constructor to the prototype:
Range.prototype = {
 constructor: Range, // Explicitly set the constructor
 includes: function(x) {
 return this.from <= x && x <= this.to;
 },
 // etc...
};
Another common technique is to use the predefined prototype object
 with its constructor property, and add methods to
 it one at a time:
// Extend the predefined Range.prototype object so we
// don't overwrite Range.prototype.constructor.
Range.prototype.includes = function(x) {
 return this.from<=x && x<=this.to;
};
Range.prototype.foreach = function(f) {
 for(var x=Math.ceil(this.from); x <= this.to; x++)
 f(x);
};
Range.prototype.toString = function() {
 return "(" + this.from + "..." + this.to + ")";
};

Java-Style Classes in JavaScript

If you have programmed in Java or a similar strongly-typed
 object-oriented language, you may be accustomed to thinking about four
 kinds of class members:
	Instance fields
	These are the per-instance properties or variables
 that hold the state of individual objects.

	Instance methods
	These are methods that are shared by all instances of
 the class that are invoked through individual instances.

	Class fields
	These are properties or variables associated with the
 class rather than the instances of the class.

	Class methods
	These are methods that are associated with the class
 rather than with instances.

One way JavaScript differs from Java is that its functions are
 values, and there is no hard distinction between methods and fields. If
 the value of a property is a function, that property defines a method;
 otherwise, it is just an ordinary property or “field.” Despite this
 difference, we can simulate each of Java’s four categories of class
 members in JavaScript. In JavaScript, there are three different objects
 involved in any class definition (see Figure 8-1),
 and the properties of these three objects act like different kinds of
 class members:
	Constructor object
	As we’ve noted, the constructor function (an object) defines a
 name for a JavaScript class. Properties you add to this constructor
 object serve as class fields and class methods.

	Prototype object
	The properties of this object are inherited by all
 instances of the class, and properties whose values are functions
 behave like instance methods of the class.

	Instance object
	Each instance of a class is an object in its own
 right, and properties defined directly on an instance are not shared
 by any other instances. Nonfunction properties defined on instances
 behave as the instance fields of the class.

We can reduce the process of class definition in JavaScript to a
 three-step algorithm. First, write a constructor function that sets
 instance properties on new objects. Second, define instance methods on the
 prototype object of the constructor.
 Third, define class fields and class methods on the constructor itself. We
 can even implement this algorithm as a simple defineClass() function:
// A simple function for defining simple classes
function defineClass(constructor, // Initialization
 methods, // Instance methods
 statics) // Class properties
{
 if (methods) {
 // Copy methods to the prototype
 for(var m in methods)
 constructor.prototype[m] = methods[m];
 }
 if (statics) {
 // Copy static properties to the constructor
 for(var s in statics)
 constructor[s] = statics[s];
 }

 return constructor;
}

// This is a simple variant of our Range class
var SimpleRange =
 defineClass(
 function(f,t) { this.f = f; this.t = t; },
 {
 includes: function(x) {
 return this.f <= x && x <= this.t;
 },
 toString: function() {
 return this.f + "..." + this.t;
 }
 },
 {
 upto: function(t) {
 return new SimpleRange(0, t);
 }
 }
);

Immutable Classes

Property Attributes demonstrated the
 ECMAScript 5 Object.defineProperties()
 method for defining read-only and nonenumerable properties, and also
 explained that property descriptors can also be passed to Object.create. We can use these ES5 features to
 define classes whose instances are immutable. Example 8-3
 is an immutable version of our Range class with instance methods that are
 nonenumerable, like the methods of built-in classes. Finally, as an
 interesting trick, Example 8-3 has a constructor function
 that works as a factory function when invoked without the new keyword.
Example 8-3. An immutable class with nonenumerable methods
// This function works with or without 'new':
// it is a constructor and factory function.
function Range(from,to) {
 // These are descriptors for the read-only properties.
 var props = {
 from: { value:from, enumerable:true },
 to: { value:to, enumerable:true }
 };

 if (this instanceof Range) // Invoked as a constructor
 Object.defineProperties(this, props);
 else // Invoked as a factory
 return Object.create(Range.prototype, props);
}

// Now set up the prototype with nonenumerable properties
Object.defineProperties(Range.prototype, {
 includes: {
 value: function(x) {
 return this.from <= x && x <= this.to;
 },
 writable: true, configurable: true
 },
 foreach: {
 value: function(f) {
 for(var x=Math.ceil(this.from); x<=this.to; x++)
 f(x);
 },
 writable: true, configurable: true
 },
 toString: {
 value: function() {
 return "(" + this.from + "..." + this.to + ")";
 },
 writable: true, configurable: true
 }
});

Subclasses

In object-oriented programming, a class B can extend or subclass
 another class A. We say that A is the superclass and B is the
 subclass. Instances of B inherit all the instance
 methods of A. The class B can define its own instance methods, some of
 which may override methods of the same name
 defined by class A.
The key to creating subclasses in JavaScript is proper
 initialization of the prototype object. If an object O is an instance of a
 class B and B is a subclass of A, then O must also inherit properties from
 A. We arrange this by ensuring that the prototype object of B inherits
 from the prototype object of A. Using Object.create() (we could
 also use the inherit() function from
 Example 5-1), we write:
// Subclass B inherits from superclass A
B.prototype = Object.create(A.prototype);
// But override the inherited constructor prop.
B.prototype.constructor = B;
The two lines of code above are critical to creating subclasses in
 JavaScript. Without them, the prototype object will be an ordinary
 object—an object that inherits from Object.prototype—and this means that your class
 will be a subclass of Object like all classes are. It is straightforward
 to add these two lines to the defineClass() function
 above to transform it into defineSubclass().
Example 8-4 defines a DateRange class as a
 subclass of Range. Date objects in JavaScript can be compared with <
 and >, so DateRange inherits the includes() and toString() methods. But
 it overrides the foreach() method to
 enumerate by days within the range. Note how the DateRange.prototype is set up, and also notice
 that the DateRange() constructor
 invokes its superclass constructor (using the call() method) to
 initialize the new object.
Example 8-4. A Range subclass
// A subclass of our Range class. It inherits the includes()
// and toString() methods, and overrides the foreach method
// to make it work with dates.
function DateRange(from, to) {
 // Use the superclass constructor to initialize
 Range.call(this, from, to);
}

// These two lines are key to subclassing. The subclass
// prototype must inherit from the superclass prototype.
DateRange.prototype = Object.create(Range.prototype);
DateRange.prototype.constructor = DateRange;

// This "static" field of the subclass holds the
// number of milliseconds in one day.
DateRange.DAY = 1000*60*60*24;

// Invoke f once for each day in the range
DateRange.prototype.foreach = function(f) {
 var d = this.from;
 while(d < this.to) {
 f(d);
 d = new Date(d.getTime() + DateRange.DAY);
 }
}

var now = new Date();
var tomorrow = new Date(now.getTime() + DateRange.DAY);
var nextweek = new Date(now.getTime() + 7*DateRange.DAY);
var week = new DateRange(now, nextweek);

week.includes(tomorrow) // => true
week.foreach(function(d) { // Print each day in the week
 console.log(d.toLocaleDateString());
});

Augmenting Classes

JavaScript’s prototype-based inheritance mechanism is
 dynamic: an object inherits properties from its prototype, even if the
 properties of the prototype change after the object is created. This means
 that we can augment JavaScript classes simply by adding new methods to
 their prototype objects. Here is code that adds a method to our Range
 class:
// Return a new range with negated endpoints
Range.prototype.negate = function() {
 return new Range(-this.to, -this.from);
};
The prototype object of built-in JavaScript classes is also “open”
 like this, which means that we can add methods to numbers, strings,
 arrays, functions, and so on. Here are some examples:
// Invoke the function f this many times, passing the
// iteration number. E.g., to print "hello" 3 times:
// var n = 3;
// n.times(function(n) { console.log(n + " hello"); });
Number.prototype.times = function(f, context) {
 var n = Number(this);
 for(var i = 0; i < n; i++) f.call(context, i);
};

// Define the ES5 String.trim() method if it does not
// exist. This method trims space from the start and end.
String.prototype.trim =
 String.prototype.trim || function() {
 if (!this) return this;
 return this.replace(/^\s+|\s+$/g, "");
 };

// Return a function's name or "". If it has a name
// property, use it. Otherwise, convert the function to
// a string and extract the name from that.
Function.prototype.getName = function() {
 return this.name ||
 this.toString().match(/function\s*([^(]*)\(/)[1];
};
It is possible to add methods to Object.prototype, making them available on all
 objects. This is not recommended, however, because prior to ECMAScript 5,
 there is no way to make these add-on methods nonenumerable, and if you add
 properties to Object.prototype, those
 properties will be reported by all for/in loops.

Chapter 9. Regular Expressions

A regular expression is an object that
 describes a pattern of characters. The JavaScript RegExp class represents
 regular expressions, and both String and RegExp define methods that use
 regular expressions to perform powerful pattern-matching and
 search-and-replace functions on text. This chapter begins by defining the
 syntax that regular expressions use to describe textual patterns. It then
 moves on to describe the String and RegExp methods that use regular
 expressions.
Describing Patterns with Regular Expressions

In JavaScript, regular expressions are represented by RegExp
 objects. RegExp objects may be created with the RegExp() constructor, of
 course, but they are more often created using a special literal syntax.
 Just as string literals are specified as characters within quotation
 marks, regular expression literals are specified as characters within a
 pair of slash (/) characters. Thus,
 your JavaScript code may contain lines like this:
var pattern = /s$/;
This line creates a new RegExp object and assigns it to the variable
 pattern. This particular RegExp object
 matches any string that ends with the letter “s.” This regular expression
 could have equivalently been defined with the RegExp() constructor like this:
var pattern = new RegExp("s$");
Regular-expression pattern specifications consist of a series of
 characters. Most characters, including all alphanumeric characters, simply
 describe characters to be matched literally. Thus, the regular expression
 /java/ matches any string that contains
 the substring “java.” Other characters in regular expressions are not
 matched literally but have special significance. For example, the regular
 expression /s$/ contains two
 characters. The first, “s,” matches itself literally. The second, “$,” is
 a special metacharacter that matches the end of a string. Thus, this
 regular expression matches any string that contains the letter “s” as its
 last character.
The following sections describe the various characters and
 metacharacters used in JavaScript regular expressions.
Literal Characters

All alphabetic characters and digits match themselves
 literally in regular expressions. Certain nonalphabetic characters can
 be matched literally with escape sequences. Table 9-1 lists these characters.
Table 9-1. Regular-expression literal characters
	Character	Matches
	Alphanumeric character	Itself
	\0	The NUL character (\u0000)
	\t	Tab (\u0009)
	\n	Newline (\u000A)
	\v	Vertical tab (\u000B)
	\f	Form feed (\u000C)
	\r	Carriage return (\u000D)
	\x
 nn	 The Latin character specified by the hexadecimal
 number nn; for example, \x0A is the same as \n

	\u
 xxxx	 The Unicode character specified by the hexadecimal
 number xxxx; for example, \u0009 is the same as \t

	\c
 X	 The control character ^ X; for
 example, \cJ is equivalent to
 the newline character \n

A number of punctuation characters have special meanings in
 regular expressions. They are:
^ $. * + ? = ! : | \ / () [] { }
The meanings of these characters are discussed in the sections
 that follow. Some of these characters have special meaning only within
 certain contexts of a regular expression and are treated literally in
 other contexts. As a general rule, however, if you want to include any
 of these punctuation characters literally in a regular expression, you
 must precede them with a \. Other
 punctuation characters, such as quotation marks and @, do not have special meaning and simply
 match themselves literally in a regular expression.

Character Classes

Individual literal characters can be combined into character classes by placing them
 within square brackets. A character class matches any one character that
 is contained within it. Thus, the regular expression /[abc]/ matches any one of the letters a, b,
 or c. Negated character classes can also be defined; these match any
 character except those contained within the brackets. A negated character class is specified by placing a caret
 (^) as the first character inside the
 left bracket. The regexp /[^abc]/ matches any one character other than
 a, b, or c. Character classes can use a hyphen to indicate a range of
 characters. To match any one lowercase character from the Latin
 alphabet, use /[a-z]/, and to match any letter or digit
 from the Latin alphabet, use /[a-zA-Z0-9]/. Character classes work with
 Unicode characters as well. To match a Cyrillic character, for example,
 use /[\u0400-\u04FF]/.
The regular-expression syntax includes shortcuts for a few
 commonly used character classes. Table 9-2
 lists these characters and summarizes character-class syntax.
Table 9-2. Regular expression character classes
	Character	Matches
	[...]	Any one character between the brackets.
	[^...]	Any one character not between the brackets.
	.	 Any character except newline or another Unicode
 line terminator.

	\w	 Any ASCII word character. Equivalent to [a-zA-Z0-9_].

	\W	 Any character that is not an ASCII word
 character. Equivalent to [^a-zA-Z0-9_].

	\s	Any Unicode whitespace character.
	\S	 Any character that is not Unicode whitespace.
 Note that \w and \S are not the same thing.

	\d	Any ASCII digit. Equivalent to [0-9].
	\D	 Any character other than an ASCII digit.
 Equivalent to [^0-9].

	[\b]	A literal backspace (special case).

Note that the special character-class escapes can be used within
 square brackets. \s matches any
 whitespace character, and \d matches
 any digit, so /[\s\d]/ matches any
 one whitespace character or digit.

Repetition

A character or character class may be followed by
 additional characters that specify how many times those characters
 should be matched. Table 9-3 summarizes the
 repetition syntax.
Table 9-3. Regular expression repetition characters
	Character	Meaning
	{n , m}	 Match the previous item at least
 n times but no more than
 m times.

	{n ,}	 Match the previous item
 n or more times.

	{n}	 Match exactly n
 occurrences of the previous item.

	?	 Match zero or one occurrences of the previous
 item. That is, the previous item is optional. Equivalent to
 {0,1}.

	+	 Match one or more occurrences of the previous
 item. Equivalent to {1,}.

	*	 Match zero or more occurrences of the previous
 item. Equivalent to {0,}.

The following lines show some examples:
/\d{2,4}/ // Between two and four digits
/\w{3}\d?/ // Three word characters + optional digit
/\s+java\s+/ // "java" with spaces before and after
/[^(]*/ // zero or more chars that are not '('
Be careful when using the * and
 ? repetition characters. Since these
 characters may match zero instances of whatever precedes them, they are
 allowed to match nothing. For example, the regular expression /a*/ actually matches the string “bbbb”
 because the string contains zero occurrences of the letter a!
Nongreedy repetition

The repetition characters listed in Table 9-3 match as many times as possible while
 still allowing any following parts of the regular expression to match.
 We say that this repetition is “greedy.” It is also possible to specify that repetition should
 be done in a nongreedy way. Simply follow the repetition character or
 characters with a question mark: ??, +?,
 *?, or even {1,5}?. For example, the regular expression
 /a+/ matches one or more
 occurrences of the letter a. When applied to the string “aaa,” it
 matches all three letters. But /a+?/ matches one or more occurrences of the
 letter a, matching as few characters as necessary. When applied to the
 same string, this pattern matches only the first letter a.

Alternation, Grouping, and References

The regular-expression grammar includes special characters
 for specifying alternatives, grouping subexpressions, and referring to
 previous subexpressions. The | character separates
 alternatives. For example, /ab|cd|ef/ matches the
 string “ab” or the string “cd” or the string “ef.” And /\d{3}|[a-z]{4}/ matches either three digits
 or four lowercase letters.
Note that alternatives are considered left to right until a match
 is found. If the left alternative matches, the right alternative is
 ignored, even if it would have produced a “better” match. Thus, when the
 pattern /a|ab/ is applied to the
 string “ab,” it matches only the first letter.
Parentheses have several purposes in regular expressions.
 One is to group separate items into a subexpression so the items can be
 treated as a single unit by |,
 *, +, ?, and
 so on. For example, /java(script)?/
 matches “java” followed by the optional “script.” And /(ab|cd)+|ef/ matches either the string “ef”
 or one or more repetitions of either of the strings “ab” or “cd.”
Another purpose of parentheses is to define subpatterns within the
 complete pattern. When a regular expression is successfully matched
 against a target string, you can extract the portions of the target
 string that matched any particular parenthesized subpattern. (You’ll see how these matching
 substrings are obtained later.) For example, suppose you’re looking for
 one or more lowercase letters followed by one or more digits. You might
 use the pattern /[a-z]+\d+/. But
 suppose you only care about the digits at the end of each match. If you
 put that part of the pattern in parentheses (/[a-z]+(\d+)/), you can extract the digits
 from any matches you find, as explained later.
A related use of parenthesized subexpressions is to allow you to
 refer back to a subexpression later in the same regular expression. This
 is done by following a \ character by
 a digit or digits. The digits refer to the position of the parenthesized
 subexpression within the regular
 expression. For example, \3 refers
 back to the third subexpression.
A reference to a previous subexpression of a regular expression
 does not refer to the pattern for that
 subexpression but rather to the text that matched the pattern. Thus,
 references can be used to enforce a constraint that separate portions of
 a string contain exactly the same characters. For example, the following
 regular expression matches zero or more characters within single or
 double quotes. However, it does not require the opening and closing
 quotes to match (i.e., both single quotes or both double quotes):
/['"][^'"]*['"]/
To require the quotes to match, use a reference:
/(['"])[^'"]*\1/
The \1 matches whatever the
 first parenthesized subexpression matched. In this example, it enforces
 the constraint that the closing quote match the opening quote.
It is also possible to group items in a regular expression without
 creating a numbered reference to those items. Instead of simply grouping
 the items within (and), begin the group with (?: and end it with
).
Table 9-4. Regular expression alternation, grouping, and reference
 characters
	Character	Meaning
	|	 Alternation. Match either the subexpression to
 the left or the subexpression to the right.

	(...)	 Grouping. Group items into a single unit that can
 be used with *, +, ?, |, and so on. Also remember the
 characters that match this group for use with later references.

	(?:...)	 Grouping only. Group items into a single unit, but
 do not remember the characters that match this group.

	\
 n	 Match the same characters that were matched when
 group number n was first matched.
 Groups are subexpressions within (possibly nested) parentheses.
 Group numbers are assigned by counting left parentheses from
 left to right. Groups formed with (?: are not numbered.

Specifying Match Position

As described earlier, many elements of a regular
 expression match a single character in a string. For example, \s matches a single character of whitespace.
 Other regular expression elements match the positions between
 characters, instead of actual characters. \b, for example, matches a word boundary—the
 boundary between a \w (ASCII word
 character) and a \W (nonword
 character), or the boundary between an ASCII word character and the
 beginning or end of a string. Elements such as \b do not specify any characters to be used in
 a matched string; what they do specify, however, are legal positions at which a match can occur.
 Sometimes these elements are called anchors because they anchor the
 pattern to a specific position in the search string. The most commonly
 used anchor elements are ^, which
 ties the pattern to the beginning of the string, and $, which anchors the pattern to the end of the
 string.
For example, to match the word “JavaScript” on a line by itself,
 you can use the regular expression /^JavaScript$/. If you want to search for
 “Java” as a word by itself (not as a prefix, as it is in “JavaScript”),
 you can try the pattern /\sJava\s/,
 which requires a space before and after the word. But there are two
 problems with this solution. First, it does not match “Java” at the
 beginning or the end of a string, but only if it appears with space on
 either side. Second, when this pattern does find a match, the matched
 string it returns has leading and trailing spaces, which is not quite
 what’s needed. So instead of matching actual space characters with
 \s, match (or anchor to) word
 boundaries with \b. The resulting
 expression is /\bJava\b/. The element
 \B anchors the match to a location
 that is not a word boundary. Thus, the pattern /\B[Ss]cript/ matches “JavaScript” and
 “postscript,” but not “script” or “Scripting.”
Table 9-5 summarizes regular-expression
 anchors.
Table 9-5. Regular-expression anchor characters
	Character	Meaning
	^	 Match the beginning of the string and, in
 multiline searches, the beginning of a line.

	$	 Match the end of the string and, in multiline
 searches, the end of a line.

	\b	 Match a word boundary. That is, match the
 position between a \w
 character and a \W character
 or between a \w character and
 the beginning or end of a string. (Note, however, that [\b] matches backspace.)

	\B	 Match a position that is not a word boundary.

	(?=p)	 A positive lookahead assertion. Require that the
 following characters match the pattern
 p, but do not include those
 characters in the match.

	(?!p)	 A negative lookahead assertion. Require that the
 following characters do not match the pattern
 p.

Flags

There is one final element of regular-expression grammar.
 Regular-expression flags specify high-level pattern-matching rules.
 Unlike the rest of regular-expression syntax, flags are specified to the
 right of the second slash. JavaScript supports three flags. The i flag specifies that pattern matching should
 be case-insensitive. The g flag specifies that pattern matching should
 be global—that is, all matches within the searched string should be
 found. The m flag performs pattern
 matching in multiline mode. In this mode, if the string to be searched
 contains newlines, the ^ and $ anchors match the beginning and end of a
 line in addition to matching the beginning and end of a string. These
 flags may be specified in any combination. For example, the pattern
 /java$/im matches “java” as well as
 “Java\nis fun.”
Table 9-6 summarizes these
 regular-expression flags. Note that you’ll see more about the g flag in the next section.
Table 9-6. Regular-expression flags
	Character	Meaning
	i	Perform case-insensitive matching.
	g	 Perform a global match—that is, find all matches
 rather than stopping after the first match.

	m	 Multiline mode. ^ matches beginning of line or
 beginning of string, and $
 matches end of line or end of string.

Matching Patterns with Regular Expressions

This section discusses methods of the String and RegExp
 objects that use regular expressions to perform pattern matching and
 search-and-replace operations.
String Methods for Pattern-Matching

Strings support four methods that use regular expressions.
 The simplest is search(). This method
 takes a regular-expression argument and returns either the character
 position of the start of the first matching substring or −1 if there is
 no match. For example, the following call returns 4:
"JavaScript".search(/script/i);
search() does not support
 global searches; it ignores the
 g flag of its regular-expression
 argument.
The replace() method
 performs a search-and-replace operation. It takes a regular expression
 as its first argument and a replacement string as its second argument.
 It searches the string on which it is called for matches with the
 specified pattern. If the regular expression has the g flag set, the replace() method replaces all matches in the
 string with the replacement string; otherwise, it replaces only the
 first match it finds. If the first argument to replace() is a string rather than a regular
 expression, the method searches for that string literally rather than
 converting it to a regular expression with the RegExp() constructor,
 as search() does. As an example, you
 can use replace() as follows to
 provide uniform capitalization of the word “JavaScript” throughout a
 string of text:
text.replace(/javascript/gi, "JavaScript");
replace() is more powerful than
 this, however. Recall that parenthesized subexpressions of a regular
 expression are numbered from left to right and that the regular
 expression remembers the text that each subexpression matches. If a
 $ followed by a digit appears in the
 replacement string, replace()
 replaces those two characters with the text that matches the specified
 subexpression. You can use this feature, for example, to replace
 straight quotes in a string with curly quotes, simulated with ASCII
 characters:
// A quote is a quotation mark, followed by any number
// of nonquotation-mark characters (which we remember),
// followed by another quotation mark.
var quote = /"([^"]*)"/g;
// Replace the straight quotation marks with curly quotes,
// leaving the quoted text (stored in $1) unchanged.
text.replace(quote, '“$1”');
The second argument to replace() can also be a function that
 dynamically computes the replacement string. If you pass a function, it
 will be invoked once for each match. Its first argument will be the text
 of the matched string, and its remaining arguments will be the text that
 matched each parenthesized subexpression within the pattern. The return
 value of the function is used as the replacement string.
The match() method is the
 most general of the String regular-expression methods. It takes a
 regular expression as its only argument and returns an array that
 contains the results of the match. If the regular expression has the
 g flag set, the method returns an
 array of all matches that appear in the string. For example:
"1 plus 2 equals 3".match(/\d+/g) // => ["1","2","3"]
If the regular expression does not have the g flag set, match() does not do a global search; it simply
 searches for the first match. However, match() returns an array even when it does not
 perform a global search. In this case, the first element of the array is
 the matching string, and any remaining elements are the substrings that
 matched the parenthesized subexpressions of the regular expression. To
 draw a parallel with the replace()
 method, a[n] holds the contents of $n.
For example, consider parsing a URL with the following
 code:
var url = /(\w+):\/\/([\w.]+)\/(\S*)/;
var text = "Visit http://www.example.com/~david";
var result = text.match(url);
if (result != null) {
 var fullurl = result[0]; // the complete match
 var protocol = result[1]; // => "http"
 var host = result[2]; // => "www.example.com"
 var path = result[3]; // => "~david"
}
The last of the regular-expression methods of the String object is
 split(). This method
 breaks the string on which it is called into an array of substrings,
 using the argument as a separator. For example:
"123,456,789".split(","); // => ["123","456","789"]
The split() method can also
 take a regular expression as its argument. This ability makes the method
 more powerful. For example, you can specify a separator character that
 allows an arbitrary amount of whitespace on either side:
"1 , 2,3".split(/\s*,\s*/); // => ["1","2","3"]

RegExp Properties and Methods

Each RegExp object has five properties. The source property
 contains the text of the regular expression. The global property
 specifies whether the regular expression has the g flag. The ignoreCase property specifies whether the regular expression has the
 i flag. The multiline property
 specifies whether the regular expression has the m flag. The final property is lastIndex, a read/write integer. For patterns with the g flag, this property stores the position in
 the string at which the next search is to begin. It is used by the
 exec() and test() methods,
 described below.
RegExp objects define two methods that perform pattern-matching
 operations; they behave similarly to the String methods described
 earlier. The main RegExp pattern-matching method is exec(). It is similar to the String match() method
 described in Matching Patterns with Regular Expressions, except that it is a
 RegExp method that takes a string, rather than a String method that
 takes a RegExp. The exec() method
 executes a regular expression on the specified string. That is, it
 searches the string for a match. If it finds none, it returns null. If it does find one, however, it returns
 an array just like the array returned by the match() method for nonglobal searches. Element
 0 of the array contains the string that matched the regular expression,
 and any subsequent array elements contain the substrings that matched
 any parenthesized subexpressions. Furthermore, the index property contains
 the character position at which the match occurred, and the input property refers to the string that was searched.
Unlike the match() method,
 exec() returns the same kind of array
 whether or not the regular expression has the global g flag. Recall that match() returns an array of matches when
 passed a global regular expression. exec(), by contrast, always returns a single
 match and provides complete information about that match. When exec() is called on a regular expression that
 has the g flag, it sets the lastIndex property of the regular-expression
 object to the character position immediately following the matched
 substring. When exec() is invoked a
 second time for the same regular expression, it begins its search at the
 character position indicated by the lastIndex property. If exec() does not find a match, it resets
 lastIndex to 0. (You can also set
 lastIndex at any time.) This special
 behavior allows you to call exec()
 repeatedly in order to loop through all the regular expression matches
 in a string.
For example:
var pattern = /Java/g;
var text = "JavaScript is more fun than Java!";
var result;
while((result = pattern.exec(text)) != null) {
 alert("Matched '" + result[0] + "'" +
 " at position " + result.index +
 "; next search at " + pattern.lastIndex);
}
The other RegExp method is test(). test() is a much simpler method than exec(). It takes a string and returns true if the string contains a match for the
 regular expression:
var pattern = /java/i;
pattern.test("JavaScript"); // Returns true
Calling test() is equivalent to
 calling exec() and returning true if the return value of exec() is not null. Because of this equivalence, the
 test() method behaves the same way as
 the exec() method when invoked for a
 global regular expression: it begins searching the specified string at
 the position specified by lastIndex,
 and if it finds a match, it sets lastIndex to the position of the character
 immediately following the match. Thus, you can loop through a string
 using the test() method just as you
 can with the exec() method.

Chapter 10. Client-Side JavaScript

The first part of this book described the core JavaScript language. We
 now move on to JavaScript as used within web browsers, commonly called
 client-side JavaScript. Most of the examples we’ve seen so far, while legal
 JavaScript code, have no particular context; they are JavaScript fragments
 that run in no specified environment. This chapter introduces that context,
 and the chapters that follow fill in the details.
Embedding JavaScript in HTML

JavaScript code can appear inline within an HTML file
 between <script> and
 </script> tags:
<script>
// Your JavaScript code goes here
</script>
Example 10-1 is an HTML file that
 includes a simple JavaScript program. The comments explain what the
 program does, but the main point of this example is to demonstrate how
 JavaScript code is embedded within an HTML file along with, in this case,
 a CSS stylesheet.
Example 10-1. A simple JavaScript digital clock
<!DOCTYPE html> <!-- This is an HTML5 file -->
<html> <!-- The root element -->
<head> <!-- Title, scripts & styles go here -->
<title>Digital Clock</title>
<script> // A script of js code
// Define a function to display the current time
function displayTime() {
 var now = new Date(); // Get current time
 // Find element with id="clock"
 var elt = document.getElementById("clock");
 // Display the time in the element
 elt.innerHTML = now.toLocaleTimeString();
 // And repeat in one second
 setTimeout(displayTime, 1000);
}
// Start the clock when the document loads.
window.onload = displayTime;
</script>
<style> /* A CSS stylesheet for the clock */
#clock { /* Styles apply to element with id="clock" */
 font: bold 24pt sans; /* Use a big bold font */
 background: #ddf; /* on a light gray background. */
 padding: 10px; /* Surround it with some space */
 border: solid black 2px; /* and a solid black border */
 border-radius: 10px; /* with rounded corners. */
}
</style>
</head>
<body> <!-- Content goes here. -->
<h1>Digital Clock</h1> <!-- A title -->
 <!-- Time inserted here -->
</body>
</html>

The <script> tag can also
 be used with a src attribute that
 specifies the URL of a file containing JavaScript code. It is used like
 this:
<script src="../../scripts/util.js"></script>
A JavaScript file contains pure JavaScript, without <script> tags or any other HTML. By
 convention, files of JavaScript code have names that end with
 .js.
A <script> tag with the
 src attribute specified behaves exactly
 as if the contents of the specified JavaScript file appeared directly
 between the <script> and </script> tags. Note that the closing
 </script> tag is required in HTML
 documents even when the src attribute
 is specified, and there is no content between the <script> and </script> tags.
JavaScript was the original scripting language for the Web and
 <script> elements are, by
 default, assumed to contain or to reference JavaScript code. <script> elements have a type attribute whose default value is
 “text/javascript.” You can specify this type explicitly if you want, but
 it is never necessary.

Event-Driven Programming

Client-side JavaScript programs are generally asynchronous
 and event-driven. When a web page loads, the scripts in that web page
 generally initialize some variables and register some event handler
 functions. These functions are then invoked by the browser when the events
 for which they were registered occur. A web application that wants to
 enable keyboard shortcuts for common actions would register an
 event handler for key events, for example. Even noninteractive programs
 use events. Suppose you wanted to write a program that would analyze the
 structure of its document and automatically generate a table of contents
 for the document. No event handlers for user input events are necessary,
 but the program would still register an onload event handler so
 that it would know when the document had finished loading and was ready to
 have a table of contents generated.
Events and event handling are the subject of Chapter 12.

The Window Object

The Window object is the main entry point to all client-side
 JavaScript features and APIs. It represents a web browser window or frame,
 and you can refer to it with the identifier window. The
 Window object defines properties like location, which refers to
 a Location object that specifies the URL currently displayed in the window
 and allows a script to load a new URL into the window:
// Set location to navigate to a new web page
window.location = "http://www.oreilly.com/";
The Window object also defines methods like alert(), which displays a
 message in a dialog box, and setTimeout(), which
 registers a function to be invoked after a specified amount of
 time:
// Wait 2 seconds and then say hello
setTimeout(function() { alert("hello"); }, 2000);
Notice that the code above does not explicitly use the window property. In client-side JavaScript, the
 Window object is also the global object. This means that the Window object
 is at the top of the scope chain and that its properties and methods are
 effectively global variables and global functions. The Window object has a
 property named window that always refers
 to itself. You can use this property if you need to refer to the window
 object itself, but it is not usually necessary to use window if you just want to refer to access
 properties of the global window object.
As the global object, Window defines an assortment of properties and
 methods for client-side JavaScript programming. The most important of
 these is the document property, which
 is the subject of Chapter 11. The other properties and
 methods are covered in the subsections below.
Timers

setTimeout() and
 setInterval() allow you
 to register a function to be invoked once or repeatedly after a
 specified amount of time has elapsed. These are important global
 functions of client-side JavaScript, and are therefore defined as
 methods of Window, but they are general-purpose functions and don’t
 really have anything to do with the window.
The setTimeout() method of the
 Window object schedules a function to run after a specified number of
 milliseconds elapses. setTimeout()
 returns a value that can be passed to clearTimeout() to
 cancel the execution of the scheduled function.
If you call setTimeout() with a
 time of 0 ms, the function you specify is not invoked right away.
 Instead, it is placed on a queue to be invoked “as soon as possible”
 after any currently pending event handlers finish running.
setInterval() is like setTimeout() except that the specified
 function is invoked repeatedly at intervals of the specified number of
 milliseconds:
// Call updateClock() every 60 seconds
setInterval(updateClock, 60000);
Like setTimeout(), setInterval() returns a value that can be
 passed to clearInterval() to cancel
 any future invocations of the scheduled function.

Browser Location and Navigation

The location property of
 the Window object refers to a Location object, which represents the
 current URL of the document displayed in the window, and which also
 defines methods for making the window load a new document.
The location property of a
 window is a reference to a Location object; it represents the current
 URL of the document being displayed in that window. The href property of the
 Location object is a string that contains the complete text of the URL.
 The toString() method of
 the Location object returns the value of the href property, so you can usually just write
 location rather than location.href.
Other properties of this object—protocol, host, hostname, port, pathname, search, and hash—specify the
 individual parts of the URL. They are known as “URL decomposition” properties, and they are also
 supported by Link objects (created by <a> and <area> elements in HTML
 documents).
The Location object also defines a reload(), which makes
 the browser reload the document.
The Location object can also be used to make the browser navigate
 to a new page: simply assign the new URL directly to the location property:
location = "http://www.oreilly.com";
You can also assign relative URLs to location. They are resolved against the
 current URL:
location = "page2.html"; // Next page
A bare fragment identifier is a special kind of relative URL that
 does not cause the browser to load a new document but simply scroll to
 display a new section of the document. The identifier #top is a special case:
 if no document element has the ID “top,” it makes the browser jump to
 the start of the document:
location = "#top";
The URL decomposition properties of the Location object are
 writable, and setting them changes the location URL and also causes the
 browser to load a new document (or, in the case of the hash property, to navigate within the current
 document):
location.search = "?page=" + (pagenum+1);

Browsing History

The history property of the
 Window object refers to the History object for the window. The History
 object models the browsing history of a window as a list of documents
 and document states.
The History object has back() and forward() methods that
 behave like the browser’s Back and Forward buttons do: they make the
 browser go backward or forward one step in its browsing history. A third
 method, go(), takes an integer
 argument and can skip any number of pages forward (for positive
 arguments) or backward (for negative arguments) in the history
 list:
history.go(-2); // Like clicking Back twice
If a window contains child windows (such as <iframe>
 elements—see Relationships Between Frames), the browsing histories of the
 child windows are chronologically interleaved with the history of the
 main window. This means that calling history.back() (for example) on the main
 window may cause one of the child windows to navigate back to a
 previously displayed document but leave the main window in its current
 state.
Modern web applications can dynamically alter their own content
 without loading a new document. Applications that do this may want to
 allow the user to use the Back and Forward buttons to navigate between
 these dynamically created application states. One way to do this is to
 store application state by setting location.hash to a
 string that captures the application’s current state. Even though this
 does not load a new document, it creates a new history entry, and if the
 user later uses the Back button to go back to that history entry, the
 browser will fire a “hashchange” event. An application that wants to
 track the Forward and Back buttons can register a handler by setting
 window.onhashchange.
Another more complicated way of managing the browsing history for
 a web application involves the history.pushState()
 method and its corresponding window.onpopstate event
 handler. Coverage of that API is beyond the scope of this book,
 however.

Browser and Screen Information

Scripts sometimes need to obtain information about the web
 browser in which they are running or the desktop on which the browser
 appears. This section describes the navigator and screen properties of the Window object. Those properties refer
 to Navigator and Screen objects, respectively, and these objects provide
 information that allows a script to customize its behavior based on its
 environment.
The navigator property of a
 Window object refers to a Navigator object that contains browser vendor
 and version number information. The Navigator object is named after the
 early Navigator browser from Netscape, but it is also supported by all
 other browsers.
The Navigator object has four properties that provide information
 about the browser that is running:
	appName
	The full name of the web browser. In IE, this is
 “Microsoft Internet Explorer.” In Firefox, this property is
 “Netscape.” For compatibility, other browsers often report the
 name “Netscape” as well.

	appVersion
	This property typically begins with a number and
 follows that with a detailed string that contains browser vendor
 and version information. The number at the start of this string is
 often 4.0 or 5.0 to indicate generic compatibility with fourth-
 and fifth-generation browsers. There is no standard format for the
 appVersion string, so parsing
 it in a browser-independent way isn’t possible.

	userAgent
	The string that the browser sends in its USER-AGENT HTTP
 header. This property typically contains all the information in
 appVersion and may contain
 additional details as well. Like appVersion, there is no standard
 format.

	platform
	A string that identifies the operating system (and
 possibly the hardware) on which the browser is running.

In addition to its browser vendor and version information
 properties, the Navigator object has some miscellaneous properties and
 methods. The standardized and widely implemented nonstandard properties
 include:
	onLine
	The navigator.onLine property (if it exists)
 specifies whether the browser is currently connected to the
 network.

	geolocation
	A Geolocation object that defines an API for
 determining the user’s geographical location. The details of this
 API are beyond the scope of this pocket reference.

The screen property of a
 Window object refers to a Screen object that provides information about
 the size of the user’s display. The width and height properties
 specify the size of the display in pixels. The availWidth and
 availHeight properties
 specify the display size that is actually available; they exclude the
 space required by features such as a desktop taskbar. You might use the
 Screen object to determine whether your web app is running in a small
 form factor device such as a tablet or mobile phone.

Dialog Boxes

The Window object provides three methods for displaying
 simple dialog boxes to the user. alert() displays a
 message to the user and waits for the user to dismiss the dialog.
 confirm() displays a
 message, waits for the user to click an OK or Cancel button and returns
 a boolean value. And prompt() displays a
 message, waits for the user to enter a string, and returns that string.
 The following code uses all three methods:
do {
 // Ask for a string
 var n = prompt("What is your name?");
 // Ask for a confirmation
 var ok = confirm("Is " + n + " okay?");
} while(!ok)
alert("Hello, " + n); // Display a greeting
Although the alert(), confirm(), and prompt() methods are very easy to use, good
 design dictates that you use them sparingly, if at all. Dialog boxes
 like these are not a common feature on the Web, and most users will find
 the dialog boxes produced by these methods disruptive to their browsing
 experience.

Document Elements as Window Properties

If you name an element in your HTML document using the
 id attribute, and if the Window object does not already have a
 property by that name, the Window object is given a nonenumerable
 property whose name is the value of the id attribute and whose value is the HTMLElement object that represents that document
 element.
As we’ve already noted, the Window object serves as the global
 object in client-side JavaScript, so this means that the id attributes you use in your HTML documents
 become global variables (if there are not already variables by those
 names) accessible to your scripts. If your document includes the element
 <button
 id="okay"/>, you can refer to that element using the global
 variable okay.
The implicit use of element IDs as global variables is a
 historical quirk of web browser evolution. It is required for backward
 compatibility with existing web pages, but its use is not recommended.
 Instead, explicitly look up elements using the techniques shown in Chapter 11.

Multiple Windows and Frames

A single web browser window on your desktop may contain
 several tabs. Each tab is an independent browsing context. Each has its own
 Window object, and each is isolated from all the others. The scripts
 running in one tab usually have no way of even knowing that the other
 tabs exist, much less of interacting with their Window objects or
 manipulating their document content. If you use a web browser that does
 not support tabs, or if you have tabs turned off, you may have many web
 browser windows open on your desktop at one time. As with tabs, each
 desktop window has its own Window object, and each is usually
 independent of and isolated from all of the others.
HTML documents may contain nested documents using an <iframe> element. An <iframe> creates a nested browsing context represented by a Window object of
 its own. The deprecated <frameset> and
 <frame> elements
 also create nested browsing contexts, and each <frame> is represented by a Window. Client-side JavaScript makes very
 little distinction between windows, tabs, iframes, and frames: they are
 all browsing contexts, and to JavaScript, they are all Window objects.
 Nested browsing contexts are not isolated from one another the way
 independent tabs usually are. A script running in one frame can always
 see its ancestor and descendant frames, though the same-origin policy
 described in The Same-Origin Policy may prevent the script
 from inspecting the documents in those frames. Nested frames are the
 topic of Relationships Between Frames.
Since the Window is the global object of client-side JavaScript,
 each window or frame has a separate JavaScript execution context.
 Nevertheless, JavaScript code in one window can, subject to same-origin
 constraints, use the objects, properties, and methods defined in other
 windows. This is discussed in more detail in JavaScript in Interacting Windows.
Relationships Between Frames

You already know that the JavaScript code in any window
 or frame can refer to its own Window object as window (or as self). A frame can refer to the Window
 object of the window or frame that contains it using the parent
 property:
parent.history.back();
A Window object that represents a top-level window or tab has no
 container, and its parent property
 simply refers to the window itself:
parent == self; // For toplevel windows
If a frame is contained within another frame that is contained
 within a top-level window, that frame can refer to the top-level
 window as parent.parent. The
 top property is a
 general-case shortcut, however: no matter how deeply a frame is
 nested, its top property refers to
 the top-level containing window. If a Window object represents a
 top-level window, top simply refers
 to that window itself. For frames that are direct children of a
 top-level window, the top property
 is the same as the parent property.
The parent and top properties allow a script to refer to
 its frame’s ancestors. There is more than one way to refer to the
 descendant frames of a window or frame. Frames are created with
 <iframe>
 elements. You can obtain an Element object that represents an <iframe> just as you would do for any
 other element. Suppose your document contains <iframe id="f1">. Then, the Element
 object that represents this iframe is:
var e = document.getElementById("f1");
<iframe> elements have
 a contentWindow
 property that refers to the Window object of the frame, so the
 Window object for this frame is:
var kid = document.getElementById("f1").contentWindow;
You can go in the reverse direction—from the Window that
 represents a frame to the <iframe> Element that contains the
 frame—with the frameElement property
 of the Window. Window objects that represent top-level windows rather
 than frames have a null frameElement property:
var elt = document.getElementById("f1");
var w = elt.contentWindow;
w.frameElement === elt // Always true for frames
w.frameElement === null // For toplevel windows
It is not usually necessary to use the getElementById()
 method and the contentWindow
 property to obtain references to the child frames of a window,
 however. Every Window object has a frames property that refers to the child
 frames contained within the window or frame. The frames property refers to an array-like
 object that can be indexed numerically or by frame name. To refer to
 the first child frame of a window, you can use frames[0]. To refer to the third child frame
 of the second child, you can use frames[1].frames[2]. Code running in a frame
 might refer to a sibling frame as parent.frames[1]. Note that the elements of
 the frames[] array are Window
 objects, not <iframe>
 elements.
If you specify the name or id attribute of an
 <iframe> element, that frame
 can be indexed by name as well as by number. A frame named “f1” would
 be frames["f1"] or frames.f1, for example.
You can use the name or
 id attribute of an <iframe> element to give the frame a
 name that can be used in JavaScript code. If you use the name attribute,
 however, the name you specify also becomes the value of the name property of the Window that represents
 the frame. A name specified in this way can be used as the target attribute of a link.

JavaScript in Interacting Windows

Each window or frame is its own JavaScript execution
 context with a Window as its global object. But if code in one window
 or frame can refer to another window or frame (and if the same-origin
 policy does not prevent it), the scripts in one window or frame can
 interact with the scripts in the other.
Imagine a web page with two <iframe> elements named “A” and “B,”
 and suppose that those frames contain documents from the same server
 and that those documents contain interacting scripts. The script in
 frame A might define a variable i:
var i = 3;
That variable is nothing more than a property of the global
 object—a property of the Window object. Code in frame A can refer to
 the variable with the identifier i,
 or it can explicitly reference it through the window object:
window.i
Since the script in frame B can refer to the Window object for
 frame A, it can also refer to the properties of that window object:
parent.A.i = 4;
Recall that the function keyword that
 defines functions creates a variable just like the var keyword does. If
 a script in frame B declares a function f, that function is a global variable in
 frame B, and code in frame B can invoke f as f().
 Code in frame A, however, must refer to f as a property of the Window object of
 frame B:
parent.B.f();
If the code in frame A needs to use this function frequently, it
 might assign the function to a variable of frame A so that it can more
 conveniently refer to the function:
var f = parent.B.f;
Now code in frame A can invoke the function as f(), just as code in frame B does.
When you share functions between frames or windows like this, it
 is important to keep the rules of lexical scoping in mind. A function
 is executed in the scope in which it was defined, not in the scope
 from which it is invoked. Thus, if the function f above refers to global variables, these
 variables are looked up as properties of frame B, even when the
 function is invoked from frame A.

The Same-Origin Policy

The same-origin policy is a sweeping
 security restriction on what web content JavaScript code can interact
 with. It typically comes into play when a web page includes <iframe> elements. In this case, the
 same-origin policy governs the interactions of JavaScript code in one
 window or frame with the content of other windows and frames.
 Specifically, a script can read only the properties of windows and
 documents that have the same origin as the document that contains the
 script.
The origin of a document is defined
 as the protocol, host, and port of the URL from which the document was
 loaded. Documents loaded from different web servers have different
 origins. Documents loaded through different ports of the same host
 have different origins. And a document loaded with the http: protocol has a
 different origin than one loaded with the https: protocol, even if they come from the
 same web server.
It is important to understand that the origin of the script
 itself is not relevant to the same-origin policy: what matters is the
 origin of the document in which the script is embedded. Suppose, for
 example, that a script hosted by host A is included (using the
 src property of a
 <script>
 element) in a web page served by host B. The origin of that script is
 host B and the script has full access to the content of the document
 that contains it. If the script creates an iframe and loads a second
 document from host B into it, the script also has full access to the
 content of that second document. But if the script opens another
 iframe and loads a document from host C (or even one from host A) into
 it, the same-origin policy comes into effect and prevents the script
 from accessing this document.
The same-origin policy does not actually apply to all properties
 of all objects in a window from a different origin. But it does apply
 to many of them, and, in particular, it applies to practically all the
 properties of the Document object. You should consider any window or
 frame that contains a document from another server to be off-limits to
 your scripts.
The same-origin policy also applies to scripted HTTP requests made with the XMLHttpRequest object (see Chapter 13).
 This object allows client-side JavaScript code to make arbitrary HTTP
 requests to the web server from which the containing document was
 loaded, but it does not allow scripts to communicate with other web
 servers.

Chapter 11. Scripting Documents

Client-side JavaScript exists to turn static HTML documents into
 interactive web applications. The Document object represents the content of
 a web browser window, and it is the subject of this chapter. The Document
 object does not stand alone, however. It is the central object in a larger
 API, known as the Document Object Model, or DOM, for
 representing and manipulating document content.
Overview of the DOM

The Document Object Model, or DOM, is the fundamental API
 for representing and manipulating the content of HTML documents. The API
 is not particularly complicated, but there are a number of architectural
 details you need to understand. First, you should understand that the
 nested elements of an HTML or XML document are represented in the DOM as a
 tree of objects. The tree representation of an HTML document contains
 nodes representing HTML tags or elements, such as <body> and <p>, and nodes representing strings of
 text. An HTML document may also contain nodes representing HTML comments.
 Consider the following simple HTML document:
<html>
 <head>
 <title>Sample Document</title>
 </head>
 <body>
 <h1>An HTML Document</h1>
 <p>This is a <i>simple</i> document.
</html>
The DOM representation of this document is the tree pictured in
 Figure 11-1.
[image: The tree representation of an HTML document]

Figure 11-1. The tree representation of an HTML document

If you are not already familiar with tree structures in computer programming, it is helpful to
 know that they borrow terminology from family trees. The node directly
 above a node is the parent of that node. The nodes one
 level directly below another node are the children of that node. Nodes at the
 same level, and with the same parent, are siblings. The set of nodes any number
 of levels below another node are the descendants of that node. And the
 parent, grandparent, and all other nodes above a node are the ancestors of that node.
Each box in Figure 11-1 is a node of the
 document and is represented by a Node object. We’ll talk about the
 properties and methods of Node in some of the sections that follow. Note
 that the figure contains three different types of nodes. At the root of
 the tree is the Document node that represents the entire document. The
 nodes that represent HTML elements are Element nodes, and the nodes that
 represent text are Text nodes. Document, Element, and Text are subclasses
 of Node. Document and Element are the two most important DOM classes, and
 much of this chapter is devoted to their properties and methods.
Node and its subtypes form the type hierarchy illustrated in Figure 11-2. Notice that there is a
 formal distinction between the generic Document and Element types, and the
 HTMLDocument and HTMLElement types. The Document type represents either an
 HTML or an XML document, and the Element class represents an element of
 such a document. The HTMLDocument and HTMLElement subclasses are specific
 to HTML documents and elements. In this book, we often use the generic
 class names Document and Element, even when referring to HTML
 documents.
[image: A partial class hierarchy of document nodes]

Figure 11-2. A partial class hierarchy of document nodes

It is also worth noting in Figure 11-2 that
 there are many subtypes of HTMLElement that represent specific types of
 HTML elements. Each defines JavaScript properties to mirror the HTML
 attributes of a specific element or group of elements. Some of these
 element-specific classes define additional properties or methods that go
 beyond simple mirroring of HTML syntax.

Selecting Document Elements

Most client-side JavaScript programs work by somehow manipulating
 one or more document elements. When these programs start, they can use the
 global variable document to refer to the Document
 object. In order to manipulate elements of the document, however, they
 must somehow obtain or select the Element objects
 that refer to those document elements. The DOM defines a number of ways to
 select elements; you can query a document for an element or
 elements:
	with a specified id
 attribute;

	with a specified name
 attribute;

	with the specified tag name;

	with the specified CSS class or classes; or

	matching the specified CSS selector

The subsections that follow explain each of these element selection techniques.
Selecting Elements by ID

Any HTML element can have an id attribute. The value
 of this attribute must be unique within the document—no two elements in
 the same document can have the same ID. You can select an element based
 on this unique ID with the getElementById() method
 of the Document object:
var sect1 = document.getElementById("section1");
This is the simplest and most commonly used way to select
 elements. If your script is going to manipulate a certain specific set
 of document elements, give those elements id attributes, and look up the Element objects
 using that ID. If you need to look up more than one element by ID, you
 might find the getElements() function of Example 11-1
 useful.
Example 11-1. Looking up multiple elements by ID
/*
 * This function expects any number of string arguments.
 * It treats each argument as an element id and calls
 * document.getElementById() for each. It returns an
 * object that maps ids to matching Element objects.
 */
function getElements(/*ids...*/) {
 var elements = {}; // Start with empty map
 for(var i = 0; i < arguments.length; i++) {
 var id = arguments[i]; // Argument is an elt id
 var elt = document.getElementById(id);
 if (elt == null)
 throw new Error("No element with id: " + id);
 elements[id] = elt; // Map id to element
 }
 return elements; // Return id to elt map
}

Selecting Elements by Name

The HTML name attribute was
 originally intended to assign names to form elements, and the value of
 this attribute is used when form data is submitted to a server. Like the
 id attribute, name assigns a name to an element. Unlike
 id, however, the value of a name attribute does not have to be unique:
 multiple elements may have the same name, and this is common in the case
 of radio buttons and checkboxes in forms. Also, unlike id, the name attribute is only valid on a handful of
 HTML elements, including forms, form elements, <iframe>, and

 elements.
To select HTML elements based on the value of their name attributes, you can use the getElementsByName()
 method of the Document object:
var btns = document.getElementsByName("color");
getElementsByName() returns a
 NodeList object that behaves like a read-only array of
 Element objects.
Setting the name attribute of a
 <form>, , or <iframe>, creates a property of the
 Document object whose name is the value of the attribute (assuming, of
 course, that the document does not already have a property with that
 name). If there is only a single element with a given name, the value of
 the automatically created document property is the element itself. If
 there is more than one element, then the value of the property is a
 NodeList object that acts as an array of elements. The document
 properties created for named <iframe> elements are special: instead
 of referring to the Element object, they refer to the frame’s Window
 object.
What this means is that some elements can be selected by name
 simply by using the name as a Document property:
// Get the object for <form name="shipping_address">
var form = document.shipping_address;

Selecting Elements by Type

You can select all elements of a specified type (or tag
 name) using the getElementsByTagName()
 method of the Document object. To obtain a read-only array-like object
 containing the Element objects for all elements
 in a document, for example, you might write:
var spans = document.getElementsByTagName("span");
Like getElementsByName(),
 getElementsByTagName() returns a
 NodeList object. The elements of the returned NodeList are in document
 order, so you can select the first <p> element of a document like
 this:
var firstpara = document.getElementsByTagName("p")[0];
HTML tags are case-insensitive, and when getElementsByTagName() is used on an HTML
 document, it performs a case-insensitive tag name comparison. The
 spans variable above, for example,
 will include any
 elements that were written as .
You can obtain a NodeList that represents all elements in a document by passing the wildcard argument “*” to getElementsByTagName().
The Element class also defines a getElementsByTagName() method. It works in the
 same way as the Document version, but it only selects elements that are
 descendants of the element on which it is invoked. So to find all
 elements inside the
 first <p> element of a
 document, you could write:
var firstp= document.getElementsByTagName("p")[0];
var firstpSpans = firstp.getElementsByTagName("span");
For historical reasons, the HTMLDocument class defines shortcut properties to access certain kinds of nodes. The
 images, forms, and links properties, for
 example, refer to objects that behave like read-only arrays of , <form>, and <a> elements (but
 only <a> tags that have an
 href attribute). These
 properties refer to HTMLCollection objects, which are much like NodeList
 objects, but they can additionally be indexed by element ID or name.
 Earlier, we saw how you could refer to a named <form> element with an expression like
 this:
document.shipping_address
With the document.forms
 property, you can also refer more specifically to the named (or ID’ed)
 form like this:
document.forms.shipping_address;
HTMLDocument also defines two properties that refer to special
 single elements rather than element collections. document.body is the <body> element of
 an HTML document, and document.head
 is the <head> element.
 The documentElement
 property of the Document class refers to the root element of the
 document. In HTML documents, this is always an <html> element.
NodeLists and HTMLCollections
getElementsByName()
 and getElementsByTagName() return NodeList
 objects, and properties like document.images and document.forms are HTMLCollection
 objects.
These objects are read-only array-like objects. They have
 length properties and can be
 indexed (for reading but not writing) like true arrays. You can
 iterate the contents of a NodeList or HTMLCollection with a standard
 loop like this:
// Loop through all images and hide them
for(var i = 0; i < document.images.length; i++)
 document.images[i].style.display = "none";
One of the most important and surprising features of NodeList
 and HTMLCollection is that they are not static snapshots of a
 historical document state but are generally live,
 and the list of elements they contain can vary as the document
 changes. Suppose you call getElementsByTagName('div') on a document
 with no <div> elements.
 The return value is a NodeList with a length of 0. If you then insert a new
 <div> element into the
 document, that element automatically becomes a member of the NodeList,
 and the length property changes to
 1.

Selecting Elements by CSS Class

The class attribute of an
 HTML is a space-separated list of zero or more identifiers. It describes
 a way to define sets of related document elements: any elements that
 have the same identifier in their class attribute are part of the same set.
 class is a reserved word in
 JavaScript, so client-side JavaScript uses the className property to hold the value of the HTML class attribute. The class attribute is usually used in conjunction
 with a CSS stylesheet to apply the same presentation styles to all
 members of a set. In addition, however, HTML5 defines a method,
 getElementsByClassName(), that allows us to
 select sets of document elements based on the identifiers in their
 class attribute.
Like getElementsByTagName(),
 getElementsByClassName() can be
 invoked on both HTML documents and HTML elements, and it returns a live
 NodeList containing all matching descendants of the document or element.
 getElementsByClassName() takes a
 single string argument, but the string may specify multiple
 space-separated identifiers. Only elements that include all of the
 specified identifiers in their class
 attribute are matched. The order of the identifiers does not matter.
 Here are some examples of getElementsByClassName():
// Find all elements with class "warning"
var w = document.getElementsByClassName("warning");
// Find descendants of the element "log" that have
// classes "error" and "fatal"
var log = document.getElementById("log");
var fatal = log.getElementsByClassName("fatal error");

Selecting Elements with CSS Selectors

CSS stylesheets have a very powerful syntax, known as
 selectors, for describing elements or
 sets of elements within a document. Full details of CSS selector syntax
 are beyond the scope of this book, but some examples will demonstrate
 the basics. Elements can be described by ID, tag name, or class:
#nav // An element with id="nav"
div // Any <div> element
.warning // Any element with class "warning"
More generally, elements can be selected based on attribute
 values:
p[lang="fr"] // A paragraph in French: <p lang="fr">
*[name="x"] // Any element with name="x" attribute
These basic selectors can be combined:
span.fatal.error // with classes "fatal" & "error"
span[lang="fr"].warning // Any warning in French
Selectors can also specify document structure:
#log span // Any descendant of the log
#log>span // Any child of the log
body>h1:first-child // The first <h1> child of <body>
Selectors can be combined to select multiple elements or multiple
 sets of elements:
div, #log // All <div> elements plus the log
As you can see, CSS selectors allow elements to be selected in all
 of the ways described above: by ID, by name, by tag name, and by class
 name. You can select elements that match a CSS selector with the
 Document method querySelectorAll(). It
 takes a single string argument containing a CSS selector and returns a
 NodeList that represents all elements in the document that
 match the selector. Unlike previously described element selection
 methods, the NodeList returned by querySelectorAll() is not live: it holds the
 elements that match the selector at the time the method was invoked, but
 it does not update as the document changes. If no elements match,
 querySelectorAll() returns an empty
 NodeList. If the selector string is invalid, querySelectorAll() throws an exception.
In addition to querySelectorAll(), the document object also
 defines querySelector(), which is
 like querySelectorAll(), but returns
 only the first (in document order) matching element or null if there is no matching element.
These two methods are also defined on Elements. When invoked on an
 element, the specified selector is matched against the entire document,
 and then the result set is filtered so that it only includes descendants
 of the specified element.

Document Structure and Traversal

Once you have selected an Element from a Document, you
 sometimes need to find structurally related portions (parent, siblings,
 children) of the document. The Document object, its Element objects, and
 the Text objects that represent runs of text in the document are all Node
 objects. Node defines the following important properties:
	parentNode
	The Node that is the parent of this one, or null for nodes like the Document object
 that have no parent.

	childNodes
	A read-only array-like object (a NodeList) that is a live
 representation of a Node’s child nodes.

	firstChild,
 lastChild
	The first and last child nodes of a node, or null if the node has no children.

	nextSibling,
 previousSibling
	The next and previous sibling node of a node. Two nodes with
 the same parent are siblings. Their order reflects the order in
 which they appear in the document. These properties connect nodes in
 a doubly linked list.

	nodeType
	The kind of node this is. Document nodes have the
 value 9. Element nodes have the value 1. Text nodes have the value
 3. Comment nodes have the value 8.

	nodeValue
	The textual content of a Text or Comment node.

	nodeName
	The tag name of an Element, converted to
 uppercase.

Using these Node properties, the second child node of the first
 child of the Document can be referred to with expressions like
 these:
document.childNodes[0].childNodes[1]
document.firstChild.firstChild.nextSibling
Suppose the document in question is the following:
<html><head><title>Test</title></head><body>Hello!</body>
</html>
Then the second child of the first child is the <body> element. It has a nodeType of 1 and a nodeName of “BODY.”
Note, however, that this API is extremely sensitive to variations in
 the document text. If the document is modified by inserting a single
 newline between the <html> and
 the <head> tag, for example, the
 Text node that represents that newline becomes the first child of the
 first child, and the second child is the <head> element instead of the <body> body.
When we are primarily interested in the Elements of a document
 instead of the text within them (and the whitespace between them), it is
 helpful to use an API that allows us to treat a document as a tree of
 Element objects, ignoring Text and Comment nodes that are also part of the
 document.
The first part of this API is the children property of
 Element objects. Like childNodes, this
 is a NodeList. Unlike childNodes, however, the children list contains only Element
 objects.
The second part of an element-based document traversal API is
 Element properties that are analogs to the child and sibling properties of
 the Node object:
	firstElementChild,
 lastElementChild
	Like firstChild and
 lastChild, but for Element
 children only.

	nextElementSibling,
 previousElementSibling
	Like nextSibling and
 previousSibling, but for Element
 siblings only.

	childElementCount
	The number of Element children. Returns the same value as
 children.length.

Attributes

HTML elements consist of a tag name and a set of name/value pairs
 known as attributes. The <a> element that
 defines a hyperlink, for example, uses the value of its href attribute as the
 destination of the link. The attribute values of HTML elements are
 available as properties of the HTMLElement objects that represent those elements. The
 HTMLElement type defines properties for the universal HTTP attributes such
 as id, title, lang, and dir, and event handler
 properties like onclick. Element-specific subtypes define attributes specific
 to those elements. To query the URL
 of an image, for example, you can use the src property of the
 HTMLElement that represents the element:
var img = document.getElementById("myimage");
var url = img.src; // The src attribute is the img URL
img.id = "myimg" // Change the id attribute value
Similarly, you might set the form-submission attributes of a
 <form> element with
 code like this:
var f = document.forms[0]; // First <form> in doc
f.method = "POST"; // Post this form to url below
f.action = "http://www.example.com/submit.php";
HTML attributes are not case-sensitive, but JavaScript property
 names are. To convert an attribute name to the JavaScript property, write
 it in lowercase. If the attribute is more than one word long, however, put
 the first letter of each word after the first in uppercase: defaultChecked and tabIndex, for example.
Some HTML attribute names are reserved words in JavaScript. For these, the general rule is
 to prefix the property name with “html.” The HTML for attribute (of the <label> element),
 for example, becomes the JavaScript htmlFor property. “class”
 is a reserved (but unused) word in JavaScript, and the very important HTML
 class attribute is an exception to the
 rule above: it becomes className in JavaScript
 code.
The properties that represent HTML attributes usually have a string
 value. When the attribute is a boolean or numeric value (the defaultChecked and maxLength attributes of an <input> element,
 for example), the properties values are booleans or numbers instead of
 strings. Event handler attributes always have Function objects (or
 null) as their values. The HTML5
 specification defines a few attributes (such as the form attribute of <input> and related elements) that convert
 element IDs to actual Element objects.
As described above, HTMLElement and its subtypes define properties
 that correspond to the standard attributes of HTML elements. The Element
 type also defines getAttribute() and setAttribute() methods
 that you can use to query and set nonstandard HTML attributes:
var image = document.images[0];
var width = parseInt(image.getAttribute("WIDTH"));
image.setAttribute("class", "thumbnail");
The code above highlights two important differences between these
 methods and the property-based API described above. First, attribute
 values are all treated as strings. getAttribute() never returns a number, boolean,
 or object. Second, these methods use standard attribute names, even when
 those names are reserved words in JavaScript. For HTML elements, the
 attribute names are case-insensitive.
Element also defines two related methods, hasAttribute() and
 removeAttribute(), which
 check for the presence of a named attribute and remove an attribute
 entirely. These methods are particularly useful with boolean attributes:
 these are attributes (such as the disabled attribute of HTML form elements) whose
 presence or absence from an element matters but whose value is not
 relevant.

Element Content

Take a look again at Figure 11-1, and
 ask yourself what the “content” of the <p> element is.
 There are three ways we might answer this question:
	The content is the HTML string “This is a
 <i>simple</i> document.”

	The content is the plain-text string “This is a simple document.”

	The content is a Text node, an Element node that has a Text node
 child, and another Text node.

Each of these are valid answers, and each answer is useful in its
 own way. The sections that follow explain how to work with the HTML
 representation, the plain-text representation, and the tree representation
 of element content.
Element Content as HTML

Reading the innerHTML property of
 an Element returns the content of that element as a string of markup.
 Setting this property on an element invokes the web browser’s parser and
 replaces the element’s current content with a parsed representation of
 the new string.
Web browsers are very good at parsing HTML and setting innerHTML is usually fairly efficient, even
 though the value you specify must be parsed. Note, however, that
 repeatedly appending bits of text to the innerHTML property with the += operator is usually not efficient because
 it requires both a serialization step and a parsing step.
The insertAdjacentHTML()
 method allows you to insert a string of arbitrary HTML markup “adjacent”
 to the specified element. The markup is passed as the second argument to
 this method, and the precise meaning of “adjacent” depends on the value
 of the first argument. This first argument should be a string with one
 of the values “beforebegin,” “afterbegin,” “beforeend,” or “afterend.”
 These values correspond to insertion points that are illustrated in
 Figure 11-3.
[image: Insertion points for insertAdjacentHTML()]

Figure 11-3. Insertion points for insertAdjacentHTML()

Element Content as Plain Text

Sometimes you want to query the content of an element as
 plain text, or to insert plain-text into a document (without having to
 escape the angle brackets and ampersands used in HTML markup). The
 standard way to do this is with the textContent property of
 Node:
// Get first <p> in the document
var para = document.getElementsByTagName("p")[0];
// Get its text: "This is a simple document."
var text = para.textContent;
// Alter paragraph content
para.textContent = "Hello World!";

Element Content as Text Nodes

Another way to work with the content of an element is as a
 list of child nodes, each of which may have its own set of children.
 When thinking about element content, it is usually the Text nodes that
 are of interest.
Example 11-2 shows a textContent() function
 that recursively traverses the children of an element and concatenates
 the text of all the Text node descendants. In order to understand the
 code, recall that the nodeValue property
 (defined by the Node type) holds the content of a Text node.
Example 11-2. Finding all Text node descendants of an element
// Return the plain-text content of element e,
// recursing into child elements. This function works
// like the textContent property
function textContent(e) {
 var c, type, s = "";
 for(c=e.firstChild; c!=null; c=c.nextSibling) {
 type = c.nodeType;
 if (type === 3) // Text node:
 s += c.nodeValue; // add text content
 else if (type === 1) // Element node:
 s += textContent(c); // recurse
 }
 return s;
}

Note that the nodeValue
 property is read/write and you can set it to change the content
 displayed by a Text node.

Creating, Inserting, and Deleting Nodes

We’ve seen how to query and alter document content using
 strings of HTML and plain text. And we’ve also seen that we can traverse a
 Document to examine the individual Element and Text nodes that it is made
 of. It is also possible to alter a document at the level of individual
 nodes. The Document type defines methods for creating Element and Text
 objects, and the Node type defines methods for inserting, deleting, and
 replacing nodes in the tree. The following function demonstrates how to
 create and insert an element into the document:
// Asynchronously load and execute a script
function loadasync(url) {
 // Create a <script> element
 var s = document.createElement("script");
 // Set its src attribute
 s.src = url;
 // Insert the <script> into the <head>
 document.head.appendChild(s);
}
As shown above, you can create new Element nodes with the createElement() method of the Document object.
 Pass the tag name of the element as the method argument.
Text nodes are created with a similar method:
var t = document.createTextNode("text node");
Another way to create new document nodes is to make copies of
 existing ones. Every node has a cloneNode() method that
 returns a new copy of the node. Pass true to recursively copy all descendants as
 well, or false to only make a shallow
 copy.
Once you have a new node, you can insert it into the document with
 the Node methods appendChild() or
 insertBefore(). appendChild() is invoked on the Element node
 that you want to insert into, and it inserts the specified node so that it
 becomes the lastChild of that
 node.
insertBefore() is like appendChild(), but it takes two arguments. The
 first argument is the node to be inserted. The second argument is the node before which
 that node is to be inserted. This
 method is invoked on the node that will be the parent of the new node, and
 the second argument must be a child of that parent node. If you pass
 null as that second argument, the insertBefore() behaves like appendChild() and inserts at the end.
Here is a simple function for inserting a node at a numerical index.
 The function demonstrates both appendChild() and insertBefore():
// Insert the child node into parent at index n
function insertAt(parent, child, n) {
 if (n < 0 || n > parent.childNodes.length)
 throw new Error("invalid index");
 else if (n == parent.childNodes.length)
 parent.appendChild(child);
 else
 parent.insertBefore(child,parent.childNodes[n]);
}
If you call appendChild() or
 insertBefore() to insert a node that is
 already in the document, that node will automatically be removed from its
 current position and reinserted at its new position: there is no need to
 explicitly remove the node.
The removeChild() method
 removes a node from the document tree. Be careful, however: this method
 isn’t invoked on the node to be removed but (as the “child” part of its
 name implies) on the parent of that node. Invoke the method on the parent
 node and pass the child node that is to be removed as the method argument.
 To remove the node n from the document,
 you’d write:
n.parentNode.removeChild(n);
replaceChild() removes
 one child node and replaces it with a new one. Invoke this method on the
 parent node, passing the new node as the first argument and the node to be
 replaced as the second argument. To replace the node n with a string of text, for example, you could
 write:
var t = document.createTextNode("[REDACTED]");
n.parentNode.replaceChild(t, n);
The following function demonstrates another use of replaceChild():
// Replace the node n with a new element and
// make n a child of that element.
function embolden(n) {
 // If n is a string treat it as an element id
 if (typeof n == "string")
 n = document.getElementById(n);
 // Create a element
 var b = document.createElement("b");
 // Replace n with the element
 n.parentNode.replaceChild(b, n);
 // Make n a child of the element
 b.appendChild(n);
}

Element Style

Cascading Style Sheets (CSS) is a standard for specifying
 the visual presentation of HTML documents. CSS is intended for use by
 graphic designers: it allows a designer to precisely specify fonts,
 colors, margins, indentation, borders, and even the position of document
 elements. But CSS is also of interest to client-side JavaScript
 programmers because CSS styles can be scripted. This section explains how
 to script CSS and assumes that you are already somewhat familiar with
 CSS.
The most straightforward way to script CSS is to alter the style attribute of individual document elements.
 Like most HTML attributes, style is a property of
 the Element object, and you can manipulate it in JavaScript. The style property is unusual, however: its value is
 not a string or other primitive value but a CSSStyleDeclaration object. The JavaScript properties of
 this style object represent the CSS properties specified by the HTML
 style attribute. To make the text of an
 element e big, bold, and blue, for
 example, you can use the following code to set the JavaScript properties
 that correspond to the font-size,
 font-weight, and
 color style
 properties:
e.style.fontSize = "24pt";
e.style.fontWeight = "bold";
e.style.color = "blue";
Many CSS style properties, such as font-size, contain hyphens in their names. In
 JavaScript, a hyphen is interpreted as a minus sign, so it is not possible
 to write an expression like:
e.style.font-size = "24pt"; // Syntax error!
Therefore, the names of the properties of the CSSStyleDeclaration
 object are slightly different from the names of actual CSS properties. If
 a CSS property name contains one or more hyphens, the CSSStyleDeclaration
 property name is formed by removing the hyphens and capitalizing the
 letter immediately following each hyphen. Thus, the CSS property border-left-width is accessed through the
 JavaScript borderLeftWidth property.
 Also, when a CSS property, such as the float property, has a
 name that is a reserved word in JavaScript, that name is prefixed with
 “css” to create a legal property name.
When working with the style properties of the CSSStyleDeclaration
 object, remember that all values must be specified as strings. Also,
 remember that all the positioning properties require units. Thus, it is
 not correct to set the left property
 like this:
// Incorrect: this is a number, not a string
e.style.left = 300;
// Incorrect: the units are missing
e.style.left = "300";
Units are required when setting style properties in JavaScript, just
 as they are when setting style properties in stylesheets. The correct way
 to set the value of the left property
 of an element e to 300 pixels
 is:
e.style.left = "300px";
If you want to set the left
 property to a computed value, be sure to append the units at the end of
 the computation:
e.style.left = (x0 + margin + border + padding) + "px";
Notice that the numeric result of the computation will be converted
 to a string as a side effect of appending the units string.
The style attribute of an HTML
 element is its inline style, and it overrides any
 style specifications in a stylesheet. Inline styles are generally useful
 for setting style values, and that is what the examples above have all
 done. You can read the properties of a CSSStyleDeclaration object that
 represents inline styles, but they return meaningful values only if
 they’ve previously been set by your JavaScript code or if the HTML element
 with which you are working has an inline style attribute that sets the desired
 properties. For example, your document may include a stylesheet that sets
 the left margin for all paragraphs to 30 pixels, but if you read the
 marginLeft property of one of your
 paragraph elements, you’ll get the empty string unless that paragraph has
 a style attribute that overrides the
 stylesheet setting.
Sometimes, you may find it easier to set or query the inline style
 of an element as a single string value rather than as a CSSStyleDeclaration object. To do that, you can use
 the Element getAttribute() and
 setAttribute() methods,
 or you can use the cssText property of
 the CSSStyleDeclaration object:
// Set the style attribute of e to the string s
e.setAttribute("style", s);
e.style.cssText = s; // Another way to do it

// Query the inline style of the element e
s = e.getAttribute("style");
s = e.style.cssText; // Another way to do it
An alternative to scripting individual CSS styles through the inline
 style property is to script the value
 of the HTML class attribute.
 Changing an element’s class changes the
 set of stylesheet selectors that apply to the element and can cause
 multiple CSS properties to change at the same time. Suppose, for example,
 that you want a way to draw the user’s attention to individual paragraphs
 (or other elements) of a document. You might start by defining
 attention-grabbing styles for any elements that have a class name of
 “attention”:
.attention { /* Styles to grab the user's attention */
 background-color: yellow; /* Yellow highlight */
 font-weight: bold; /* Bold text */
 border: solid black 2px; /* Black box */
}
The identifier class is a
 reserved word in JavaScript, so the HTML class attribute is available to JavaScript code
 using the name className. Here is code that sets and clears the
 className property of an element to add and remove the
 “attention” class for that element:
function grabAttention(e) {
 e.className = "attention";
}
function releaseAttention(e) {
 e.className = "";
}
HTML elements can be members of more than one CSS class and the
 class attribute holds a space-separated
 list of class names. The className
 property has a misleading name: classNames would have been a much better choice.
 The functions above assume that the className property will specify zero or one
 class name and do not work when more than one class is in use. If an
 element already has a class assigned, calling the grabAttention() function for that element will overwrite the
 existing class.
HTML5 addresses this issue by defining a classList property for
 every element. The value of this property is known as a DOMTokenList: a
 read-only array-like object (Array-Like Objects) whose elements
 contain the individual class names for the element. More important than
 its array elements, however, are the methods defined by DOMTokenList.
 add() and remove() add and remove
 individual class names from the element’s class attribute. toggle() adds a classname
 if it is not already present and removes it otherwise. Finally, the
 contains() method tests
 whether the class attribute contains a
 specified classname.
Like other DOM collection types, a DOMTokenList is a “live”
 representation of the element’s set of classes, not a static snapshot of the classes at the time the
 classList property is queried. If you
 obtain a DOMTokenList from the classList property of an element and then change
 the className property of that element,
 those changes are immediately visible through the token list. Similarly,
 any changes you make through the token list are immediately visible
 through the className property.

Geometry and Scrolling

In this chapter so far we have thought about documents as
 abstract trees of elements and text nodes. But when a browser renders a
 document within a window, it creates a visual representation of the
 document in which each element has a position and a size. Often, web
 applications can treat documents as trees of elements and never have to
 think about how those elements are rendered onscreen. Sometimes, however,
 it is necessary to determine the precise geometry of an element. CSS can
 be used, for example, to specify the position of an element. If you want
 to use CSS to dynamically position an element (such as a tooltip or
 callout) next to some ordinary browser-positioned element, you need to be
 able to determine the location of that element.
The position of an element is measured in pixels, with the
 x coordinate increasing to the right and the
 y coordinate increasing as we go down. There are two
 different points we can use as the coordinate system origin, however: the
 x and y coordinates of an
 element can be relative to the top-left corner of the document or relative
 to the top-left corner of the viewport in which the document is
 displayed. In top-level windows and tabs, the “viewport” is the portion of
 the browser that actually displays document content: it excludes browser
 “chrome” such as menus, toolbars, and tabs. For documents displayed in
 frames, the viewport is the <iframe> element
 that defines the frame. In either case, when we talk about the position of
 an element, we must be clear whether we are using document coordinates or viewport coordinates. (Note
 that viewport coordinates are sometimes called window coordinates.)
If the document is smaller than the viewport, or if it has not been
 scrolled, the upper-left corner of the document is in the upper-left
 corner of the viewport and the document and viewport coordinate systems
 are the same. In general, however, to convert between the two coordinate
 systems, we must add or subtract the scroll offsets. If an element has a
 y coordinate of 200 pixels in document coordinates,
 for example, and if the user has scrolled the browser down by 75 pixels,
 then that element has a y coordinate of 125 pixels in
 viewport coordinates. Similarly, if an element has an
 x coordinate of 400 in viewport coordinates and the
 user has scrolled the viewport 200 pixels horizontally, the element’s
 x coordinate in document coordinates is 600.
Document coordinates are more fundamental than viewport coordinates,
 and they do not change when the user scrolls. Nevertheless, it is quite
 common to use viewport coordinates in client-side programming. We use
 document coordinates when we specify an element position using CSS. But
 when we query the position of an element we get viewport coordinates.
 Similarly, when we register handler functions for mouse events, the
 coordinates of the mouse pointer are reported in viewport
 coordinates.
In order to convert between coordinate systems, we need to be able
 to determine the scrollbar positions for the browser window. The
 pageXOffset and
 pageYOffset properties of
 the Window object provide these values.
It is sometimes useful to be able to determine the viewport size—to find what portions of the document
 are currently visible, for example. Use the innerWidth and innerHeight properties of
 the Window object to query the viewport size.
To determine the size and position of an element, call its
 getBoundingClientRect()
 method. It expects no arguments and returns an object with properties
 left, right, top,
 and bottom. The left and top
 properties give the x and y
 coordinates of the upper-left corner of the element and the right and bottom properties give the coordinates of the
 lower-right corner.
This method returns element positions in viewport coordinates. To
 convert to document coordinates that remain valid even if the user scrolls
 the browser window, add the scroll offsets:
// Get position in viewport coordinates
var box = e.getBoundingClientRect();
// Convert to document coordinates
var x = box.left + window.pageXOffset;
var y = box.top + window.pageYOffset;
When an element is displayed in a browser, the element content is
 surrounded by an optional blank area known as padding. The padding is surrounded by
 an optional border, and the border is surrounded by optional margins. The
 coordinates returned by getBoundingClientRect() include the border and
 the padding of the element but do not include the element margins.
We saw above that you can query the position of a window’s
 scrollbars with pageXOffset and
 pageYOffset. If you want to set the
 scrollbar position, use the window’s scrollTo() method. This
 method takes the x and y
 coordinates of a point (in document coordinates) and sets these as the
 scrollbar offsets. That is, it scrolls the window so that the specified
 point is in the upper left corner of the viewport. If you specify a point
 that is too close to the bottom or too close to the right edge of the
 document, the browser will move it as close as possible to the upper left
 corner but won’t be able to get it all the way there.
The scrollBy() method of the
 Window is similar to scrollTo(), but
 its arguments are relative and are added to the current scrollbar
 offsets.
Often, instead of scrolling to a numeric location in the document,
 we just want to scroll so that a certain element in the document is
 visible. You could compute the position of the element with getBoundingClientRect(), convert that position
 to document coordinates, and then use the scrollTo() method, but it is easier to just call
 the scrollIntoView() method
 on the desired HTML element. This method ensures that the element on which
 it is invoked is visible in the viewport. By default, it tries to put the
 top edge of the element at or near the top of the viewport. If you pass
 false as the only argument, it will try
 to put the bottom edge of the element at the bottom of the viewport. The
 browser will also scroll the viewport horizontally as needed to make the
 element visible.

Chapter 12. Handling Events

Client-side JavaScript programs use an asynchronous
 event-driven programming model. In this style of programming, the web
 browser generates an event whenever something
 interesting happens to the document or browser or to some element or object
 associated with it. For example, the web browser generates an event when it
 finishes loading a document, when the user moves the mouse over a hyperlink,
 or when the user strikes a key on the keyboard. If a JavaScript application
 cares about a particular type of event, it can register one or more
 functions to be invoked when events of that type occur.
The event type is a string that specifies
 what kind of event occurred. The type “mousemove,” for example, means that the user moved the mouse.
 The type “keydown” means that a key on the keyboard was pushed down.
 And the type “load” means that a document (or some other resource) has
 finished loading from the network. Because the type of an event is just a
 string, it is sometimes called an event name, and indeed, we use this name
 to identify the specific kind of event we’re talking about.
The event target is the object on which the
 event occurred or with which the event is associated. When we speak of an
 event, we must specify both the type and the target. A load event on a
 Window, for example, or a click event on a <button> Element. Window, Document, and
 Element objects are the most common event targets in client-side JavaScript
 applications, but some events are triggered on other kinds of objects. In
 Chapter 13 we’ll see a readystatechange event that is triggered
 on an XMLHttpRequest object, for example.
An event handler or event listener is a function that handles
 or responds to an event. Applications register their event handler functions
 with the web browser, specifying an event type and an event target. When an
 event of the specified type occurs on the specified target, the browser
 invokes the handler. When event handlers are invoked for an object, we
 sometimes say that the browser has “fired,” “triggered,” or “dispatched” the
 event.
An event object is an object that is
 associated with a particular event and contains details about that event.
 Event objects are passed as an argument to the event handler function. All
 event objects have a type property that
 specifies the event type and a target property that
 specifies the event target. Each event type defines a set of properties for
 its associated event object. The object associated with a mouse event
 includes the coordinates of the mouse pointer, for example, and the object
 associated with a keyboard event contains details about the key that was
 pressed and the modifier keys that were held down. Many event types define
 only a few standard properties—such as type and target—and do not carry much other useful
 information. For those events it is the simple occurrence of the event, not
 the event details, that matter.
Event propagation is the process by which
 the browser decides which objects to trigger event handlers on. For events
 that are specific to a single object (such as the load event on the Window
 object), no propagation is required. When certain kinds of events occur on
 document elements, however, they propagate or “bubble” up the document tree.
 If the user moves the mouse over a hyperlink, the mousemove event is first
 fired on the <a> element that
 defines that link. Then it is fired on the containing elements: perhaps a
 <p> element, a <div> element, and the Document object
 itself. It is sometimes more convenient to register a single event handler
 on a Document or other container element than to register handlers on each
 individual element you’re interested in. An event handler can stop the
 propagation of an event, so that it will not continue to bubble and will not
 trigger handlers on containing elements.
In another form of event propagation, known as event capturing, handlers specially
 registered on container elements have the opportunity to intercept (or
 “capture”) events before they are delivered to their actual target.
Some events have default actions associated with them.
 When a click event occurs on a hyperlink, for example, the default action is
 for the browser to follow the link and load a new page. Event handlers can
 prevent this default action by invoking a method of the event object.
With those terms defined, we can now move on to study events and event
 handling in detail. The first section that follows is an overview of the
 many event types supported by web browsers. The next two sections explain
 how to register event handlers and how the browser invokes those event
 handlers.
Types of Events

The sections below cover various categories of events: form events,
 mouse events, key events, and so on. Each section describes the event
 types in a category, and also explains the important properties of the
 event objects that are associated with events of those types.
Form Events

Forms and hyperlinks were the first scriptable elements in
 a web page, way back in the early days of the Web and of JavaScript.
 This means that form events are some of the most stable and
 well-supported of all event types. <form> elements fire submit events when
 the form is submitted and reset events when the form is reset.
 Button-like form elements (including radio buttons and checkboxes) fire
 click events when the user interacts with them. Form elements that
 maintain some kind of state generally fire change events when the user
 changes their state by entering text, selecting an item, or checking a
 box. For text input fields, a change event is not fired until the user has finished
 interacting with a form element and has tabbed or clicked to move focus
 to another element. Form elements respond to keyboard focus changes by
 firing focus and blur events when they gain and lose the focus.
The submit and reset events have default actions that can be canceled by
 event handlers, and some click events do, too. The focus and blur events do not bubble, but all the other form events
 do.

Window Events

Window events represent occurrences related to the browser
 window itself, rather than any specific document content displayed
 inside the window. (For some of these events, however, an event with the
 same name can be fired on document elements.)
The load event is the most important of these events: it is
 fired when a document and all of its external resources (such as images) are fully loaded and displayed
 to the user. DOMContentLoaded and readystatechange are alternatives to the load event: they
 are triggered sooner, when the document and its elements are ready to
 manipulate, but before external resources are fully loaded.
The unload event is the opposite of load: it is triggered when
 the user is navigating away from a document. An unload event handler
 might be used to save the user’s state, but it cannot be used to cancel
 navigation. The beforeunload event is similar to unload but gives you the
 opportunity to ask the user to confirm that they really want to navigate
 away from your web page. If a handler for beforeunload returns a string,
 that string will be displayed to the user in a confirmation dialog
 before the new page is loaded, and the user will have the opportunity to
 cancel her navigation and remain at your page.
The focus and blur events described above for form elements are
 also used as Window events: they are triggered on a window when that
 browser window receives or loses keyboard focus from the operating
 system.
Finally, the resize and scroll events are fired on a Window when
 the user resizes or scrolls the browser window. Scroll events can also
 be fired on any scrollable document element, such as those with the CSS
 overflow property
 set.

Mouse Events

Mouse events are generated when the user moves or clicks
 the mouse over a document. These events are triggered on the most deeply
 nested element that the mouse pointer is over, but they bubble up
 through the document. The event object passed to mouse event handlers
 has properties set that describe the position and button state of the
 mouse and also specify whether any modifier keys were held down when the
 event occurred. The clientX and clientY properties
 specify the position of the mouse in window coordinates. The altKey, ctrlKey, metaKey, and shiftKey properties are
 set to true when the corresponding
 keyboard modifier keys are held down. And for click events, the
 detail property
 specifies whether this was a single, double, or triple click.
The mousemove event is triggered any time the user moves or
 drags the mouse. These events occur frequently, so mousemove handlers
 must not trigger computationally intensive tasks. The mousedown and mouseup events are triggered when the user presses and
 releases a mouse button. By registering a mousedown handler that
 registers a mousemove handler, you can detect and respond to mouse
 drags. Doing this properly involves being able to capture mouse events
 so that you continue to receive mousemove events even when the mouse has
 moved out of the element it started in.
After a mousedown and mouseup event sequence, the browser also
 triggers a click event. If the user clicks a mouse button twice in a row
 (within a sufficiently short amount of time), the second click event
 will be followed by a dblclick event. Browsers often display a context
 menu when the right mouse button is clicked. They generally fire a
 contextmenu event before displaying the menu, and if you cancel the
 event, you can prevent the display of the menu. This is also an easy way
 to be notified of right mouse button clicks.
When the user moves the mouse so that it goes over a new element,
 the browser fires a mouseover event on that element. When the mouse
 moves so that it is no longer over an element, the browser fires a
 mouseout event on that element. For these events, the
 event object will have a relatedTarget property
 that specifies the other element involved in the transition. mouseover
 and mouseout events bubble like all of the mouse events described here.
 This is often inconvenient, because when a mouseout handler is
 triggered, you have to check whether the mouse actually left the element
 you are interested in or if it merely transitioned from one child of the
 element to another. mouseenter and mouseleave are new, nonbubbling versions of mouseover and
 mouseout that are supported in new browsers.
When the user rotates the mouse wheel, browsers trigger a
 mousewheel event. The event object passed with these events includes
 properties that specify how much, and in which direction, the wheel was
 rotated.

Key Events

When the web browser has keyboard focus, it generates
 events each time the user presses or releases a key on the keyboard.
 Keyboard shortcuts that have meaning to the operating system or to the
 browser itself are often “eaten” by the OS or browser and may not be
 visible to JavaScript event handlers, however. Keyboard events are
 triggered on whatever document element has keyboard focus, and they
 bubble up to the document and window. If no element has the focus, the
 events are triggered directly on the document. Keyboard event handlers
 are passed an event object with a keyCode field that
 specifies what key was pressed or released. In addition to keyCode, the event object for key events also
 has altKey, ctrlKey, metaKey, and shiftKey that describe
 the state of the keyboard modifier keys.
The keydown and keyup events are low-level keyboard events: they
 are triggered whenever a key (even a modifier key) is pressed or
 released. When a keydown event generates a printable character, an
 additional keypress event is triggered after the keydown but before the
 keyup. (In the case of a key that is held down until it repeats, there
 may be many keypress events before the keyup event.) The keypress event
 is a higher-level text event, and its event object specifies the
 character that was generated, not the key that was pressed. In some
 browsers (notably Firefox) you must use the charCode property of a
 keypress event object instead of keyCode.
The keydown, keyup, and keypress events are supported by all
 browsers, but there are some interoperability problems because the
 values of the keyCode property are
 not well standardized.

HTML5 Events

HTML5 and related standards define a host of new APIs for
 web applications. Many of these APIs define events. This section lists
 and briefly describes these HTML5 and web application events. Some of
 these events are ready to be used now; others are not yet widely
 implemented.
One of the widely advertised features of HTML5 is inclusion of
 <audio> and
 <video> elements
 for playing sound and video. These elements have a long list of events
 that they trigger to send notifications about network events, data
 buffering status, and playback state:
canplay loadeddata playing stalled
canplaythrough loadedmetadata progress suspend
durationchange loadstart ratechange timeupdate
emptied pause seeked volumechange
ended play seeking waiting
These media events are passed an ordinary event object with no
 special properties. The target property
 identifies the <audio> or
 <video> element, however, and
 that element has many relevant properties and methods.
The HTML5 drag-and-drop API allows JavaScript applications to
 participate in OS-based drag-and-drop operations, transferring data
 between web applications and native applications. The API defines the
 following seven event types:
dragstart drag dragend
dragenter dragover dragleave
drop
These drag-and-drop events are triggered with an event object like
 those sent with mouse events. One additional property, dataTransfer, holds a DataTransfer object that
 contains information about the data being transferred and the formats in
 which it is available.
HTML5 defines a history management mechanism that allows web applications
 to interact with the browser’s Back and Forward buttons. This mechanism
 involves events named hashchange
 and popstate. These events are life cycle notification events like load
 and unload and are fired at the Window object rather than any individual
 document element.
HTML5 defines a lot of new features for HTML forms. In addition to
 standardizing the form input event described earlier, HTML5 also defines
 a form validation mechanism, which includes an invalid event
 fired on form elements that have failed validation.
HTML5 includes support for offline web applications that can be installed locally in
 an application cache so that they can run even when the browser is
 offline (as when a mobile device is out of network range). The two most
 important events associated with this are the offline and online events:
 they are triggered on the Window object whenever the browser loses or
 gains a network connection. A number of additional events are defined to
 provide notification of application download progress and application
 cache updates:
cached checking downloading error
noupdate obsolete progress updateready
A number of new web application APIs use a message event for
 asynchronous communication. The Cross-Document Messaging API allows scripts in a document
 from one server to exchange messages with scripts in a document from
 another server. This works around the limitations of the same-origin
 policy (The Same-Origin Policy) in a secure way. Each
 message that is sent triggers a message event on the Window of the
 receiving document. The event object passed to the handler includes a
 data property that
 holds the content of the message as well as source and origin policies that
 identify the sender of the message. The message event is used in similar
 ways for communication with Web Workers and for network communication
 via Server-Sent Events and WebSockets.
HTML5 and related standards define some events that are triggered on objects other than windows,
 documents, and document elements.
 Version 2 of the XMLHttpRequest specification, as well as the File API
 specification, define a series of events that track the progress of
 asynchronous I/O. They trigger events on an XMLHttpRequest
 or FileReader object. Each read operation begins
 with a loadstart event, followed by progress events and a loadend event.
 Additionally, each operation ends with a load, error, or abort event
 just before the final loadend
 event.
Finally, HTML5 and related standards define a few miscellaneous
 event types. The Web Storage API defines a storage event (on the Window
 object) that provides notification of changes to stored data. HTML5 also
 standardizes the beforeprint and afterprint events that were originally
 introduced by Microsoft in IE. As their names imply, these events are
 triggered on a Window immediately before and immediately after its
 document is printed and provide an opportunity to add or remove content
 such as the date and time that the document was printed. (These events
 should not be used to change the presentation of a document for printing
 because CSS media types already exist for that purpose.)

Touchscreen and Mobile Events

The widespread adoption of mobile devices with
 touchscreens has required the creation of new categories of events. In
 many cases, touchscreen events are mapped to traditional event types
 such as click and scroll. But not every interaction with a touchscreen
 UI emulates a mouse, and not all touches can be treated as mouse events.
 This section briefly explains the gesture and touch events generated by
 Safari when running on Apple’s iPhone and iPad devices and also covers the
 orientationchange event generated when the user rotates
 the device.
Safari generates gesture events for two-finger scaling and
 rotation gestures. The gesturestart event is fired when the gesture
 begins and gestureend is fired when it ends. Between these two events
 are a sequence of gesturechange events that track the progress of the
 gesture. The event object sent with these events has numeric scale and rotation
 properties. The scale property is the
 ratio of the current distance between the two fingers to the initial
 distance between the fingers. A “pinch close” gesture has a scale less than 1.0, and a “pinch open” gesture has a scale greater than 1.0. The rotation property is the angle of finger
 rotation since the start of the event. It is reported in degrees, with positive values indicating
 clockwise rotation.
Gesture events are high-level events that notify you of a gesture
 that has already been interpreted. If you want to implement your own
 custom gestures, you can listen for low-level touch events. When a
 finger touches the screen, a touchstart event is triggered. When the
 finger moves, a touchmove event is triggered. And when the finger is
 lifted from the screen, a touchend event is triggered. Unlike mouse
 events, touch events do not directly report the coordinates of the
 touch. Instead, the object sent with a touch event has a changedTouches
 property. This property is an array-like object whose elements each
 describe the position of a touch.
The orientationchanged event is triggered on the Window object by
 devices that allow the user to rotate the screen from portrait to
 landscape mode. The object passed with an orientationchanged event is not useful
 itself. In mobile Safari, however, the orientation property of the Window
 object gives the current orientation as one of the numbers 0, 90, 180,
 or –90.

Registering Event Handlers

There are two ways to register event handlers. The first is
 to set a property on the object or document element that is the event
 target. The second technique is to pass the handler to a method of the
 object or element. To complicate matters, there are two versions of each
 technique. You can set an event handler property in JavaScript code, or
 for document elements, you can set the corresponding attribute directly in
 HTML.
Setting Event Handler Properties

The simplest way to register an event handler is by
 setting a property of the event target to the desired event handler
 function. By convention, event handler properties have names that
 consist of the word “on” followed by the event name: onclick, onchange, onload, onmouseover, and so on.
 Note that these property names are case-sensitive and are written in all
 lowercase, even when the event type (such as “readystatechange” consists
 of multiple words. Here are two example event handler
 registrations:
// Set the onload property of the Window object.
// The function is the event handler:
// it is invoked when the document loads.
window.onload = function() {
 // Look up a <form> element
 var elt = document.getElementById("address");
 // Register an event handler function that will
 // be invoked right before the form is submitted.
 elt.onsubmit = function() { return validate(this); }
}
The shortcoming of event handler properties is that they are
 designed around the assumption that event targets will have at most one
 handler for each type of event. If you are writing library code for use in arbitrary
 documents you can’t rely on this technique.

Setting Event Handler Attributes

The event handler properties of a document element can
 also be set as attributes on the corresponding HTML tag. If you do this,
 the attribute value should be a string of JavaScript code. That code
 should be the body of the event handler function,
 not a complete function declaration. That is, your HTML event handler
 code should not be surrounded by curly braces and prefixed with the
 function keyword. For
 example:
<button onclick="alert('Thank you');">
 Click Here
</button>
If an HTML event handler attribute contains multiple JavaScript
 statements, you must remember to separate those statements with
 semicolons or to break the attribute value across multiple lines.
Some event types are directed at the browser as a whole, rather
 than at any particular document element. In JavaScript, handlers for
 these events are registered on the Window object. In HTML, we place them
 on the <body> tag, but
 the browser registers them on the Window. The following is the complete
 list of such event handlers as defined by the draft HTML5 specification:
onafterprint onfocus ononline onresize
onbeforeprint onhashchange onpagehide onstorage
onbeforeunload onload onpageshow onundo
onblur onmessage onpopstate onunload
onerror onoffline onredo
When you specify a string of JavaScript code as the value of an
 HTML event handler attribute, the browser converts your string into a
 function that looks something like
 this:
function(event) {
 with(document) {
 with(this.form || {}) {
 with(this) {
 /* your code here */
 }
 }
 }
}
We’ll see more about the event
 argument and the with statements
 above when we consider event handler invocation in Event Handler Invocation.

addEventListener()

Any object that can be an event target—this includes the
 Window and Document objects and all document Elements—defines a method named addEventListener() that you can use to
 register an event handler for that target. addEventListener() takes three arguments. The
 first is the event type for which the handler is being registered. The
 event type (or name) is a string and it should not include the “on”
 prefix that is used when setting event handler properties. The second
 argument to addEventListener() is the
 function that should be invoked when the specified type of event occurs.
 The final argument to addEventListener() is an optional boolean
 value. Normally, you’ll pass false
 for this argument or omit it. If you pass true instead, your function is registered as a
 capturing event handler and is
 invoked at a different phase of event dispatch. We will cover event
 capturing in Event Propagation.
The code below registers two handlers for the click event on a
 <button> element.
 Note the differences between the two techniques used:
<button id="mybutton">Click me</button>
<script>
var b = document.getElementById("mybutton");
b.onclick = function() { alert("Thanks!"); };
b.addEventListener("click",
 function() { alert("Thanks again!"); });
</script>
Calling addEventListener() with
 “click” as its first argument does not affect the value of the
 onclick property. In
 the code above, a button click will generate two alert() dialog boxes. More importantly, you
 can call addEventListener() multiple
 times to register more than one handler function for the same event type
 on the same object. When an event occurs on an object, all of the
 handlers registered for that type of event are invoked, in the order in
 which they were registered. Invoking addEventListener() more than once on the same
 object with the same arguments has no effect—the handler function
 remains registered only once, and the repeated invocation does not alter
 the order in which handlers are invoked.
addEventListener() is paired
 with a removeEventListener()
 method that expects the same three arguments but removes an event
 handler function from an object rather than adding it. It is often
 useful to temporarily register an event handler and then remove it soon
 afterward. For example, when you get a mousedown event, you might
 register temporary capturing event handlers for mousemove and mouseup
 events so that you can see if the user drags the mouse. You’d then
 deregister these handlers when the mouseup event arrives. In such a
 situation, your event handler removal code might look like
 this:
document.removeEventListener("mousemove",
 handleMove, true);
document.removeEventListener("mouseup",
 handleUp, true);

Event Handler Invocation

Once you’ve registered an event handler, the web browser
 will invoke it automatically when an event of the specified type occurs on
 the specified object. This section describes event handler invocation in
 detail, explaining event handler arguments, the invocation context (the
 this value), the invocation scope, and
 the meaning of the return value of an event handler.
In addition to describing how individual handlers are invoked, this
 section also explains how events propagate: how a single event can
 trigger the invocation of multiple handlers on the original event target
 and also on containing elements of the document.
Event Handler Argument

Event handlers are invoked with an event object as their
 single argument. The properties of the event object (described earlier
 in this chapter) provide details about the event.
Recall from Setting Event Handler Attributes that when you
 register an event handler by setting an HTML attribute, the browser
 converts your string of JavaScript code into a function with a single
 argument named event. This means that
 HTML event handlers can refer to the event object as event.

Event Handler Context

When you register an event handler by setting a property,
 it looks as if you are defining a new method on an object:
e.onclick = function() { /* handler code */ };
It isn’t surprising, therefore, that event handlers are invoked as
 methods of the object on which they are defined. That is, within the
 body of an event handler, the this keyword refers to
 the event target.
Handlers registered using addEventListener() are
 also invoked with the target as their this value.

Event Handler Scope

Like all JavaScript functions, event handlers are
 lexically scoped. They are executed in the scope in which they are
 defined, not the scope from which they are invoked, and they can access
 any local variables from that scope.
Event handlers registered as HTML attributes are a special case,
 however. They are converted into top-level functions that have access to
 global variables but not to any local variables. But, for historical
 reasons, they run with a modified scope chain. Event handlers defined by HTML
 attributes can use the properties of the target object, the containing
 <form> object (if
 there is one), and the Document object as if they are local variables.
 Setting Event Handler Attributes shows how an event handler function
 is created from an HTML event handler attribute, and the code there
 approximates this modified scope chain using with statements.
HTML attributes are not natural places to include long strings of
 code, and this modified scope chain allows helpful shortcuts. You can
 use tagName instead of this.tagName. You can use getElementById instead of document.getElementById. And, for document
 elements that are inside a <form>, you can refer to any other form
 element by ID, using zipcode, for
 example, instead of this.form.zipcode.
On the other hand, the modified scope chain of HTML event handlers
 is a source of pitfalls, since the properties of each of the objects in
 the chain shadow any properties of the same name in the global object.
 This is a particular problem with forms, because the names and IDs of
 form elements define properties on the containing form element. So if a
 form contains an element with the ID “location,” for example, all HTML
 event handlers within that form must use window.location instead of location
 if they want to refer to the window’s Location object.

Handler Return Value

The return value of an event handler registered by setting
 an object property or an HTML attribute is sometimes significant. In
 general, a return value of false
 tells the browser that it should not perform the default action
 associated with the event. The onclick handler of a Submit button in a form,
 for example, can return false to
 prevent the browser from submitting the form. (This is useful if the
 user’s input fails client-side validation.) Similarly, an onkeypress handler on an input field can
 filter keyboard input by returning false if the user types an inappropriate
 character.
The return value of the onbeforeunload handler
 of the Window object is also significant. This event is triggered when
 the browser is about to navigate to a new page. If this event handler
 returns a string, it will be displayed in a modal dialog box that asks
 the user to confirm that she wants to leave the page.
It is important to understand that event handler return values are
 significant only for handlers registered as properties. We’ll see below
 that event handlers registered with addEventListener() must
 instead call the preventDefault() method
 of the event object.

Event Propagation

When the target of an event is the Window object, or some
 other standalone object (such as an XMLHttpRequest), the browser responds to an event simply
 by invoking the appropriate handlers on that one object. When the event
 target is a Document or document Element, however, the situation is more
 complicated.
After the event handlers registered on the target element are
 invoked, most events “bubble” up the DOM tree. The event handlers of the target’s parent are
 invoked. Then the handlers registered on the target’s grandparent are
 invoked. This continues up to the Document object, and then beyond to
 the Window object. Event bubbling provides an alternative to registering
 handlers on lots of individual document elements: instead you can
 register a single handler on a common ancestor element and handle events
 there. You might register a “change” handler on a <form> element,
 for example, instead of registering a “change” handler for every element
 in the form.
Most events that occur on document elements bubble. Notable
 exceptions are the focus, blur, and scroll events. The load event on
 document elements bubbles, but it stops bubbling at the Document object
 and does not propagate on to the Window object. The load event of the
 Window object is triggered only when the entire document has
 loaded.
Event bubbling is the third “phase” of event propagation. The
 invocation of the event handlers of the target object itself is the second phase. The first phase, which
 occurs even before the target handlers are invoked, is called the
 “capturing” phase. Recall that addEventListener() takes a boolean value as
 its third argument. If that argument is true, the event handler is registered as a
 capturing event handler for invocation during this first phase of event
 propagation.
The capturing phase of event propagation is like the bubbling
 phase in reverse. The capturing handlers of the Window object are
 invoked first, then the capturing handlers of the Document object, then
 of the body object, and so on down the DOM tree until the capturing
 event handlers of the parent of the event target are invoked. Capturing
 event handlers registered on the event target itself are not
 invoked.
Event capturing provides an opportunity to peek at events before
 they are delivered to their target. A capturing event handler can be
 used for debugging, or it can be used along with the event cancellation
 technique described below to filter events so that the target event
 handlers are never actually invoked. One common use for event capturing
 is handling mouse drags, where mouse motion events need to be handled by
 the object being dragged, not the document elements over which it is
 dragged.

Event Cancellation

Handler Return Value explained that the
 return value of event handlers registered as properties can be used to
 cancel the browser’s default action for the event. You can also cancel
 the default action for an event by invoking the preventDefault() method of the event
 object.
Canceling the default action associated with an event is only one
 kind of event cancellation. We can also cancel the propagation of events. Event objects have
 a stopPropagation() method that you
 can invoke to prevent the continued propagation of the event. If there
 are other handlers defined on the same object, the rest of those
 handlers will still be invoked, but no event handlers on any other
 object will be invoked after stopPropagation() is called. The stop
 Propagation() method can be called
 at any time during event propagation. It works during the capturing
 phase, at the event target itself, and during the bubbling phase.
 Another method on the Event object, named stopImmediatePropagation(), prevents the
 propagation of the event to any other objects and also prevents the
 invocation of any other event handlers registered on the same
 object.

Chapter 13. Networking

This chapter describes four techniques for client-side JavaScript
 networking. The first, XMLHttpRequest, is
 well-known and widely-used in the “Ajax” application architecture. This API
 is by far the most important of the four, and the bulk of the chapter is
 devoted to it. The chapter also demonstrates the JSONP technique for
 Ajax-style networking with the <script> tag, as well as “server push” or “Comet” style networking
 with the new EventSource API, and bidirectional socket-style networking with
 WebSockets.
Using XMLHttpRequest

Browsers define their HTTP API on an XMLHttpRequest class.
 Each instance of this class represents a single HTTP request/response
 pair, and the properties and methods of the object allow you to specify
 request details and extract response data. XMLHttpRequest is often
 abbreviated as XHR, and this chapter uses the term XHR2 to refer to
 cutting-edge features introduced by drafts of version 2 of the XHR
 specification. Note that the XMLHttpRequest API has nothing to do with
 XML: the name is a historical accident that we’re simply stuck
 with.
The first step in using the XHR API, of course, is to instantiate an
 XMLHttpRequest object:
var request = new XMLHttpRequest();
You can also reuse an existing XMLHttpRequest object, but note that
 doing so will abort any request pending through that object.
Any HTTP request consists of four parts:
	the HTTP request method or “verb”

	the URL being requested

	an optional set of request headers, which may include
 authentication information

	an optional request body

The HTTP response sent by a server has three parts:
	a numeric and textual status code that indicates the success or
 failure of the request

	a set of response headers

	the response body

The first two subsections below demonstrate how to set each of the
 parts of an HTTP request and how to query each of the parts of an HTTP
 response with the XHR API. Those key sections are followed by coverage of
 more specialized topics.
XMLHttpRequest and Local Files
The ability to use relative URLs in web pages usually
 means that we can develop and test our HTML using the local file system
 and then deploy it unchanged to a web server. This is generally not
 possible when doing Ajax programming with XMLHttpRequest, however.
 XMLHttpRequest is designed to work with the HTTP and HTTPS protocols,
 not the file:// protocol. This means
 that when working with XMLHttpRequest, you generally have to upload your
 files to a web server (or run a server locally) in order to test
 them.

The basic request/response architecture of HTTP is pretty simple and
 easy to work with. In practice, however, there are all sorts of
 complications: clients and server exchange cookies, servers redirect
 browsers to other servers, some resources are cached and others are not,
 some clients send all their requests through proxy servers, and so on.
 XMLHttpRequest is not a protocol-level HTTP API but instead a
 browser-level API. The browser takes care of cookies, redirects, caching,
 and proxies and your code need worry only about requests and
 responses.
Specifying the Request

After creating an XMLHttpRequest object, the next step in making
 an HTTP request is to call the open() method of your
 XMLHttpRequest object to specify the two required parts of the request,
 the method and the URL:
request.open("GET", // Begin a HTTP GET request
 "data.csv"); // For the contents of this URL
The first argument to open()
 specifies the HTTP method or verb. The “GET” and “POST” methods are universally supported. “GET” is used
 for most “regular” requests, and it is appropriate when the URL
 completely specifies the requested resource, when the request has no
 side effects on the server, and when the server’s response is cacheable.
 The “POST” method includes additional data in the request body and that
 data is often stored in a database on the server (a side effect).
In addition to “GET” and “POST”, the XMLHttpRequest specification
 also allows “DELETE,” “HEAD,” “OPTIONS,” and “PUT” as the first argument to open().
The second argument to open()
 is the URL that is the subject of the request. This is relative to the
 URL of the document that contains the script that is calling open(). If you specify an absolute URL, the
 protocol, host, and port must generally match those of the containing
 document: cross-origin HTTP requests normally cause an error. (But the
 XHR2 allows cross-origin requests when the server explicitly allows it;
 see Cross-Origin HTTP Requests.)
The next step in the request process is to set the request
 headers, if any. “POST” requests, for example, need a “Content-Type”
 header to specify the MIME type of the request body:
request.setRequestHeader("Content-Type", "text/plain");
If you call setRequestHeader()
 multiple times for the same header, the new value does not replace the
 previously specified value: instead, the HTTP request will include
 multiple copies of the header or the header will specify multiple
 values.
You cannot specify the “Content-Length,” “Date,” “Referer,” or
 “User-Agent” headers yourself: XMLHttpRequest will add those
 automatically for you and will not allow you to spoof them. Similarly,
 XMLHttpRequest object automatically handles cookies, and connection
 lifetime, charset, and encoding negotiations, so you’re not allowed to
 set any of those headers either.
The final step in making an HTTP request with XMLHttpRequest is to
 specify the optional request body and send it off to the server. Do this
 with the send() method:
request.send(null);
GET requests never have a body, so you should pass null or omit the argument. POST requests do generally have a body, and it should
 match the “Content-Type” header you specified with setRequestHeader().
Example 13-1 uses each of the XMLHttpRequest
 methods we’ve described so far. It POSTs a string of text to a server
 and ignores any response the server sends. Note that the string sent in
 the request body may be a complex one: it might be a JavaScript object
 encoded with JSON.stringify() or a
 form-encoded set of name/value
 pairs.
Example 13-1. POSTing plain text to a server
function postMessage(msg) {
 var r = new XMLHttpRequest(); // New request
 r.open("POST", "/log.php"); // POST to this URL
 // Specify that the request body is UTF8 text
 r.setRequestHeader("Content-Type",
 "text/plain;charset=UTF-8");
 // Send msg as the request body
 r.send(msg);
 // Ignore any response or any error.
}

Note that the send() method in
 Example 13-1 initiates the request and then
 returns: it does not block while waiting for the server’s response. HTTP
 responses are asynchronous, as demonstrated in the following
 section.

Retrieving the Response

A complete HTTP response consists of a status code, a set
 of response headers, and a response body. These are available through properties and
 methods of the XMLHttpRequest
 object:
	The status and
 statusText
 properties return the HTTP status in numeric and textual forms.
 These properties hold standard HTTP values like 200 and “OK” for successful requests, and 404 and “Not Found” for URLs that don’t match any
 resource on the server.

	The response headers can be queried with getResponseHeader()
 and getAllResponseHeaders().

	The response body is available in textual form from the
 responseText
 property.

The XMLHttpRequest object is used asynchronously: the send() method returns immediately after
 sending the request, and the response methods and properties listed
 above aren’t valid until the response is received. To be notified when
 the response is ready, you must listen for readystatechange events (or the new XHR2 progress events
 described in HTTP Progress Events) on the XMLHttpRequest
 object. But to understand this event type, you must first understand the
 readyState
 property.
readyState is an integer that
 specifies the status of an HTTP request, and its possible values are the
 following:
	Value	Meaning
	0	open() has not been
 called yet
	1	open() has been
 called
	2	Headers have been received
	3	The response body is being received
	4	The response is complete

To listen for readystatechange events, set the onreadystatechange
 property of the XMLHttpRequest object to your event handler function.
 (Or call addEventListener()).
 Example 13-2 defines a getText() function that
 demonstrates how to listen for readystatechange events. The event
 handler first ensures that the request is complete. If so, it checks the
 response status code to ensure that the request was successful. Then it
 looks at the “Content-Type” header to verify that the response was of
 the expected type. If all three conditions are satisfied, it passes the
 response body (as text) to a specified callback function. That callback
 could then process the response further, by passing it to JSON.parse(), for
 example.
Example 13-2. Getting an HTTP response onreadystatechange
// Issue an HTTP GET request for the specified URL.
// When the response arrives successfully, verify
// that it is plain text and if so, pass it the text
// to the specified callback function
function getText(url, callback) {
 var r = new XMLHttpRequest(); // New request
 r.open("GET", url); // Specify URL
 r.onreadystatechange = function() {
 // If the request is compete and was successful
 if (r.readyState === 4 && r.status === 200) {
 var type = r.getResponseHeader("Content-Type");
 // If response is text, pass it to callback
 if (type.match(/^text/))
 callback(r.responseText);
 }
 };
 r.send(null); // Send the request!
}

HTTP Progress Events

In the examples above, we’ve used the readystatechange
 event to detect the completion of an HTTP request. The XHR2 draft specification defines a more useful set of
 events. In this new event model, the XMLHttpRequest object triggers
 different types of events at different phases of the request so that it
 is no longer necessary to check the readyState
 property.
In browsers that support them, these new events are triggered as
 follows. When the send() method is
 called, a single loadstart event is fired. While the server’s response
 is being downloaded, the XMLHttpRequest object fires progress events,
 typically every 50 milliseconds or so, and you can use these events to
 give the user feedback about the progress of the request. If a request
 completes very quickly, it may never fire a progress event. When a
 request is complete, a load event is fired.
A complete request is not necessarily a successful request, and
 your handler for the load event should check the status code of the XMLHttpRequest object to
 ensure that you received an HTTP “200 OK” response rather than a “404 Not Found” response, for example.
There are three ways that an HTTP request can fail to complete,
 and three corresponding events. If a request times out, the timeout
 event is triggered. If a request is aborted, the abort event is
 triggered. Finally, other network errors, such as too many redirects,
 can prevent the completion of a request, and the error event is
 triggered when this happens.
The event object associated with these progress events has three
 useful properties in addition to the normal Event object properties like
 type and timestamp. The
 loaded property is the
 number of bytes that have been transferred so far. The total property is the
 total length (in bytes) of the data to be transferred, from the
 “Content-Length” header, or 0 if the content length is not known.
 Finally, the lengthComputable
 property is true if the content
 length is known and is false
 otherwise. Obviously, the total and
 loaded properties are particularly
 useful in progress event handlers:
request.onprogress = function(e) {
 if (e.lengthComputable) {
 var p = Math.round(100*e.loaded/e.total);
 progress.innerHTML = p + "% Complete";
 }
}
In addition to defining these useful events for monitoring the
 download of an HTTP response, XHR2 also allows the events to be used to
 monitor the upload of an HTTP request. In browsers that have implemented
 this feature, the XMLHttpRequest object will have an upload property. The
 value of the upload property is an
 object that defines an addEventListener()
 method and defines a full set of progress event properties, such as
 onprogress and
 onload.
You can use the upload event handlers just as you would use the
 regular progress event handlers. For an XMLHttpRequest object x, set x.onprogress to monitor the download progress
 of the response. And set x.upload.onprogress to monitor the upload
 progress of the request.

Cross-Origin HTTP Requests

As part of the same-origin security policy (The Same-Origin Policy), the XMLHttpRequest object can normally
 issue HTTP requests only to the server from which the document that uses
 it was downloaded. This restriction closes security holes, but it is
 heavy-handed and also prevents a number of legitimate uses for
 cross-origin requests. You can use cross-origin URLs with <form> and
 <iframe>
 elements, and the browser will display the resulting cross-origin
 document. But because of the same-origin policy, the browser won’t allow
 the original script to inspect the contents of the cross-origin
 document. With XMLHttpRequest, document contents are always exposed
 through the responseText property,
 so the same-origin policy cannot allow XMLHttpRequest to make cross-origin requests. (Note that the <script> element
 has never really been subject to the same-origin policy: it will
 download and execute any script, regardless of origin. As we’ll see in
 HTTP by <script>: JSONP, this freedom to make cross-origin
 requests makes the <script>
 element an attractive Ajax transport alternative to
 XMLHttpRequest.)
XHR2 allows cross-origin requests to websites that opt-in by
 sending appropriate CORS (Cross-Origin Resource Sharing) headers in their HTTP
 responses. As a web programmer, there is nothing special you need to do
 to make this work: if the browser supports CORS for XMLHttpRequest and
 if the website you are trying to make a cross-origin request to has
 decided to allow cross-origin requests with CORS, the same-origin policy
 will be relaxed and your cross-origin requests will just work.

HTTP by <script>: JSONP

For certain kinds of content, a <script> element can be used as a useful
 alternative to XMLHttpRequest. Simply set the src attribute of a <script> (and insert it into the document
 if it isn’t already there) and the browser will generate an HTTP request
 to download the URL you specify. <script> elements are useful Ajax
 transports for one primary reason: they are not subject to the same-origin
 policy, so you can use them to request data from servers other than your
 own.
The technique of using a <script> element as an Ajax transport has
 come to be known as JSONP: it works when the response body of the HTTP
 request is JSON-encoded. The “P” stands for “padding” or “prefix”—this
 will be explained in a moment.
Suppose you’ve written a service that handles GET requests and
 returns JSON-encoded data. Same-origin documents can use it with
 XMLHttpRequest and JSON.parse(). If you
 enable CORS on your server, cross-origin documents in new browsers can
 also use your service with XMLHttpRequest. Cross-origin documents in older
 browsers that do not support CORS can only access your service with a
 <script> element, however. Your
 JSON response body is (by definition) valid JavaScript code, and the
 browser will execute it when it arrives. Executing JSON-encoded data decodes it, but the result is
 still just data, and it doesn’t do anything.
This is where the P part of JSONP comes in. When invoked through a
 <script> element, your service
 must “pad” its response by surrounding it with parentheses and prefixing
 it with the name of a JavaScript function. Instead of just sending JSON
 data like this:
[1, 2, {"buckle": "my shoe"}]
It sends a padded-JSON response like this:
handleResponse(
[1, 2, {"buckle": "my shoe"}]
)
As the body of a <script>
 element, this padded response does something valuable: it evaluates the
 JSON-encoded data (which is nothing more than one big JavaScript
 expression, after all) and then passes it to the function handleResponse(), which,
 we assume, the containing document has defined to do something useful with
 the data.
In order for this to work, we have to have some way to tell the
 service that it is being invoked from a <script> element and must send a JSONP
 response instead of a plain JSON response. This can be done by adding a
 query parameter to the URL: appending ?json (or &json), for example.
In practice, services that support JSONP do not dictate a function
 name like “handleResponse” that all clients must implement.
 Instead, they use the value of a query parameter to allow the client to
 specify a function name, and then use that function name as the padding in
 the response. Example 13-3 uses a query parameter named
 “jsonp” to specify the name of the callback function.
Example 13-3 defines a function getJSONP() that makes a
 JSONP request. This example is a little tricky, and there are some things
 you should note about it. First, notice how it creates a new <script> element, sets its URL, and
 inserts it into the document. It is this insertion that triggers the HTTP
 request. Second, notice that the example creates a new internal callback
 function for each request, storing the function as a property of getJSONP() itself. Finally, note that callback
 performs some necessary cleanup: it removes the script element and deletes
 itself.
Example 13-3. Making a JSONP request with a script element
// Make a JSONP request to the specified URL and
// pass the parsed response data to the specified
// callback. Add a query parameter named "jsonp" to
// the URL to specify the name of the callback
// function for the request.
function getJSONP(url, callback) {
 // Create a unique callback name for this request
 // The name will be a property of this function.
 var cbnum = "cb" + getJSONP.counter++;
 var cbname = "getJSONP." + cbnum;

 // Add the callback name to the url query string.
 if (url.indexOf("?") === -1)
 url += "?jsonp=" + cbname;
 else
 url += "&jsonp=" + cbname;

 // Create the script element for this request
 var script = document.createElement("script");

 // Define the callback function that we named above.
 getJSONP[cbnum] = function(response) {
 try {
 callback(response); // Handle the response
 }
 finally { // Always clean up, even on error
 delete getJSONP[cbnum];
 script.parentNode.removeChild(script);
 }
 };

 // Now trigger the HTTP request
 script.src = url;
 document.body.appendChild(script);
}

// The counter used to assign callback names
getJSONP.counter = 0;

Scripts and Security
In order to use a <script> element as an Ajax transport,
 you have to allow your web page to run whatever JavaScript code the
 remote server chooses to send you. This means that you must not use the technique described here with
 untrusted servers. And when you do use it with trusted servers, keep in
 mind that if an attacker can hack into that server, then the hacker can
 take over your web page, run any code she wants and display any content
 she wants, and that content will appear to come from your site.
With that said, note that it has become commonplace for websites
 to use trusted third-party scripts, especially to embed advertising or “widgets” into a page.
 Using a <script> as an Ajax
 transport to communicate with a trusted web service is no more dangerous
 than that.

Server-Sent Events

In normal HTTP networking with XHR or the <script> tag, the client requests or
 “pulls” data from the server when it needs it. There is another style of
 HTTP-based networking that is used by some web applications. In “server
 push” or “comet,” the client and server establish an HTTP connection, but
 leave it open indefinitely, which allows the server to push data to the
 client through that open connection.
It is possible but difficult to implement this style of networking
 with XHR, but a new HTML5-related standard known as Server-Sent Events
 defines a simple EventSource API that makes it trivial to receive and
 respond to messages pushed by the server. To use Server-Sent Events,
 simply pass a URL to the EventSource() constructor and then listen for message events on
 the returned object:
var ticker = new EventSource("stockprices.php");
ticker.onmessage = function(e) {
 var type = e.type;
 var data = e.data;

 // Now process the event type and event data strings.
}
The event object associated with a message event has a data property that holds
 whatever string the server sent as the payload for this event. The event
 object also has a type property like all
 event objects do. The default value is “message,” but the event source can
 specify a different string for the property. A single onmessage event handler
 receives all events from a given server event source, and can dispatch
 them, if necessary, based on their type
 property.
The Server-Sent Event protocol is straightforward. The client
 initiates a connection to the server (when it creates the EventSource object) and the server keeps this
 connection open. When an event occurs, the server writes lines of text to
 the connection. An event going over the wire might look like this:
event: bid event type
data: GOOG sets the data property
data: 999 appends newline and more data
 blank line triggers the event

WebSockets

All of the networking APIs described so far in this chapter
 are HTTP-based, which means that they are all constrained by the
 fundamental nature of the HTTP: it is a stateless protocol that consists
 of client requests and server responses. HTTP is actually a specialized
 network protocol. More general network protocols often involve
 longer-lived connections and bidirectional message exchange over TCP
 sockets. It is not safe to give untrusted client-side JavaScript code
 access to low-level TCP sockets, but the WebSocket API defines a secure
 alternative: it allows client-side code to create bidirectional socket-type connections to servers that
 support the WebSocket protocol. This makes it much easier to perform
 certain kinds of networking tasks.
The WebSocket API is surprisingly easy to use. First, create a
 socket with the WebSocket()
 constructor:
var s = new WebSocket("ws://ws.example.com/resource");
The argument to the WebSocket()
 constructor is a URL that uses the ws:// protocol (or wss:// for a secure connection like that used by
 https://). The URL specifies the host
 to connect to, and may also specify a port (WebSockets use the same
 default ports as HTTP and HTTPS) and a path or resource.
Once you have created a socket, you generally register event
 handlers on it:
s.onopen = function(e) { /* The socket is open. */ };
s.onclose = function(e) { /* The socket closed. */ };
s.onerror = function(e) { /* Something went wrong! */ };
s.onmessage = function(e) {
 var m = e.data; /* The server sent a message. */
};
In order to send data to the server over the socket, you call the
 send() method of the socket:
s.send("Hello, server!");
When your code is done communicating with the server, you can close
 a WebSocket by calling its close() method.
WebSocket communication is completely bidirectional. Once a
 WebSocket connection has been established, the client and server can send
 messages to each other at any time, and that communication does not have
 to take the form of requests and responses.

Chapter 14. Client-Side Storage

Web applications can use browser APIs to store data locally on
 the user’s computer. This client-side storage serves to give the web browser
 a memory. Web apps can store user preferences, for example, or even store
 their complete state, so that they can resume exactly where you left off at
 the end of your last visit. Client-side storage is segregated by origin, so
 pages from one site can’t read the data stored by pages from another site.
 But two pages from the same site can share storage and can use it as a
 communication mechanism. Data input in a form on one page can be displayed
 in a table on another page, for example. Web applications can choose the
 lifetime of the data they store: data can be stored temporarily so that it
 is retained only until the window closes or the browser exits, or it can be
 saved to the hard drive and stored permanently, so that it is available
 months or years later. This chapter covers two forms of client-side storage:
 the modern Web Storage API and the ancient Cookies API.
Storage, Security, and Privacy
Web browsers often offer to remember web passwords for you,
 and they store them safely in encrypted form on the disk. But none of the
 forms of client-side data storage described in this chapter involve
 encryption: anything you save resides on the user’s hard disk in
 unencrypted form. Stored data is therefore accessible to curious users who
 share access to the computer and to malicious software (such as spyware) that exists on the computer. For this reason, no
 form of client-side storage should ever be used for passwords, financial
 account numbers, or other similarly sensitive information.
Also, bear in mind that many web users mistrust websites that use
 cookies or other client-side storage mechanisms to do
 anything that resembles “tracking.” Try to use the storage mechanisms
 discussed in this chapter to enhance a user’s experience at your site;
 don’t use them as a privacy-invading data collection mechanism. If too
 many sites abuse client-side storage, users will disable it or clear it
 frequently, which will defeat the purpose and cripple the sites that
 depend on it.

localStorage and sessionStorage

Browsers that implement the “Web Storage” draft
 specification define two properties on the Window object: localStorage and sessionStorage. Both properties refer to a
 Storage object—a persistent associative array that maps string keys to
 string values. Storage objects work much like regular JavaScript objects:
 simply set a property of the object to a string, and the browser will
 store that string for you. The difference between localStorage and sessionStorage has to do with lifetime and scope: how long the data is saved for
 and who the data is accessible to.
Storage lifetime and scope are explained in more detail below.
 First, however, let’s look at some examples. The following code uses localStorage, but it would also work with
 sessionStorage:
// Query a stored value.
var name = localStorage.username;
// The array notation equivalent
name = localStorage["username"];
if (!name) { // If no name stored, get one and store it
 name = prompt("What is your name?");
 localStorage.username = name;
}

// Iterate through all stored name/value pairs
for(var key in localStorage) {
 var value = localStorage[key];
}
Storage objects also define methods for storing, retrieving,
 iterating, and deleting data. Those methods are covered in Storage API.
The Web Storage draft specification says that we should be able to
 store structured data (objects and arrays) as well as primitive values and
 built-in types such as dates, regular expressions, and even File objects.
 At the time of this writing, however, browsers only allow the storage of
 strings. If you want to store and retrieve other kinds of data, you’ll
 have to encode and decode it yourself. For example:
// Stored numbers are automatically converted to strings.
// You must parse it when retrieving it from storage.
localStorage.x = 10;
var x = parseInt(localStorage.x);

// Convert a Date to a string when setting it.
localStorage.lastRead = (new Date()).toUTCString();
// And parse it when getting.
var last = new Date(Date.parse(localStorage.lastRead));

// Use JSON to stringify and parse objects and arrays.
localStorage.data = JSON.stringify(data);
var data = JSON.parse(localStorage.data);
Storage Lifetime and Scope

The difference between localStorage and sessionStorage involves the lifetime and scope
 of the storage. Data stored through localStorage is permanent: it does not expire
 and remains stored on the user’s computer until a web app deletes it or
 the user asks the browser (through some browser-specific UI) to delete
 it.
localStorage is scoped to the
 document origin. As explained in The Same-Origin Policy,
 the origin of a document is
 defined by its protocol, hostname, and port, so each of the following
 URLs has a different origin:
http://www.example.com
https://www.example.com // Different protocol
http://static.example.com // Different hostname
http://www.example.com:8000 // Different port
All documents with the same origin share the same localStorage data (regardless of the origin of
 the scripts that actually access localStorage). They can read each other’s
 data. And they can overwrite each other’s data. But documents with
 different origins can never read or overwrite each other’s data (even if
 they’re both running a script from the same third-party server).
Note that localStorage is also
 scoped by browser vendor. If you visit a site using Firefox, and then
 visit again using Chrome (for example), any data stored during the first
 visit will not be accessible during the second visit.
Data stored through sessionStorage has a different lifetime than
 data stored through localStorage: it
 has the same lifetime as the top-level window or browser tab in which
 the script that stored it is running. When the window or tab is
 permanently closed, any data stored through sessionStorage is deleted. (Note, however,
 that modern browsers have the ability to reopen recently closed tabs and
 restore the last browsing session, so the lifetime of these tabs and
 their associated sessionStorage may
 be longer than it seems.)
Like localStorage, sessionStorage is scoped to the document
 origin so that documents with different origins will never share
 sessionStorage. But sessionStorage is also scoped on a per-window
 basis. If a user has two browser tabs displaying documents from the same
 origin, those two tabs have separate sessionStorage data: the scripts running in
 one tab cannot read or overwrite the data written by scripts in the
 other tab, even if both tabs are visiting exactly the same page and are
 running exactly the same scripts.
Note that this window-based scoping of sessionStorage is only for top-level windows.
 If one browser tab contains two <iframe> elements, and those frames hold
 two documents with the same origin, those two framed documents will
 share sessionStorage.

Storage API

localStorage and
 sessionStorage are often used as if
 they were regular JavaScript objects: set a property to store a string
 and query the property to retrieve it. But these objects also define a
 more formal method-based API. To store a value, pass the name and value
 to setItem(). To retrieve
 a value, pass the name to getItem(). To delete a
 value, pass the name to removeItem(). (In most browsers you can also use the delete operator to remove a value, just as you
 would for an ordinary object, but this technique does not work in IE8.)
 To delete all stored values, call clear() (with no
 arguments). Finally, to enumerate the names of all stored values, use
 the length property and pass numbers
 from 0 to length–1 to the key() method. Here are
 some examples using localStorage. The
 same code would work using sessionStorage instead:
localStorage.setItem("x", 1); // Store an item "x"
localStorage.getItem("x"); // Retrieve its value

// Enumerate all stored name/value pairs
// Length gives the # of pairs
for(var i = 0; i < localStorage.length; i++) {
 // Get the name of pair i
 var name = localStorage.key(i);
 // Get the value of that pair
 var value = localStorage.getItem(name);
}

localStorage.removeItem("x"); // Delete the item "x"
localStorage.clear(); // Delete any other items, too

Storage Events

Whenever the data stored in localStorage or sessionStorage changes, the browser triggers a
 storage event on any other Window objects to which that data is visible
 (but not on the window that made the change). If a browser has two tabs
 open to pages with the same origin, and one of those pages stores a
 value in localStorage, the other tab
 will receive a storage event. Remember that sessionStorage is scoped to the top-level
 window, so storage events are only triggered for sessionStorage changes when there are frames
 involved. Also note that storage events are only triggered when storage
 actually changes. Setting an existing stored item to its current value
 does not trigger an event, nor does removing an item that does not exist
 in storage.
Register a handler for storage events with addEventListener() (or
 attachEvent() in IE).
 In most browsers, you can also set the onstorage property of
 the Window object, but at the time of this writing, Firefox does not
 support that property.
The event object associated with a storage event has five important properties (they are not
 supported by IE8, unfortunately):
	key
	The name or key of the item that was set or removed.
 If the clear() method was
 called, this property will be null.

	newValue
	Holds the new value of the item, or null if removeItem() was called.

	oldValue
	Holds the old value of an existing item that changed
 or was deleted, or null if a
 new item was inserted.

	storageArea
	This property will equal either the localStorage or the sessionStorage property of the target
 Window object.

	url
	The URL (as a string) of the document whose script
 made this storage change.

Finally, note that localStorage
 and the storage event can serve as a broadcast mechanism by which a
 browser sends a message to all windows that are currently visiting the
 same website. If a user requests that a website stop performing
 animations, for example, the site might store that preference in
 localStorage so that it can honor it
 in future visits. And by storing the preference, it generates an event
 that allows other windows displaying the same site to honor the request
 as well. As another example, imagine a web-based image editing
 application that allows the user to display tool palettes in separate
 windows. When the user selects a tool, the application uses localStorage to save the current state and to
 generate a notification to other windows that a new tool has been
 selected.

Cookies

A cookie is a small amount of named
 data stored by the web browser and associated with a particular web page
 or website. Cookies were originally designed for server-side programming,
 and at the lowest level, they are implemented as an extension to the HTTP
 protocol. Cookie data is automatically transmitted between the web browser
 and web server, so server-side scripts can read and write cookie values
 that are stored on the client. This section demonstrates how client-side
 scripts can also manipulate cookies using the cookie property of the
 Document object.
The API for manipulating cookies is an old one, which means that it
 is universally supported. Unfortunately, the API is also cryptic. There
 are no methods involved: cookies are queried, set, and deleted by reading
 and writing the cookie property of the
 Document object using specially formatted strings. The lifetime and scope
 of each cookie can be individually specified with cookie attributes. These
 attributes are also specified with specially formatted strings set on the
 same cookie property.
The subsections that follow explain the cookie attributes that
 specify lifetime and scope, and then demonstrate how to set and query
 cookie values in JavaScript.
Cookie Attributes: Lifetime and Scope

In addition to a name and a value, each cookie has optional
 attributes that control its lifetime and scope. Cookies are transient by default; the values they
 store last for the duration of the web browser session but are lost when
 the user exits the browser. Note that this is a subtly different
 lifetime than sessionStorage: cookies
 are not scoped to a single window, and their default lifetime is the
 same as the entire browser process, not the lifetime of any one window.
 If you want a cookie to last beyond a single browsing session, you must
 tell the browser how long (in seconds) you would like it to retain the
 cookie by specifying a max-age attribute. If you specify a
 lifetime, the browser will store cookies in a file and delete them only
 once they expire.
Cookie visibility is scoped by document origin as localStorage and sessionStorage are, and also by document path.
 This scope is configurable through cookie attributes path and domain. By default, a cookie is
 associated with, and accessible to, the web page that created it and any
 other web pages in the same directory or any subdirectories of that
 directory. If the web page http://www.example.com/catalog/index.html creates a
 cookie, for example, that cookie is also visible to http://www.example.com/catalog/order.html and http://www.example.com/catalog/widgets/index.html, but it
 is not visible to http://www.example.com/about.html.
This default visibility behavior is often exactly what you want.
 Sometimes, though, you’ll want to use cookie values throughout a
 website, regardless of which page creates the cookie. For instance, if
 the user enters his mailing address in a form on one page, you may want
 to save that address to use as the default the next time he returns to
 the page and also as the default in an entirely unrelated form on
 another page where he is asked to enter a billing address. To allow this
 usage, you specify a path for the cookie. Then, any
 web page from the same web server whose URL begins with the path prefix
 you specified can share the cookie. For example, if a cookie set by
 http://www.example.com/catalog/widgets/index.html
 has its path set to “/catalog,”
 that cookie is also visible to http://www.example.com/catalog/order.html. Or, if the
 path is set to “/,” the cookie is visible to any page on the http://www.example.com web server.
Setting the path of a cookie to “/” gives
 scoping like that of localStorage and
 also specifies that the browser must transmit the cookie name and value
 to the server whenever it requests any web page on the site.
By default, cookies are scoped by document origin. Large websites
 may want cookies to be shared across subdomains, however. For example,
 the server at order.example.com may need to read
 cookie values set from catalog.example.com. This is
 where the domain attribute comes in. If a cookie
 created by a page on catalog.example.com sets its
 path attribute to “/” and its
 domain attribute to “.example.com,” that cookie is
 available to all web pages on catalog.example.com,
 orders.example.com, and any other server in the
 example.com domain. If the
 domain attribute is not set for a cookie, the
 default is the hostname of the web server that serves the page. Note
 that you cannot set the domain of a cookie to a domain other than the
 domain of your server.
The final cookie attribute is a boolean attribute named secure that specifies how cookie
 values are transmitted over the network. By default, cookies are
 insecure, which means that they are transmitted over a normal, insecure
 HTTP connection. If a cookie is marked secure, however, it is
 transmitted only when the browser and server are connected via HTTPS or
 another secure protocol.

Setting Cookies

To associate a transient cookie value with the current document,
 simply set the cookie property to a
 string of the form:
name=value
For example:
var v = encodeURIComponent(document.lastModified);
document.cookie = "version=" + v;
The next time you read the cookie property, the name/value pair you
 stored is included in the list of cookies for the document. Cookie
 values cannot include semicolons, commas, or whitespace. For this reason, you may want to use the core
 JavaScript global function encodeURIComponent() to
 encode the value before storing it in the cookie.
A cookie written with a simple name/value pair lasts for the
 current web-browsing session but is lost when the user exits the
 browser. To create a cookie that can last across browser sessions,
 specify its lifetime (in seconds) with a max-age attribute. You can do this by setting
 the cookie property to a string of
 the form:
name=value; max-age=seconds
The following function sets a cookie with an optional max-age attribute:
// Store the name/value pair as a cookie, encoding
// the value with encodeURIComponent() in order to
// escape semicolons, commas, and spaces.
// If daysToLive is a number, set the max-age attribute
// so that the cookie expires after the specified
// number of days. Pass 0 to delete a cookie.
function setCookie(name, value, daysToLive) {
 var cookie = name + "=" + encodeURIComponent(value);
 if (typeof daysToLive === "number")
 cookie += "; max-age=" + (daysToLive*60*60*24);
 document.cookie = cookie;
}
Similarly, you can set the path, domain, and secure attributes of a cookie by appending
 strings of the following format to the cookie value before that value is
 written to the cookie
 property:
; path=path
; domain=domain
; secure
To change the value of a cookie, set its value again using the
 same name, path, and domain along with the new value. You can change the
 lifetime of a cookie when you change its value by specifying a new
 max-age attribute.
To delete a cookie, set it again using the same name, path, and
 domain, specifying an arbitrary (or empty) value, and a max-age attribute of 0.

Reading Cookies

When you use the cookie
 property in a JavaScript expression, the value it returns is a string
 that contains all the cookies that apply to the current document. The
 string is a list of name = value pairs
 separated from each other by a semicolon and a space. The cookie
 value does not include any of the attributes
 that may have been set for the cookie. In order to make use of the
 document.cookie property, you must
 typically call the split()
 method to break it into individual name-value pairs.
Once you have extracted the value of a cookie from the cookie property, you must interpret that value
 based on whatever format or encoding was used by the cookie’s creator.
 You might, for example, pass the cookie value to decodeURIComponent()
 and then to JSON.parse().
Example 14-1 defines a getCookie() function
 that parses the document.cookie
 property and returns an object whose properties specify the name and
 values of the document’s cookies.
Example 14-1. Parsing the document.cookies property
// Return the document's cookies as an object of
// name/value pairs. Assume that cookie values
// are encoded with encodeURIComponent().
function getCookies() {
 var cookies = {}; // The object we return
 var all = document.cookie; // All cookies
 if (all === "") // If empty
 return cookies; // return an empty object
 // Split string into name=value pairs
 var list = all.split("; ");
 // Loop through the name=value pairs
 for(var i = 0; i < list.length; i++) {
 var cookie = list[i];
 // Split each pair at the = sign
 var p = cookie.indexOf("=");
 var name = cookie.substring(0,p);
 var value = cookie.substring(p+1);
 // Store the name and decoded value
 cookies[name] = decodeURIComponent(value);
 }
 return cookies;
}

Cookie Limitations

Cookies are intended for storage of small amounts of data by
 server-side scripts, and that data is transferred to the server each
 time a relevant URL is requested. The standard that defines cookies
 encourages browser manufacturers to allow unlimited numbers of cookies
 of unrestricted size but does not require browsers to retain more than
 300 cookies total, 20 cookies per web server, or 4 KB of data per cookie
 (both name and value count toward this 4 KB limit). In practice,
 browsers allow many more than 300 cookies total, but the 4 KB size limit
 may still be enforced by some.

Index

A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

Symbols
	! invert boolean value, Operators, Logical Expressions
	! unary negation operator, Type Conversions
	!= loose inequality/not equal operator, Boolean Values, Operators, Relational Operators
	!== strict inequality operator, Operators, Relational Operators, Testing Properties
	" " (string), String Literals
	#top identifier, Browser Location and Navigation
	$ identifier, Identifiers and Reserved Words
	$ match end, Specifying Match Position
	% modulo operator, Numbers, Arithmetic Operators
	& bitwise AND operator, Operators, Arithmetic Operators
	&& logical AND, Operators, Logical Expressions
	&= operator, Assignment Expressions
	' ' (string), String Literals
	(?!) negative lookahead assertion, Specifying Match Position
	(?:) grouping only, Alternation, Grouping, and References
	(?=) positive lookahead assertion, Specifying Match Position
	* multiplication operator, Numbers, Operators, Arithmetic Operators
	* repetition character, Repetition
	* wildcard argument, Selecting Elements by Type
	*= operator, Assignment Expressions
	+ addition operator, Numbers, Arithmetic Operators
	+ concatenate strings, Operators
	+ convert to number, Operators
	+ repetition character, Repetition
	+ unary plus operator, Type Conversions, Arithmetic Operators
	++ increment operator, Operators, Arithmetic Operators, Expression Statements
	++ pre-/post-increment, Operators
	+= operator, Assignment Expressions, Element Content as HTML
	, discard 1st operand, return 2nd, Operators, The Comma Operator (,)
	- negate number, Operators
	- subtraction operator, Numbers, Arithmetic Operators
	- unary minus operator, Arithmetic Operators
	-- decrement operator, Operators, Arithmetic Operators, Expression Statements
	-- pre-/post-decrement, Operators
	. dot operator, null and undefined
	. value of property, Querying and Setting Properties
	/ division operator, Numbers, Arithmetic Operators
	/* */ multi-line comment, Comments
	// single-line comment, Comments
	/[]/ regular expressions, Character Classes
	; empty statement, Compound and Empty Statements
	; semicolon, Optional Semicolons
	< less than operator, Operators, Relational Operators
	<= less than or equal operator, Operators, Relational Operators
	= assign to a variable/property, Operators, Assignment Expressions
	== equality operator, null and undefined, Type Conversions
	== loose equality operator, Operators, Relational Operators
	=== strict equality operator, null and undefined, Operators, Relational Operators
	> greater than operator, Operators, Relational Operators
	>= greater than or equal operator, Operators, Relational Operators
	>> shift right with sign extension, Operators, Arithmetic Operators
	>>> shift right with zero
 extension, Operators, Arithmetic Operators
	? repetition character, Repetition
	?: conditional operator, Operators, The Conditional Operator (?:)
	[] operator, null and undefined, Property Access, Creating Arrays, Multidimensional Arrays
	[] value of property, Querying and Setting Properties
	\ match digits, Alternation, Grouping, and References
	\B not word boundary, Specifying Match Position
	\b word boundary, Specifying Match Position
	\d ASCII digit, Character Classes
	\D non-ASCII digit, Character Classes
	\S non-Unicode whitespace, Character Classes
	\s Unicode whitespace, Character Classes
	\w ASCII word character, Character Classes
	\W non-ASCII word character, Character Classes
	^ bitwise XOR operator, Operators, Arithmetic Operators
	^ match start, Specifying Match Position
	^ negated character class, Character Classes
	_ identifier, Identifiers and Reserved Words
	{} curly braces, Initializers, Compound and Empty Statements, try/catch/finally, Object Literals, Defining Functions
	| alternation, Alternation, Grouping, and References
	| bitwise OR operator, Operators, Arithmetic Operators
	| separator, Alternation, Grouping, and References
	|| logical OR, Operators, Logical Expressions, Optional Parameters
	~ bitwise NOT operator, Arithmetic Operators
	~ invert bits, Operators
	∀ “for all” quantifier, every() and some()
	∃ “there exists” quantifier, every() and some()

A
	<a> element, Selecting Elements by Type, Attributes, Handling Events
	abs property, Math object, Numbers
	accessor properties, Property Getters and Setters
	add() method, Element Style
	addEventListener() method, addEventListener(), Event Handler Context, Handler Return Value, Retrieving the Response, HTTP Progress Events, Storage Events
	alert() method, try/catch/finally, The Window Object, Dialog Boxes
	altKey property, mouse events, Mouse Events, Key Events
	ancestors of a node, Overview of the DOM
	anchors, Specifying Match Position
	apostrophe character, String Literals
	appendChild() method, Creating, Inserting, and Deleting Nodes
	Apple iPhone/iPad, Touchscreen and Mobile Events
	apply() method, Invoking Functions, Indirect Invocation, Function Properties, Methods, and Constructor
	appName property, Navigator object, Browser and Screen Information
	appVersion property, Navigator object, Browser and Screen Information
	argument event handlers, Event Handler Argument
	arguments, Functions
	Arguments object, Variable-Length Argument Lists: The Arguments Object
	arithmetic operators, Arithmetic Operators, Arithmetic Operators
	arity, Operators
	arrays, The Global Object, Initializers, Creating Objects with new, Arrays, Creating Arrays, Creating Arrays, Creating Arrays, Array Elements and Length, Iterating Arrays, Multidimensional Arrays, Array Methods, push() and pop(), join(), reverse(), sort(), concat(), slice(), splice(), Array Type, Array Type, Array-Like Objects, Variable-Length Argument Lists: The Arguments Object
		Array() function, The Global Object, Creating Objects with new, Creating Arrays
	“array literal”
 initializers, Initializers
	array-like objects, Array-Like Objects, Variable-Length Argument Lists: The Arguments Object
	Array.concat() method, concat()
	Array.isArray() function, Array Type
	Array.join() method, join()
	Array.reverse() method, reverse()
	Array.slice() method, slice()
	Array.sort() method, sort()
	Array.splice() method, splice()
	creating, Creating Arrays
	iterating, Iterating Arrays
	length property, Array Elements and Length
	literals, Creating Arrays
	methods, Array Methods, push() and pop()
	multidimensional, Multidimensional Arrays
	types, Array Type

	assignment expressions, Assignment Expressions
	asynchronous I/O events, HTML5 Events
	attachEvent() method, Storage Events
	attributes, Attributes
	<audio> element, HTML5 Events
	augmenting classes, Augmenting Classes
	availHeight property, Window object, Browser and Screen Information
	availWidth property, Window object, Browser and Screen Information

B
	back() method, Browsing History
	backslash (\) escape character, String Literals, Character Classes
	backspace character, String Literals
	base 10, Numbers
	beforeunload events, Window Events
	bidirectional socket-type connections, WebSockets
	binary operators, Operators
	bind() method, The bind() Method
	block scope, Variable Declaration
	blur events, Form Events
	<body> element, Selecting Elements by Type, Setting Event Handler Attributes
	Boolean values, Boolean Values
	Boolean() function, Type Conversions, Type Conversions
	booleans, Types, Values, and Variables
	borderLeftWidth property, Element Style
	branches, Conditionals
	break keyword, Optional Semicolons, switch
	break statement, Statements, Statements, break
	browser and screen information, Browser and Screen Information
	browser location and navigation, Browser Location and Navigation
	browsing context, Multiple Windows and Frames
	browsing history, Browsing History
	<button> element, Document Elements as Window Properties, addEventListener()

C
	call() method, The class Attribute, Invoking Functions, Indirect Invocation, Function Properties, Methods, and Constructor, Subclasses
	caret (^) bitwise XOR operator, Operators, Arithmetic Operators
	caret (^) negated character class, Character Classes
	carriage return character, String Literals, Literal Characters
	Cascading Style Sheets, Element Style, Element Style
	case statement, Statements
	case-insensitive match (i), Flags
	case-sensitivity, Lexical Structure
	catch clause, throw
	catch keyword, try/catch/finally
	ceil property, Math object, Numbers
	change events, Form Events
	changedTouches property, event object, Touchscreen and Mobile Events
	character classes, Character Classes
	charAt() method, String Literals, Strings as Arrays
	charCode property, keypress event object, Key Events
	checkscope() function, Closures
	child of a node, Overview of the DOM
	childElementCount property, Document Structure and Traversal
	childNodes property, Node object, Document Structure and Traversal
	children property, Element objects, Document Structure and Traversal
	class attribute, Selecting Elements by CSS Class, Element Style
	class fields, Java-Style Classes in JavaScript
	class hierarchy, Overview of the DOM
	class members, Java-Style Classes in JavaScript
	class methods, Java-Style Classes in JavaScript
	classes, Classes, Classes and Prototypes, Classes and Constructors, Immutable Classes, Subclasses, Augmenting Classes, Character Classes
		augmentation, Augmenting Classes
	character, Character Classes
	and constructors, Classes and Constructors
	extending, Subclasses
	immutable, Immutable Classes
	and prototypes, Classes and Prototypes

	classList property, Element Style
	className property, Selecting Elements by CSS Class, Attributes, Element Style
	classof() function, The class Attribute
	clear() method, Storage API
	clearTimeout() method, Timers
	client-side JavaScript, Embedding JavaScript in HTML, Event-Driven Programming, The Window Object, Timers, Browser Location and Navigation, Browsing History, Browser and Screen Information, Dialog Boxes, Document Elements as Window Properties, Multiple Windows and Frames, The Same-Origin Policy
		browser and screen information, Browser and Screen Information
	browser location and navigation, Browser Location and Navigation
	browsing history, Browsing History
	dialog boxes, Dialog Boxes
	document elements, Document Elements as Window Properties
	embedding in HTML, Embedding JavaScript in HTML
	event-driven programming, Event-Driven Programming
	multiple windows and frames, Multiple Windows and Frames, The Same-Origin Policy
	timers, Timers
	Window object, The Window Object

	client-side storage, Client-Side Storage, Storage Lifetime and Scope, Storage API, Storage Events, Cookies, Cookie Limitations
		API, Storage API
	cookies, Cookies, Cookie Limitations
	events, Storage Events
	lifetime and scope, Storage Lifetime and Scope
	storage, security, and privacy, Client-Side Storage

	clientX property, mouse events, Mouse Events
	clientY property, mouse events, Mouse Events
	cloneNode() method, Creating, Inserting, and Deleting Nodes
	close() method, WebSockets
	closures, Functions, Closures, Closures
	color property, Element Style
	comma operator (,), Operators, The Comma Operator (,), Defining Functions, Setting Cookies
	comments, Comments
	compound statements, Compound and Empty Statements
	concat() method, concat()
	concatenation, String Literals
	conditional statements, Statements, Conditionals, switch
	configurable attribute, Property Attributes
	confirm() method, Dialog Boxes
	constfuncs() function, Closures
	constructors, Creating Objects with new, Function Properties, Methods, and Constructor, The Function() Constructor, Classes and Constructors, Classes and Constructors, The constructor Property
		built-in, Creating Objects with new
	classes and, Classes and Constructors, Classes and Constructors
	Function(), Function Properties, Methods, and Constructor, The Function() Constructor
	property, The constructor Property

	contains() method, Element Style
	contentWindow property, Window object, Relationships Between Frames
	context event handlers, Event Handler Context
	continue keyword, Optional Semicolons
	continue statement, Statements, continue
	control character, Literal Characters
	control structures, Statements
	cookie property, Document object, Cookies
	cookies, Client-Side Storage, Cookies, Cookie Limitations
	CORS (Cross-Origin Resource Sharing), Cross-Origin HTTP Requests
	count() function, Closures
	counter() function, Closures
	createElement() method, Creating, Inserting, and Deleting Nodes
	Cross-Document Messaging API, HTML5 Events
	cross-origin URLs, Cross-Origin HTTP Requests
	CSS (Cascading Style Sheets), Element Style, Element Style
	CSS classes, Selecting Document Elements, Selecting Elements by CSS Class
	CSSStyleDeclaration object, Element Style
	ctrlKey property, mouse events, Mouse Events, Key Events
	curly braces {}, Initializers, Function Definition, Object Creation, Compound and Empty Statements, function, try/catch/finally, Object Literals, Defining Functions
		functions and, Function Definition, function, Defining Functions
	object initializer, Initializers, Object Creation
	object literals and, Object Literals
	statement block, Compound and Empty Statements, try/catch/finally

D
	data property, event objects, Property Getters and Setters, HTML5 Events, Server-Sent Events
	dataTransfer property, HTML5 Events
	Date() function, The Global Object, Creating Objects with new
	debugger statement, Statements, debugger
	declaration of variables, Types, Values, and Variables, Variable Declaration
	declaration statements, Declaration Statements
	decodeURIComponent() function, Reading Cookies
	default actions, Handling Events
	default statement while, Statements
	defineClass() function, Java-Style Classes in JavaScript, Subclasses
	defineProperties() method, Object, Property Attributes
	defineProperties() method, Object., Immutable Classes
	defineProperty() method, Object, Property Attributes
	defineSubclass() function, Subclasses
	“DELETE” method, Specifying the Request
	delete operator, Operators, Operators, The delete Operator, Expression Statements
	descendants of a node, Overview of the DOM
	detail property, mouse events, Mouse Events
	dialog boxes, Dialog Boxes
	digital clock, Embedding JavaScript in HTML
	dir attribute, Attributes
	directives, “use strict”
	<div> element, Selecting Elements by Type
	division by zero, Numbers
	do/while loop, Statements, do/while
	document elements, Document Elements as Window Properties, Selecting Elements by ID, Selecting Elements by Name, Selecting Elements by Type, Selecting Elements by CSS Class, Selecting Elements with CSS Selectors
		selecting by CSS class, Selecting Elements by CSS Class
	selecting by CSS selectors, Selecting Elements with CSS Selectors
	selecting by ID, Selecting Elements by ID
	selecting by name, Selecting Elements by Name
	selecting by type, Selecting Elements by Type

	document global variable, Selecting Document Elements
	document nodes, Creating, Inserting, and Deleting Nodes, Creating, Inserting, and Deleting Nodes
	Document Object Model (DOM), Overview of the DOM, Overview of the DOM, Event Propagation
	document property, Window object, The Window Object
	document structure and traversal, Document Structure and Traversal
	documentElement property, Document class, Selecting Elements by Type
	dollar sign ($) identifier, Identifiers and Reserved Words
	DOM (Document Object Model), Overview of the DOM, Overview of the DOM, Event Propagation
	domain attribute, Cookie Attributes: Lifetime and Scope
	DOMContentLoaded events, Window Events
	dot operator (.), null and undefined, Property Access, Querying and Setting Properties, Character Classes
	double quote character, String Literals, Alternation, Grouping, and References
	drag-and-drop events, HTML5 Events
	dynamic arrays, Arrays

E
	E property, Math object, Numbers
	ECMAScript 3, Identifiers and Reserved Words, Function Invocation, Indirect Invocation, The bind() Method
	ECMAScript 5, Identifiers and Reserved Words, String Literals, Variable Declaration, for/in, “use strict”, Enumerating Properties, Enumerating Properties, Property Getters and Setters, Property Attributes, Arrays, ECMAScript 5 Array Methods, indexOf() and lastIndexOf(), Strings as Arrays, Function Invocation, Indirect Invocation, The bind() Method
		array methods, ECMAScript 5 Array Methods, indexOf() and lastIndexOf()
	backslash in, String Literals
	bind() method, The bind() Method
	for/in loops, for/in
	function invocation, Function Invocation
	getter and setter methods, Property Getters and Setters
	null and defined values, Indirect Invocation
	Object.getOwnPropertyNames(), Enumerating Properties
	Object.keys(), Enumerating Properties
	querying and setting property attributes, Property Attributes
	strings as arrays, Arrays, Strings as Arrays
	“use strict”
 directive, “use strict”
	variable assign to undeclared variable, Variable Declaration

	element content, Element Content, Element Content as Text Nodes
	element style, Element Style, Element Style
	elements, Arrays
	else if statement, else if
	embedding JavaScript in HTML, Embedding JavaScript in HTML
	empty statements, Statements, Compound and Empty Statements
	empty string, Text
	encodeURIComponent() function, Setting Cookies
	enumerable attribute, Testing Properties, Property Attributes
	escape character (\), String Literals, Character Classes
	escape sequences, String Literals
	eval() function, The Global Object, Evaluation Expressions, “use strict”
	evaluation expressions, Expressions and Operators, Evaluation Expressions
	event, Handling Events, Handling Events, Handling Events, Handling Events, Handling Events, Handling Events, Handling Events, addEventListener(), Event Handler Invocation, Event Propagation, Event Propagation, Event Propagation, Event Cancellation
		bubbling, Event Propagation
	cancellation, Event Cancellation
	capturing, Handling Events, addEventListener(), Event Propagation
	listener, Handling Events
	name, Handling Events
	object, Handling Events
	propagation, Handling Events, Event Handler Invocation, Event Propagation
	target, Handling Events
	type, Handling Events

	event handlers, Handling Events, Form Events, Window Events, Mouse Events, Key Events, HTML5 Events, HTML5 Events, Touchscreen and Mobile Events, Registering Event Handlers, addEventListener(), Setting Event Handler Properties, Setting Event Handler Attributes, Setting Event Handler Attributes, Event Handler Argument, Event Handler Context, Event Handler Scope, Handler Return Value, Server-Sent Events
		argument, Event Handler Argument
	browser, Setting Event Handler Attributes
	context, Event Handler Context
	form, Form Events
	HTML5, HTML5 Events, HTML5 Events
	key, Key Events
	mouse, Mouse Events
	onmessage, Server-Sent Events
	registering, Registering Event Handlers, addEventListener()
	return value, Handler Return Value
	scope, Event Handler Scope
	setting attributes, Setting Event Handler Attributes
	setting properties, Setting Event Handler Properties
	touchscreen and mobile, Touchscreen and Mobile Events
	window, Window Events

	event-driven programming, Event-Driven Programming
	EventSource() constructor, Server-Sent Events
	every() method, every() and some()
	exceptions, throw
	exec() method, RegExp Properties and Methods
	execScript() function, Evaluation Expressions
	exp property, Math object, Numbers
	explicit type conversion, Type Conversions
	exponential notation, Numbers
	expression statements, Expression Statements
	expressions, Expressions and Operators, Expressions, Initializers, Property Access, Function Definition, Invocation, Invocation, Object Creation, Relational Operators, Relational Operators, Logical Expressions, Logical Expressions, Assignment Expressions, Evaluation Expressions
		assignment, Assignment Expressions
	defined, Expressions and Operators
	evaluation, Evaluation Expressions
	function definition, Function Definition
	initializers, Initializers
	invocation, Invocation
	logical, Logical Expressions, Logical Expressions
	method, Invocation
	object creation, Object Creation
	primary, Expressions
	property access, Property Access
	relational, Relational Operators, Relational Operators

F
	“404 Not Found” response, Retrieving the Response, HTTP Progress Events
	factorial() method, try/catch/finally
	“factory” function, Classes and Prototypes
	falsy values, Boolean Values
	filter() method, filter()
	finally blocks, try/catch/finally
	firstChild property, Node object, Document Structure and Traversal
	firstElementChild property, Document Structure and Traversal
	flags, Flags
	float property, Element Style
	floating-point values, Numbers
	floor property, Math object, Numbers
	focus events, Form Events
	font-size property, Element Style
	font-weight property, Element Style
	for all quantifier ∀, every() and some()
	for keyword, for/in
	for loop, Variable Declaration, Statements, Iterating Arrays
	for statement, Statements, for
	for/in loop, Variable Declaration, Statements, for/in, Enumerating Properties
	forEach() method, Iterating Arrays, forEach(), Subclasses
	<form> element, Selecting Elements by Name, Attributes, Event Handler Scope, Event Propagation, Cross-Origin HTTP Requests
	form event handlers, Form Events
	form feed character, String Literals, Literal Characters
	form validation mechanism, HTML5 Events
	forms property, HTMLCollection objects, Selecting Elements by Type
	forward() method, Browsing History
	<frame> element, Multiple Windows and Frames
	frameElement property, Window object, Relationships Between Frames
	frames, Multiple Windows and Frames, The Same-Origin Policy
	frames property, Window object, Multiple Windows and Frames, The Same-Origin Policy
	<frameset>
 element, Multiple Windows and Frames
	freeze() function, The extensible Attribute
	function calls, Expression Statements
	function definition expressions, Function Definition
	function invocation, Optional Semicolons
	function keyword, function, Property Getters and Setters, Functions as Namespaces, The Function() Constructor, JavaScript in Interacting Windows, Setting Event Handler Attributes
	function statement, Statements
	Function() constructor, Function Properties, Methods, and Constructor, The Function() Constructor
	functions, Types, Values, and Variables, Variable Declaration, function, Functions, Defining Functions, Nested Functions, Function Invocation, Indirect Invocation, Function Arguments and Parameters, Functions as Namespaces
		arguments and parameters, Function Arguments and Parameters
	declaring, function
	defining, Defining Functions
	invoking, Function Invocation, Indirect Invocation
	as namespaces, Functions as Namespaces
	nested, Nested Functions
	scope, Types, Values, and Variables, Variable Declaration

G
	g (global match), Flags
	generic methods, Arrays
	geolocation property, Navigator object, Browser and Screen Information
	geometry and scrolling, Geometry and Scrolling, Geometry and Scrolling
	get attribute, Property Attributes
	“GET” method, Specifying the Request
	getAllResponseHeaders() method, Retrieving the Response
	getAttribute() method, Attributes, Element Style
	getBoundingClientRect() method, Geometry and Scrolling
	getCookie() function, Reading Cookies
	getElementById() method, Relationships Between Frames, Selecting Elements by ID
	getElements() function, Selecting Elements by ID
	getElementsByClassName() method, Selecting Elements by CSS Class
	getElementsByName() method, Selecting Elements by Name, Selecting Elements by Type
	getElementsByTagName() method, Selecting Elements by Type, Selecting Elements by Type
	getItem() method, Storage API
	getJSONP() function, HTTP by <script>: JSONP
	getOwnPropertyDescriptor() function, Property Attributes
	getOwnPropertyNames() function, Enumerating Properties
	getPrototypeOf() method, The prototype Attribute
	getResponseHeader() method, Retrieving the Response
	getters, Property Getters and Setters
	getText() function, Retrieving the Response
	global match (g), Flags
	global object, The Global Object
	global property, RegExp object, RegExp Properties and Methods
	global scope, Variable Declaration, Closures
	global variables, Types, Values, and Variables, Selecting Document Elements
	go() method, Browsing History
	grabAttention() function, Element Style
	greedy repetition, Nongreedy repetition

H
	handleResponse() function, HTTP by <script>: JSONP
	hasAttribute() method, Attributes
	hash property, Location object, Browser Location and Navigation
	hasOwnProperty() method, Testing Properties
	<head> element, Selecting Elements by Type
	“HEAD” method, Specifying the Request
	height property, Window object, Browser and Screen Information
	hexadecimal, Numbers
	history management mechanism, HTML5 Events
	history property, Window object, Browsing History
	hoisting, Variable Declaration
	horizontal tab character, String Literals
	host property, Location object, Browser Location and Navigation
	hostname property, Location object, Browser Location and Navigation
	href property, Location object, Browser Location and Navigation, Selecting Elements by Type, Attributes
	HTML, Document Elements as Window Properties, Overview of the DOM, Overview of the DOM, Overview of the DOM, Overview of the DOM, Selecting Elements by Type, Attributes, Attributes, Element Content as HTML, HTML5 Events, HTML5 Events
		case-insensitive, Selecting Elements by Type
	DOM overview, Overview of the DOM, Overview of the DOM
	element content as, Element Content as HTML
	HTML5 event handlers, HTML5 Events, HTML5 Events
	HTMLDocument type, Overview of the DOM
	HTMLElement, Document Elements as Window Properties, Overview of the DOM, Attributes
	htmlFor property, Attributes

	HTTP, Browser and Screen Information, The Same-Origin Policy, The Same-Origin Policy, Retrieving the Response, HTTP Progress Events, Cross-Origin HTTP Requests, HTTP by <script>: JSONP, HTTP by <script>: JSONP
		cross-origin requests, Cross-Origin HTTP Requests
	http: protocol, The Same-Origin Policy
	JSONP, HTTP by <script>: JSONP, HTTP by <script>: JSONP
	progress events, HTTP Progress Events
	retrieving response, Retrieving the Response
	scripted requests, The Same-Origin Policy
	USER-AGENT header, Browser and Screen Information

	hypotenuse() function, Nested Functions

I
	i (case-insensitive match), Flags
	id attribute, Document Elements as Window Properties, Relationships Between Frames, Selecting Elements by ID, Attributes
	identifiers, Lexical Structure, Identifiers and Reserved Words
	IEEE 754 standard, Numbers
	if statement, Statements, function, if
	if/else statement, Statements
	<iframe> element, Browsing History, Relationships Between Frames, Selecting Elements by Name, Geometry and Scrolling, Cross-Origin HTTP Requests, Storage Lifetime and Scope
	ignoreCase property, RegExp object, RegExp Properties and Methods
	images property, HTMLCollection objects, Selecting Elements by Type
	 element, Selecting Elements by Name, Attributes
	immutable classes, Immutable Classes
	in operator, Operators, Relational Operators, Testing Properties
	includes() method, Subclasses
	increment expression, for
	index, Arrays
	index property, RegExp object, RegExp Properties and Methods
	indexOf() method, indexOf() and lastIndexOf()
	Infinity global property, The Global Object
	infinity value, Numbers
	inherit() function, Object.create(), Property Inheritance, Classes and Prototypes, Subclasses
	initialize expression, for
	initializers, Initializers
	inline HTML style, Element Style
	innerHeight property, Window object, Geometry and Scrolling
	innerHTML property, Window object, Element Content as HTML
	innerWidth property, Geometry and Scrolling
	<input> element, Attributes
	input property, RegExp object, RegExp Properties and Methods
	insertAdjacentHTML() method, Element Content as HTML
	insertBefore() method, Creating, Inserting, and Deleting Nodes
	instance fields, Java-Style Classes in JavaScript
	instance methods, Java-Style Classes in JavaScript
	instance object, Java-Style Classes in JavaScript
	instanceof operator, Operators
	instances, Classes, The constructor Property
	integer values, Numbers
	interacting Windows, JavaScript in Interacting Windows
	Internet Explorer 8, Microsoft, Storage Events
	invocation, Invocation, Functions, Function Invocation, Function Invocation, Constructor Invocation, Indirect Invocation, Event Handler Invocation, Event Cancellation
		constructor, Constructor Invocation
	context, Functions
	event handler, Event Handler Invocation, Event Cancellation
	expressions, Invocation
	of functions, Function Invocation
	indirect, Indirect Invocation
	of methods, Function Invocation

	isArray() function, Array Type
	isExtensible() function, The extensible Attribute
	isFinite() function, Numbers
	isFrozen() function, The extensible Attribute
	isNaN() function, Numbers, The Global Object
	isPrototypeOf() method, The prototype Attribute
	isSealed() function, The extensible Attribute

J
	Java-style classes, Java-Style Classes in JavaScript
	join() method, join()
	JSON.parse() function, Serializing Properties and Objects, Retrieving the Response, HTTP by <script>: JSONP, Reading Cookies
	JSON.stringify() function, Serializing Properties and Objects
	jump statements, Jumps, try/catch/finally

K
	key event handlers, Key Events
	key property, event object, Storage Events
	key() method, Storage API
	keyboard shortcuts, Event-Driven Programming, Key Events
	keyCode property, Key Events
	keydown event type, Handling Events
	keys() function, Enumerating Properties

L
	<label> element, Attributes
	label statement, Statements
	labeled statements, Labeled Statements
	lang attribute, Attributes
	lastChild property, Node object, Document Structure and Traversal
	lastElementChild property, Document Structure and Traversal
	lastIndex property, RegExp object, RegExp Properties and Methods
	lastIndexOf() method, indexOf() and lastIndexOf()
	Latin-1 encoding, String Literals, Literal Characters
	length of a string, Text
	length property, String Literals, Arrays, Array Elements and Length, Array-Like Objects, The length Property
	lengthComputable property, Event object, HTTP Progress Events
	lexical scoping, Types, Values, and Variables, Closures
	lifetime, localStorage and sessionStorage, Cookie Attributes: Lifetime and Scope
	line breaks, Optional Semicolons
	Link objects, Browser Location and Navigation
	links property, HTMLCollection objects, Selecting Elements by Type
	literals, String Literals, Expressions, Literal Characters
		regular expression characters, Literal Characters
	string, String Literals
	values, Expressions

	LN2 property, Math object, Numbers
	LN10 property, Math object, Numbers
	load events, Handling Events, Window Events
	loaded property, Event object, HTTP Progress Events
	local files and XMLHttpRequest, Using XMLHttpRequest
	local scope, Closures
	local variables, Variable Declaration
	localStorage property, Windows object, localStorage and sessionStorage, Storage Events
	location property, Window object, The Window Object, Browser Location and Navigation
	location.hash, Browsing History
	log property, Math object, Numbers
	logical expressions, Logical Expressions, Logical Expressions
	looping statements, Loops, for/in
	lvalue, Operators

M
	m multiline mode, Flags
	malware, Client-Side Storage
	map() method, map()
	match position, Specifying Match Position
	match() method, String Methods for Pattern-Matching, RegExp Properties and Methods
	Math properties, Numbers
	max property, Math object, Numbers
	max() function, Math., Indirect Invocation, Variable-Length Argument Lists: The Arguments Object
	max-age attribute, Cookie Attributes: Lifetime and Scope
	message property, Error object, throw
	metaKey property, mouse events, Mouse Events, Key Events
	method expressions, Invocation
	methods, Method Invocation, Subclasses
		invoking, Method Invocation
	overriding, Subclasses

	min property, Math object, Numbers
	modified scope chain, Event Handler Scope
	monkey-patching, Indirect Invocation
	mouse event handlers, Mouse Events
	mousedown events, Mouse Events
	mouseenter events, Mouse Events
	mouseleave events, Mouse Events
	mousemove events, Handling Events, Mouse Events
	mouseout events, Mouse Events
	mouseup events, Mouse Events
	mousewheel events, Mouse Events
	multiline mode (m), Flags
	multiline property, RegExp object, RegExp Properties and Methods
	multiple windows and frames, Multiple Windows and Frames, The Same-Origin Policy

N
	name attribute, Relationships Between Frames, Selecting Elements by Name
	name property, Error object, throw
	name property, Window object, Relationships Between Frames
	namespaces, functions as, Functions as Namespaces
	NaN (not-a-number) value, Numbers, The Global Object
	navigation, browser, Browser Location and Navigation
	navigator property, Window object, Browser and Screen Information
	negative infinity value, Numbers
	nested browsing contexts, Multiple Windows and Frames
	networking, Using XMLHttpRequest, Cross-Origin HTTP Requests, HTTP by <script>: JSONP, HTTP by <script>: JSONP, Server-Sent Events, WebSockets
		HTTP by <script>: JSONP, HTTP by <script>: JSONP, HTTP by <script>: JSONP
	server-sent events, Server-Sent Events
	using XMLHttpRequest, Using XMLHttpRequest, Cross-Origin HTTP Requests
	web sockets, WebSockets

	new keyword, Object Creation, Creating Objects with new, Constructor Invocation, Classes and Constructors
	newline character, String Literals, Literal Characters
	newValue property, event object, Storage Events
	nextElementSibling property, Document Structure and Traversal
	nextSibling property, Node object, Document Structure and Traversal
	Node, Preface, Preface
	nodes, Overview of the DOM, Selecting Elements by Name, Selecting Elements with CSS Selectors, Document Structure and Traversal, Document Structure and Traversal, Document Structure and Traversal, Element Content as Text Nodes, Creating, Inserting, and Deleting Nodes, Creating, Inserting, and Deleting Nodes
		creating, inserting, and deleting, Creating, Inserting, and Deleting Nodes, Creating, Inserting, and Deleting Nodes
	NodeList objects, Selecting Elements by Name, Selecting Elements with CSS Selectors
	nodeName property, Node object, Document Structure and Traversal
	nodeType property, Node object, Document Structure and Traversal
	nodeValue property, Node object, Document Structure and Traversal, Element Content as Text Nodes

	nongreedy repetition, Nongreedy repetition
	not-a-number (NaN) value, Numbers
	NUL character, String Literals, Literal Characters
	null keyword, null and undefined
	numbers, Numbers, Numbers
	numeric literals, Numbers

O
	object attributes, Object Attributes, The class Attribute, The extensible Attribute
		class attribute, The class Attribute
	extensible attribute, The extensible Attribute
	prototype attribute, Object Attributes

	object creation expressions, Object Creation
	object datatype, Objects
	“object literal”
 initializers, Initializers
	object literals, Object Literals
	object types, Types, Values, and Variables, Relational Operators
	Object() function, The Global Object, Type Conversions, Creating Objects, Creating Objects with new, Prototypes, Object.create(), Property Inheritance, Enumerating Properties, Enumerating Properties, Enumerating Properties, Property Attributes, Property Attributes, Property Attributes, Property Attributes, Classes and Prototypes, Subclasses, Browser Location and Navigation
		Object.create() method, Creating Objects, Object.create(), Property Attributes, Classes and Prototypes, Subclasses
	Object.defineProperties() method, Property Attributes
	Object.defineProperty, Property Attributes
	Object.defineProperty() method, Property Attributes
	Object.getOwnPropertyNames, Enumerating Properties
	Object.keys, Enumerating Properties
	Object.prototype, Prototypes, Property Inheritance, Enumerating Properties
	Object.reload() method, Browser Location and Navigation

	offline web applications, HTML5 Events
	oldValue property, event object, Storage Events
	onbeforeunload handler, Window, Handler Return Value
	onchange property, event object, Setting Event Handler Properties
	onclick attribute, event object, Attributes
	onclick property, event object, Setting Event Handler Properties, addEventListener()
	onhashchange event handler, Browsing History
	onLine property, Navigator object, Browser and Screen Information
	onload event handler, Event-Driven Programming
	onload property, event object, Setting Event Handler Properties, HTTP Progress Events
	onmouseover property, event object, Setting Event Handler Properties
	onpopstate event handler, Browsing History
	onprogress property, HTTP Progress Events
	onreadystatechange property, XMLHttpRequest
 object, Retrieving the Response
	onstorage property, Window object, Storage Events
	open() method, Specifying the Request
	operands, Expressions and Operators
	operators, Expressions and Operators, Operators, Operators, Arithmetic Operators, Arithmetic Operators, Relational Operators, Relational Operators, Miscellaneous Operators
		arithmetic, Arithmetic Operators, Arithmetic Operators
	relational, Relational Operators, Relational Operators

	optional parameters, Optional Parameters
	optional semicolons, Optional Semicolons
	“OPTIONS” method, Specifying the Request
	orientation property, Window object, Touchscreen and Mobile Events
	orientationchange event, Touchscreen and Mobile Events
	origin of a document, The Same-Origin Policy
	origin policy, HTML5 Events
	overflow, Numbers
	overflow property set, Window Events
	overriding methods, Subclasses

P
	<p> element, Selecting Elements by Type, Element Content
	padding, Geometry and Scrolling
	pageXOffset property, Window object, Geometry and Scrolling
	pageYOffset property, Window object, Geometry and Scrolling
	parameters, Functions, Optional Parameters
	parent of a node, Overview of the DOM
	parent property, Window object, Relationships Between Frames
	parentheses, Defining Functions, Alternation, Grouping, and References
	parentNode property, Node object, Document Structure and Traversal
	parseFloat() function, Type Conversions
	parseInt() function, The Global Object, Type Conversions
	path attribute, Cookie Attributes: Lifetime and Scope
	pathname property, Location object, Browser Location and Navigation
	pattern-matching, String Methods for Pattern-Matching, RegExp Properties and Methods
		RegExp properties and methods, RegExp Properties and Methods
	string methods for, String Methods for Pattern-Matching

	PI property, Math object, Numbers
	pinch close gesture, Touchscreen and Mobile Events
	pinch open gesture, Touchscreen and Mobile Events
	plain text, element content as, Element Content as Plain Text
	platform property, Navigator object, Browser and Screen Information
	pop() method, push() and pop()
	port property, Location object, Browser Location and Navigation
	“POST” method, Specifying the Request, Specifying the Request
	pow property, Math object, Numbers
	preventDefault() method, Handler Return Value
	preventExtensions() function, The extensible Attribute
	previousElementSibling property, Document Structure and Traversal
	previousSibling property, Node object, Document Structure and Traversal
	primary expressions, Expressions
	primitive types, Types, Values, and Variables
	privacy, Client-Side Storage
	procedures, Functions
	prompt() method, try/catch/finally, Dialog Boxes
	properties, Property Access, Operators, Relational Operators, Statements, Objects, Querying and Setting Properties, Property Inheritance, Deleting Properties, Testing Properties, Testing Properties, Enumerating Properties, Property Getters and Setters, Property Getters and Setters, Property Attributes, Property Attributes, The extensible Attribute, Function Properties, Methods, and Constructor, The Function() Constructor, The prototype Property, Constructors and Class Identity, The constructor Property, Document Elements as Window Properties, Selecting Elements by Type
		access, Property Access, Property Getters and Setters
	attributes, Property Attributes
	constructor, The constructor Property
	data, Property Getters and Setters
	deleting, Operators, Deleting Properties
	descriptors, Property Attributes
	document elements as, Document Elements as Window Properties
	enumerating, Statements, Enumerating Properties
	existence (in operator), Relational Operators
	extensibility and, The extensible Attribute
	function, Function Properties, Methods, and Constructor, The Function() Constructor
	inheritance, Property Inheritance
	propertyIsEnumerable() method, Testing Properties
	prototype, The prototype Property, Constructors and Class Identity
	querying and setting, Querying and Setting Properties
	shortcut, Selecting Elements by Type
	testing, Testing Properties

	protocol property, Location object, Browser Location and Navigation
	prototype attribute, Object Attributes
	prototype property, Prototypes, Constructor Invocation, The prototype Property, Classes and Constructors, Constructors and Class Identity
	prototypes, Prototypes, Prototypes, The prototype Property, Classes and Prototypes, Java-Style Classes in JavaScript
		chains, Prototypes
	and classes, Classes and Prototypes
	object, The prototype Property, Java-Style Classes in JavaScript

	push() method, push() and pop()
	pushState() method, Browsing History
	“PUT” method, Specifying the Request

Q
	querySelectorAll() method, Selecting Elements with CSS Selectors

R
	random property, Math object, Numbers
	range class, Classes and Constructors
	Range() constructor, Classes and Constructors, The constructor Property
	range() function, Classes and Prototypes
	reading cookies, Reading Cookies
	readyState property, XMLHttpRequest object, Retrieving the Response, HTTP Progress Events
	readystatechange events, Window Events, Retrieving the Response
	real values, Numbers
	reduce() method, reduce(), reduceRight()
	reduceRight() method, reduce(), reduceRight()
	RegExp() function, The Global Object, Creating Objects with new, Describing Patterns with Regular Expressions, String Methods for Pattern-Matching
	registering event handlers, Registering Event Handlers, addEventListener()
	regular expressions, Regular Expressions, Describing Patterns with Regular Expressions, Character Classes, Repetition, Alternation, Grouping, and References, Specifying Match Position, Flags, Matching Patterns with Regular Expressions, RegExp Properties and Methods
		alternation, grouping, and references, Alternation, Grouping, and References
	character classes, Character Classes
	describing patterns with, Describing Patterns with Regular Expressions
	flags, Flags
	pattern-matching with, Matching Patterns with Regular Expressions, RegExp Properties and Methods
	repetition in, Repetition
	specifying match position, Specifying Match Position

	relatedTarget property, event object, Mouse Events
	relationships between frames, Relationships Between Frames
	reload() method, Browser Location and Navigation
	remove() method, Element Style
	removeAttribute() method, Attributes
	removeChild() method, Creating, Inserting, and Deleting Nodes
	removeEventListener() method, addEventListener()
	removeItem() method, Storage API
	repetition, Repetition
	replace() method, String Literals, String Methods for Pattern-Matching, String Methods for Pattern-Matching
	replaceChild() method, Creating, Inserting, and Deleting Nodes
	reserved words, Identifiers and Reserved Words, Attributes
	reset events, Form Events
	reset() function, Closures
	response body, Retrieving the Response
	response headers, Retrieving the Response
	responseText property, XMLHttpRequest object, Retrieving the Response, Cross-Origin HTTP Requests
	return keyword, Optional Semicolons, Constructor Invocation
	return statement, Invocation, Statements, Statements, return
	returning a value, Expressions and Operators, Functions, Handler Return Value
	reverse() method, reverse()
	rotation property, event object, Touchscreen and Mobile Events
	round property, Math object, Numbers
	rounding, Numbers

S
	Safari, Touchscreen and Mobile Events
	same-origin policy, The Same-Origin Policy
	scale property, event object, Touchscreen and Mobile Events
	scope, localStorage and sessionStorage, Cookie Attributes: Lifetime and Scope
	scope of a variable, Variable Declaration
	scope of event handlers, Event Handler Scope
	screen information, Browser and Screen Information
	screen property, Window object, Browser and Screen Information, Browser and Screen Information
	<script> element, Embedding JavaScript in HTML, The Same-Origin Policy, Networking, Cross-Origin HTTP Requests
	scroll offsets, Geometry and Scrolling
	scrollBy() method, Geometry and Scrolling
	scrolling, Geometry and Scrolling, Geometry and Scrolling
	scrollIntoView() method, Geometry and Scrolling
	scrollTo() method, Geometry and Scrolling
	seal() function, The extensible Attribute
	search property, Location object, Browser Location and Navigation
	search() method, String Methods for Pattern-Matching
	secure attribute, Cookie Attributes: Lifetime and Scope
	security, Client-Side Storage
	security and scripts, HTTP by <script>: JSONP
	selecting elements by CSS class, Selecting Elements by CSS Class
	selecting elements by CSS selectors, Selecting Elements with CSS Selectors
	selecting elements by ID, Selecting Elements by ID
	selecting elements by name, Selecting Elements by Name
	selecting elements by type, Selecting Elements by Type
	selectors, CSS, Selecting Elements with CSS Selectors
	semicolon (;), Optional Semicolons, Setting Cookies
	send() method, Specifying the Request, HTTP Progress Events, WebSockets
	serialization, Serializing Properties and Objects
	Server-Sent Events, HTML5 Events
	sessionStorage property, Windows object, localStorage and sessionStorage, Storage Events
	set attribute, Property Attributes
	setAttribute() method, Attributes, Element Style
	setInterval() method, Timers
	setItem() method, Storage API
	setRequestHeader() method, Specifying the Request
	setters, Property Getters and Setters
	setTimeout() method, The Window Object
	shift left
 (<<), Operators, Arithmetic Operators
	shift() method, unshift() and shift()
	shiftKey property, mouse events, Mouse Events, Key Events
	shortcut properties, Selecting Elements by Type
	sibling of a node, Overview of the DOM
	side effects, Operators
	sin property, Math object, Numbers
	single quote character, String Literals, Alternation, Grouping, and References
	slice() method, slice()
	some() method, every() and some()
	sort() method, sort()
	source policy, HTML5 Events
	source property, RegExp object, RegExp Properties and Methods
	 element, Selecting Elements by Type
	specifying match position, Specifying Match Position
	splice() method, splice()
	split() method, join(), String Methods for Pattern-Matching, Reading Cookies
	spyware, Client-Side Storage
	sqrt property, Math object, Numbers
	square bracket operator [], Querying and Setting Properties
	square() function, Nested Functions
	src property, HTMLElement, The Same-Origin Policy, Attributes
	statement blocks, Compound and Empty Statements
	statements, Optional Semicolons, Optional Semicolons, Statements, Statements, Expression Statements, Compound and Empty Statements, Declaration Statements, Conditionals, switch, Loops, for/in, Jumps, try/catch/finally, Miscellaneous Statements, “use strict”
		; (semicolon) separator, Optional Semicolons
	compound and empty, Compound and Empty Statements
	conditional, Conditionals, switch
	declaration, Declaration Statements
	expression, Expression Statements
	jump, Jumps, try/catch/finally
	looping, Loops, for/in
	syntax, Statements
	termination rules, Optional Semicolons

	status property, XMLHttpRequest object, Retrieving the Response
	statusText property, XMLHttpRequest object, Retrieving the Response
	stopImmediatePropagation() method, Event Cancellation
	stopPropagation() method, Event Cancellation
	storageArea property, event object, Storage Events
	strict code, “use strict”
	strict mode, Identifiers and Reserved Words, Variable Declaration, “use strict”, Indirect Invocation
	string literals, String Literals
	String() function, The Global Object, Type Conversions
	strings, Types, Values, and Variables, String Literals, String Literals, String Literals, String Methods for Pattern-Matching
		immutability of, String Literals
	and
 pattern-matching, String Methods for Pattern-Matching

	style property, Element object, Element Style
	subclasses, Subclasses
	submit events, Form Events
	subroutines, Functions
	superclasses, Subclasses
	switch statement, Statements, Statements, switch

T
	“200 OK” response, Retrieving the Response, HTTP Progress Events
	tab character, Literal Characters
	target property, event object, Handling Events, HTML5 Events
	ternary operator (?:), Operators
	test expression, for
	test() method, RegExp Properties and Methods
	text nodes, element content as, Element Content as Text Nodes
	text string literals, String Literals, String Literals
	textContent property, Node object, Element Content as Plain Text
	textContent() function, Element Content as Text Nodes
	there exists quantifier ∃, every() and some()
	this keyword, The Global Object, Object Creation, ECMAScript 5 Array Methods, Function Invocation, Closures, Event Handler Context
	throw statement, Statements, Statements, throw
	timers, Timers
	timestamp property, Event object, HTTP Progress Events
	title attribute, Attributes
	toggle() method, Element Style
	top property, Window object, Relationships Between Frames
	toString() method, Type Conversions, The class Attribute, toString(), The toString() Method, Subclasses, Browser Location and Navigation
	total property, Event object, HTTP Progress Events
	touchscreen and mobile event handlers, Touchscreen and Mobile Events
	toUpperCase() method, String Literals, Method Invocation
	trace() function, Indirect Invocation
	tree structure, Overview of the DOM
	trim() method, String, Augmenting Classes
	truthy values, Boolean Values
	try statement, Statements
	try/catch/finally statement, try/catch/finally
	type hierarchy, Overview of the DOM
	type property, event object, Handling Events, HTTP Progress Events, Server-Sent Events
	typeof operator, Operators, Operators, The typeof Operator
	types, Types, Values, and Variables, Types, Values, and Variables, Type Conversions, Type Conversions
		automatic conversion, Types, Values, and Variables
	conversions, Type Conversions, Type Conversions

U
	unary operators, Operators, Arithmetic Operators
	undecremented value, Arithmetic Operators
	undefined keyword, null and undefined
	underflow, Numbers
	underscore (_) identifier, Identifiers and Reserved Words
	Unicode characters, String Literals, Literal Characters, Character Classes
	unincremented value, Arithmetic Operators
	uniqueInteger() function, Closures
	unload events, Window Events
	unshift() method, unshift() and shift()
	untyped arrays, Arrays
	upload property, XMLHttpRequest object, HTTP Progress Events
	URL decomposition properties, Browser Location and Navigation
	url property, event object, Storage Events
	URLs, Specifying the Request, Cross-Origin HTTP Requests, Storage Lifetime and Scope
	use strict statement, Statements, “use strict”
	USER-AGENT HTTP header, Browser and Screen Information
	userAgent property, Navigator object, Browser and Screen Information

V
	value attribute, Property Attributes
	values, Types, Values, and Variables
	var keyword, Types, Values, and Variables, Variable Declaration, JavaScript in Interacting Windows
	var statement, Statements, var
	varargs functions, Variable-Length Argument Lists: The Arguments Object
	variable arity functions, Variable-Length Argument Lists: The Arguments Object
	variable-length argument lists, Variable-Length Argument Lists: The Arguments Object
	variables, Types, Values, and Variables, Types, Values, and Variables, Types, Values, and Variables, Types, Values, and Variables, Variable Declaration, Variable Declaration
		declaration, Types, Values, and Variables, Variable Declaration
	global, Types, Values, and Variables
	local, Variable Declaration
	untyped, Types, Values, and Variables

	variadic functions, Variable-Length Argument Lists: The Arguments Object
	vertical tab character, String Literals, Literal Characters
	<video> element, HTML5 Events
	viewport, Geometry and Scrolling
	void operator, Operators, The void Operator

W
	WebSocket() constructor, WebSockets
	WebSockets, HTML5 Events, WebSockets
	while loop, Compound and Empty Statements, function
	while statement, Statements, Statements, while
	whitespace, Setting Cookies
	width property, Window object, Browser and Screen Information
	window event handlers, Window Events
	window identifier, The Window Object
	Window object, The Window Object, Relationships Between Frames
	window property, Window object, The Global Object, The Window Object
	window.onhashchange, Browsing History
	window.onpopstate, Browsing History
	with statements, Statements, with, Event Handler Scope
	writable attribute, Property Attributes

X
	XHR2 draft specification, HTTP Progress Events
	XML, Overview of the DOM
	XMLHttpRequest object, The Same-Origin Policy, Event Propagation, Specifying the Request, Retrieving the Response

Z
	zero, division by, Numbers
	zero-based arrays, Arrays

About the Author
David Flanagan is a JavaScript programmer at Mozilla. His books with O’Reilly include JavaScript: The Definitive Guide, jQuery Pocket Reference, The Ruby Programming Language, and Java in a Nutshell. David has a degree in computer science and engineering from the Massachusetts Institute of Technology. He lives with his wife and children in the U.S. Pacific Northwest between the cities of Seattle, Washington, and Vancouver, British Columbia. David has a blog at http://www.davidflanagan.com/.

Colophon
The animal on the cover of JavaScript Pocket
 Reference is a Javan rhinoceros. All five species of rhinoceros
 are distinguished by their large size, thick armor-like skin, three-toed
 feet, and single or double snout horn. The Javan rhinoceros, along with the
 Sumatran rhinoceros, is a forest-dwelling species. The Javan rhinoceros is
 similar in appearance to the Indian rhinoceros, but it is smaller and has
 certain distinguishing characteristics (primarily skin texture).
The cover image is from the Dover Pictorial Archive. The cover font is
 Adobe ITC Garamond. The text font is Linotype Birka; the heading font is
 Adobe Myriad Condensed; and the code font is LucasFont’s
 TheSansMonoCondensed.

OEBPS/httpatomoreillycomsourceoreillyimages1128449.png
—(Document HHTMLDocument)

HTMLHeadElement
HTMLBodyElement

(haracterData
Comment

—| HTMLTitleElement |
HTMLParagraphElement

—(Element HHTMLEIement]—

—| HTMLInputElement |

—' HTMLTableElement '

...etc

OEBPS/httpatomoreillycomsourceoreillyimages1128445.png
Constructor Prototype Instances

inherits |

Range() @--constructor [new Range(1,2)

prototype -----f----p| includes:
foreach: ...

tostring: .. 4..'!1“?[!!?.. new Range(3,4)

OEBPS/httpatomoreillycomsourceoreillyimages1128447.png
Document

<p>

"document”

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/orm_front_cover.jpg
Activate Your Web Pages

07 RE I LLYE David Flanagan

OEBPS/httpatomoreillycomsourceoreillyimages1128451.png
<Kdiv id="target">This is the element content|</div

beforebegin afterbegin beforeend afterend

